• Non ci sono risultati.

Search for quark compositeness with the dijet centrality ratio in pp collisions at √s=7TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Search for quark compositeness with the dijet centrality ratio in pp collisions at √s=7TeV"

Copied!
15
0
0

Testo completo

(1)

Search for Quark Compositeness with the Dijet Centrality Ratio in pp Collisions at

p

ffiffiffi

s

¼ 7 TeV

V. Khachatryan et al.*

(CMS Collaboration)

(Received 21 October 2010; published 20 December 2010)

A search for quark compositeness in the form of quark contact interactions, based on hadronic jet pairs (dijets) produced in proton-proton collisions atpffiffiffis¼ 7 TeV, is described. The data sample of the study corresponds to an integrated luminosity of2:9 pb1collected with the CMS detector at the LHC. The dijet centrality ratio, which quantifies the angular distribution of the dijets, is measured as a function of the invariant mass of the dijet system and is found to agree with the predictions of the standard model. A statistical analysis of the data provides a lower limit on the energy scale of quark contact interactions. The sensitivity of the analysis is such that the expected limit is 2.9 TeV; because the observed value of the centrality ratio at high invariant mass is below the expectation, the observed limit is 4.0 TeV at the 95% confidence level.

DOI:10.1103/PhysRevLett.105.262001 PACS numbers: 13.85.Hd, 12.60.Rc, 14.65.Jk

In the standard model (SM), most high energy proton-proton collisions are described by the scattering of partons (quarks or gluons) in the framework of quantum chromo-dynamics (QCD). The outgoing partons manifest them-selves as two or more jets of hadrons, with the pseudorapidity  of the jets depending on the parton scattering angle. In QCD, the jet production rate peaks at largejj because the scattering is dominated by t-channel processes. Several new physics scenarios, including mod-els of quark compositeness, produce a more isotropic angular distribution leading to enhanced jet production at smaller values ofjj [1–6]. Other models of new physics predict the opposite: a decrease in jet production at small jj compared with the SM [7].

The dijet system consists of the two jets with the highest transverse momentapT in an event (the leading jets) with invariant massmjj. The dijet centrality ratioRis defined as the number of events with the two leading jets in the regionjj < 0:7 (inner events) divided by the number of events with the two jets in the region 0:7 < jj < 1:3 (outer events). Because many systematic effects cancel in this ratio, R provides an accurate test of QCD and is sensitive to new physics.

In this Letter we report a measurement ofRin proton-proton collisions atpffiffiffis¼ 7 TeV. The analysis is based on a data sample corresponding to an integrated luminosity of 2:9  0:3 pb 1 collected with the Compact Muon Solenoid (CMS) detector at the CERN Large Hadron Collider.

The dijet centrality ratio is measured as a function ofmjj and is compared with predictions from perturbative QCD calculations performed at next-to-leading order (NLO) accuracy with the NLOJET++ program [8,9] in the

FASTNLO framework [10]. We also compare the measured Rwith a QCD prediction obtained from thePYTHIA6.420 event generator [11] with the D6T set of parameters [12]. We use CTEQ6.6 parton distribution functions (PDFs) [13] for the NLO calculation and CTEQ6LL [14] for the

PYTHIA6prediction. The effect of the CMS detector simu-lation [15] on the predictions forRis negligible.

We useRto search for evidence that quarks are com-posite particles. Quark comcom-positeness at an energy scale would appear at lower energies as a contact interaction, yielding an distribution different from that predicted by QCD. We consider a model of contact interactions between left-handed quarks in the process qq ! qq described by the effective Lagrangian Lqq ¼ ð2=2Þð qLqLÞ  ð qLqLÞ [1]. We choose the positive sign ofLqqbecause it yields a more conservative exclusion limit on  (by about 5%) than the negative sign. In QCD, R is nearly independent ofmjj, with a value near 0.5. The presence of quark contact interactions described by Lqq would cause Rto increase rapidly above a value ofmjjthat depends on . Previous searches for quark compositeness described by the interactionLqqexclude < 3:4 TeV at the 95% con-fidence level (C.L.) [16–21].

A detailed description of the CMS detector can be found elsewhere [22]. The CMS coordinate system is right-handed with the origin at the center of the detector, the x axis directed toward the center of the LHC ring, and the y axis directed upward;  is the azimuthal angle,  the polar angle, and    lnðtan½=2Þ the pseudorapidity. The central feature of the CMS apparatus is a supercon-ducting solenoid that surrounds the silicon pixel and strip tracker as well as the barrel and end cap calorimeters

*Full author list given at the end of the article.

Published by The American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published article’s title, journal citation, and DOI.

(2)

(covering the region jj < 3): a lead tungstate crystal electromagnetic calorimeter (ECAL) and a brass-scintillator hadronic calorimeter (HCAL). The ECAL bar-rel extends tojj ¼ 1:479 and the HCAL barrel to jj ¼ 1:305. The HCAL and ECAL cells are grouped into towers projecting radially outward from the origin. In the region jj < 1:74 these calorimeter towers have width  ¼  ¼ 0:087. ECAL and HCAL cell energies above noise suppression thresholds are summed within each projective tower to define the calorimeter tower energy.

We reconstruct jets by applying the anti-kT clustering algorithm [23] to the calorimeter towers with the distance parameterR ¼ 0:7. The energy E and momentum ~p of a jet are defined as the scalar and vector sums, respectively, of the calorimeter cell energies associated with the jet. We applypT- and-dependent scales to E and ~p to correct for the nonlinearity and nonuniformity of the calorimeter re-sponse. The jet energy corrections and resolutions are determined and validated using simulated, test beam, and collision data [24].

A set of independent single-jet triggers with varying thresholds on uncorrected jetpT is employed in the online trigger system. We use data from three of these triggers, with thresholds of 15, 30, and 50 GeV, in themjj ranges where the triggers have efficiency greater than 99.5% for both inner and outer events. By studying the relative effi-ciency of parallel triggers in the collision data, we deter-mine that these three triggers meet this efficiency requirement formjj greater than 156, 244, and 354 GeV, respectively, where these values are three of the predefined bin edges for mjj. The requirement of mjj> 156 GeV results in a minimum jetpT of 25 GeV.

To remove potential instrumental and noncollision back-grounds we impose the following requirements: events must have a primary vertex reconstructed with jzj < 24 cm [25]; jets must have at least 1% of their total energy detected in the ECAL, no more than 98% of their energy detected in a single HCAL photodetector, and no more than 90% of their energy in a single calorimeter cell (ECAL or HCAL). These jet identification criteria remove less than 0.1% of the selected events at all values ofmjj.

In Fig.1 we show the observed numbers of inner and outer dijet events and R in bins of mjj; the bin widths roughly correspond to themjjresolution. The event counts, which are corrected for the trigger reduction factors (pre-scales), fall steeply with increasingmjj. We compareR with NLO and PYTHIA6 predictions for mjj values up to 1120 GeV. The error bars represent the combination of statistical and experimental systematic uncertainties (de-scribed in detail later). The horizontal lines near the end of the error bars denote the statistical uncertainty on this ratio of Poisson-distributed variables computed with Clopper-Pearson intervals [26].

We apply anmjj-dependent correction to the NLO pre-diction to account for nonperturbative effects of

hadroni-zation and multiple parton interactions. This correction, which is approximately 10% at low mjj and 2% formjj greater than 400 GeV, is obtained from PYTHIA6. The predictions ofPYTHIA6andHERWIG++ [27] for this correc-tion agree to within a few percent.

The NLO prediction is shown as a band that accounts for uncertainties related to the choices of the renormalization scaleR, the factorization scaleF, and the PDFs used in the calculation. The scale uncertainties, which are approxi-mately 3%–4% depending onmjj, are evaluated by varying the scales from the default choice of R ¼ F ¼ pT to pT=2, pT, and 2pT in the following six combinations: ðR; FÞ ¼ ðpT=2; pT=2Þ, (2pT, 2pT), (pT, pT=2), (pT, 2pT), (pT=2, pT), and (2pT,pT). The PDF uncertainties are estimated with repeated evaluations of the NLO-predicted R for the PDFs in the CTEQ6.6, MSTW2008 [28], and NNPDF2.0 [29] sets and are found to be less than 1%. The band also includes the uncertainty arising from the correction for nonperturbative effects, which we con-servatively take to be 20% of the correction factor.

Dijet Mass (GeV)

1000 2000 3000 Events 1 10 2 10 3 10 4 10 5 10 CMSs = 7 TeV (a) -1 2.9 pb <0.7 <1.3 0.7<

Dijet Mass (GeV)

200 400 600 800 1000 R 0.4 0.6 0.8 1 1.2 CMS (b) = 7 TeV s -1 2.9 pb Data NLO NLO+Non-Pert. Correction NLO Uncertainty PYTHIA6

FIG. 1 (color online). (a) Event counts corrected for trigger prescales for inner (solid circles) and outer (open boxes) dijets and (b) the observed R as functions ofmjj. We compare R with predictions for QCD from PYTHIA6 (dashed line), NLO calculations (dotted line), and NLO plus nonperturbative correc-tions (solid line) and its uncertainty (band).

(3)

The measuredRis nearly flat with a value of about 0.5 as predicted by both the corrected NLO calculation and

PYTHIA6. The observed average ratio is about 7% lower than that of the corrected NLO prediction, and about 7% higher than that of thePYTHIA6prediction. The data are in

better agreement with the corrected NLO prediction at low mjj, where the significant nonperturbative corrections im-prove the agreement, and with the PYTHIA6prediction at intermediate and highmjj.

To test for the presence of quark compositeness withR, we employ a log-likelihood-ratio statistic that compares the likelihood of the null (QCD only) hypothesis LQCD with that of the alternative hypothesis that quark contact interactions are present in addition to QCDLalt:

RLL ¼ lnLalt lnLQCD: (1) The total likelihood is the product of the individual bin likelihoods, which formjj bini is

Li¼ P ðntot;ijtot;iÞBðnin;ijntot;i; iÞ; (2) where the first factor is the Poisson probability to observe ntot;i events when expecting tot;i and the second is the binomial probability to observe nin;i inner events given ntot;i and a predicted probability to be inner ofi [where  ¼ R=ð1 þ RÞ]. Since the first factor in Eq. (2) con-tains no information onR, we remove it from the statis-tical inference by conditioning the probabilities by the observed values of ntot;i [30,31]. We compare the value ofRLLin the data with distributions of the expected values for both hypotheses, obtained from ensembles of pseu-doexperiments, to either claim the discovery of quark compositeness or to set exclusion bounds on the compo-siteness scale with the frequentist-inspired CLsmethod [32]. In this method, RLL values for which CLs¼ CLsþb=CLb< 0:05 are excluded at the 95% C.L., where CLsþb and CLb are the probabilities for RLL to have a lower value than that observed, given the alternative and null hypotheses, respectively. This protects against an ex-clusion claim when the data have little sensitivity to the new physics.

We use the NLO prediction corrected for nonperturba-tive effects to describe the shape of R for the null hy-pothesis. To minimize the effect of potential discrepancies between the NLO prediction and actual QCD dijet produc-tion, we include an overall offset ofRin the null hypothe-sis. This offset is determined with the data in themjjrange between 490 and 790 GeV. (The lower bound is chosen to avoid the region where nonperturbative corrections are significant, and the upper bound is chosen to avoid the signal region for compositeness.) As noted above, the data lie below the NLO prediction, yielding an offset ofR¼ 0:050  0:021ðstat:Þ  0:039ðsyst:Þ. Using ensembles of simulated data, we determine that the probability (p value)

for observingjRj > 0:050, given the NLO prediction, is 0.29.

PYTHIA6 is used to describe R for the alternative hy-pothesis. We apply an mjj-dependent correction that ac-counts for NLO contributions to the QCD part of this prediction. We do not apply this correction, which is derived fort-channel QCD processes, to the contact inter-action part of the prediction because it is not physically motivated and yields less conservative exclusion limits on . Since the contact interaction model is not valid for mjj near the compositeness scale, we exclude data above a -dependent mjjthreshold for the testing of each value hypothesis.

In TableIwe report the systematic uncertainties related to the measurement ofRand the NLO QCD model. The dominant source of uncertainty on the measurement is the 1% uncertainty in the relative jet energy scale (JES) be-tween the inner and outer regions, which results in a 5%– 13% uncertainty on R depending on mjj. This relative uncertainty has a much larger impact than a 10% uncer-tainty on the JES common to both regions. The simulation of jet energy reconstruction is verified by examination of transverse momentum conservation for selected events and for events where the dijet system consists of an inner and an outer jet.

For the QCD model, the sources of uncertainty include the choice of scale and PDFs in the NLO calculation and the nonperturbative corrections described above. In addi-tion, we take the statistical uncertainty on the offset de-scribed above and the difference between thePYTHIA6and

TABLE I. Systematic uncertainties onR related to the mea-surement ofR (detector uncertainties) and to the QCD model (model uncertainties). For each source of uncertainty, we show the range of values over the entiremjjrange and at a represen-tative point in the signal region.

Source Full range mjj¼ 1:6 TeV

Detector uncertainty

Relative JES 0.02–0.05 0.032

Absolute JES 0.00–0.03 0.003

Jet energy resolution 0.003 0.003

Other 0.01 0.010 Total detector 0.02–0.05 0.034 Model uncertainty PYTHIA6–NLO 0.00–0.05 0.032 Offset 0.021 0.021 Scale þð0:01ð0:010:05Þ0:02Þ þ0:0290:011 PDF þð0:002ð0:0020:007Þ–0:004Þ þ0:0020:003 MC statistics 0.005 0.005 Nonpert. corr. 0.002–0.014 0.002 Total model þð0:02ð0:010:07Þ0:05Þ þ0:0440:034 Total þð0:03ð0:030:09Þ0:08Þ þ0:0550:048

(4)

NLO predictions as systematic uncertainties related to our choice of model. For the compositeness hypothesis, R increases steeply withmjj, and the 10% uncertainty on the absolute JES dominates the uncertainty on the  scale being probed.

Figure 2 shows our data in comparison with the null hypothesis. Alternative hypotheses with contact interaction scales of ¼ 3 and 4 TeV are also shown. In this figure, the data from the 15 sparsely populated mjj bins in the range 1530–3020 GeV are combined into a single bin for presentation purposes. The band indicates the total system-atic uncertainty, which is included in the ensembles of pseudoexperiments with the method of Ref. [33]; i.e., the uncertainties enter the ensembles as nuisance parameters that affect the expected numbers of inner and outer events. To quantify the agreement of the data with the SM expectation, we determine the offset of the data with respect to the NLO model for the fullmjj range, finding 0:037  0:007ðstat:Þ  0:039ðsyst:Þ with a p value of 0.34. Given this consistency of the data with the QCD hypothesis, we determine 95% C.L. limits on the contact interaction scale.

We summarize the determination of the limit in Fig.3. We show RLL versus  for the data and for the SM expectation (with1 and 2 bands) along with the highest value of RLL excluded at the 95% C.L. with the CLs method. HighRLL values indicate new physics. The ex-pected exclusion region comprises those values of  for which the SM-expectedRLL(conditioned by the observed numbers of eventsntot;i) is less than the 95%CLscontour, and is seen to be  < 2:9 TeV. The observed exclusion region comprises values for which the measured RLL is less than the 95% CLs contour, and is seen to be  < 4:0 TeV. The observed limit is higher than expected

be-cause formjj> 1:4 TeV the measured Ris lower than its expectation under the SM.

In summary, we present a measurement of the dijet centrality ratio in 7 TeV proton-proton collisions. The dijet centrality ratio is found to exhibit little dependence on the dijet invariant mass and to agree with the expectation of the standard model. We exclude quark compositeness de-scribed by a contact interaction between left-handed quark fields at energy scales of  < 4:0 TeV at the 95% C.L. This is the most stringent limit to date.

We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administra-tive staff at CERN and other CMS institutes, and acknowl-edge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA).

[1] E. J. Eichten, K. D. Lane, and M. E. Peskin, Phys. Rev. Lett.50, 811 (1983).

Dijet Mass (GeV)

500 1000 1500 2000 2500 3000 R 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 CMS = 7 TeV s -1 2.9 pb Data Null Hypothesis Syst. Uncertainty = 3 TeV = 4 TeV

FIG. 2 (color online). The observed dijet centrality ratio as a function ofmjjcompared with the null (QCD) hypothesis (solid line), including the total systematic uncertainty (band), and to hypotheses of quark contact interactions with ¼ 3 TeV (dot-ted line) and 4 TeV (dashed line).

(GeV) 2000 3000 4000 5000 LL R -30 -25 -20 -15 -10 -5 0 Data s 95% CL SM 1 ± SM 2 ± SM CMS = 7 TeV s -1 2.9 pb > 4.0 TeV Limit:

FIG. 3 (color online). Summary of the limit for the contact interaction scale. We show RLL versus for the data (solid line), the 95%CLs(dashed line), and the SM expectation (dotted line) with1 (dark) and 2 (light) bands.

(5)

[2] U. Baur, I. Hinchliffe, and D. Zeppenfeld, Int. J. Mod. Phys. A2, 1285 (1987).

[3] J. L. Hewett and T. G. Rizzo,Phys. Rep.183, 193 (1989). [4] P. H. Frampton and S. L. Glashow,Phys. Lett. B190, 157

(1987).

[5] E. H. Simmons,Phys. Rev. D55, 1678 (1997).

[6] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999).

[7] P. Meade and L. Randall,J. High Energy Phys. 05 (2008) 003.

[8] Z. Nagy,Phys. Rev. Lett.88, 122003 (2002). [9] Z. Nagy,Phys. Rev. D68, 094002 (2003).

[10] T. Kluge, K. Rabbertz, and M. Wobisch, arXiv:hep-ph/ 0609285.

[11] T. Sjostrand, S. Mrenna, and P. Z. Skands,J. High Energy Phys. 05 (2006) 026.

[12] R. Field, in Tevatron-for-LHC Report of the QCD Working Group, pp. 74–85,arXiv:hep-ph/0610012. [13] P. M. Nadolsky et al.,Phys. Rev. D78, 013004 (2008). [14] J. Pumplin et al.,J. High Energy Phys. 07 (2002) 012. [15] S. Agostinelli et al. (GEANT4 Collaboration), Nucl.

Instrum. Methods Phys. Res., Sect. A506, 250 (2003). [16] O. Kofoed-Hansen et al. (UA2 Collaboration),Phys. Lett.

B138, 430 (1984).

[17] G. Thompson et al. (UA1 Collaboration), Phys. Lett. B 177, 244 (1986).

[18] F. Abe et al. (CDF Collaboration), Phys. Rev. Lett. 78, 4307 (1997).

[19] B. Abbott et al. (D0 Collaboration),Phys. Rev. Lett.82, 2457 (1999).

[20] V. M. Abazov et al. (D0 Collaboration),Phys. Rev. Lett. 103, 191803 (2009).

[21] G. Aad et al. (ATLAS Collaboration),arXiv:1009.5069. [22] CMS Collaboration,JINST3, S08004 (2008).

[23] M. Cacciari, G. P. Salam, and G. Soyez,J. High Energy Phys. 04 (2008) 063.

[24] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-JME-10-003, 2010, http://cdsweb .cern.ch/record/1279362.

[25] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-TRK-10-005, 2010, http://cdsweb .cern.ch/record/1279383/.

[26] C. J. Clopper and E. S. Pearson, Biometrika 26, 404 (1934).

[27] M. Bahr et al.,Eur. Phys. J. C58, 639 (2008). [28] A. D. Martin et al.,Eur. Phys. J. C63, 189 (2009). [29] R. D. Ball et al.,arXiv:1002.4407.

[30] N. Reid,Stat. Sci.10, 138 (1995).

[31] J. Przyborowski and H. Wilenski, Biometrika 31, 313 (1940).

[32] A. L. Read, in Proceedings of the First Workshop on Confidence Limits, edited by F. James, L. Lyons, and Y. Perrin (CERN, Geneva, Switzerland, 2000), pp. 81–101, http://cdsweb.cern.ch/record/451614.

[33] R. D. Cousins and V. L. Highland,Nucl. Instrum. Methods Phys. Res., Sect. A320, 331 (1992).

V. Khachatryan,1A. M. Sirunyan,1A. Tumasyan,1W. Adam,2T. Bergauer,2M. Dragicevic,2J. Ero¨,2C. Fabjan,2 M. Friedl,2R. Fru¨hwirth,2V. M. Ghete,2J. Hammer,2,bS. Ha¨nsel,2C. Hartl,2M. Hoch,2N. Ho¨rmann,2J. Hrubec,2

M. Jeitler,2G. Kasieczka,2W. Kiesenhofer,2M. Krammer,2D. Liko,2I. Mikulec,2M. Pernicka,2H. Rohringer,2 R. Scho¨fbeck,2J. Strauss,2A. Taurok,2F. Teischinger,2W. Waltenberger,2G. Walzel,2E. Widl,2C.-E. Wulz,2 V. Mossolov,3N. Shumeiko,3J. Suarez Gonzalez,3L. Benucci,4L. Ceard,4E. A. De Wolf,4X. Janssen,4T. Maes,4

L. Mucibello,4S. Ochesanu,4B. Roland,4R. Rougny,4M. Selvaggi,4H. Van Haevermaet,4P. Van Mechelen,4 N. Van Remortel,4V. Adler,5S. Beauceron,5S. Blyweert,5J. D’Hondt,5O. Devroede,5A. Kalogeropoulos,5J. Maes,5 M. Maes,5S. Tavernier,5W. Van Doninck,5P. Van Mulders,5G. P. Van Onsem,5I. Villella,5O. Charaf,6B. Clerbaux,6 G. De Lentdecker,6V. Dero,6A. P. R. Gay,6G. H. Hammad,6T. Hreus,6P. E. Marage,6L. Thomas,6C. Vander Velde,6

P. Vanlaer,6J. Wickens,6S. Costantini,7M. Grunewald,7B. Klein,7A. Marinov,7D. Ryckbosch,7F. Thyssen,7 M. Tytgat,7L. Vanelderen,7P. Verwilligen,7S. Walsh,7N. Zaganidis,7S. Basegmez,8G. Bruno,8J. Caudron,8

J. De Favereau De Jeneret,8C. Delaere,8P. Demin,8D. Favart,8A. Giammanco,8G. Gre´goire,8J. Hollar,8 V. Lemaitre,8O. Militaru,8S. Ovyn,8D. Pagano,8A. Pin,8K. Piotrzkowski,8L. Quertenmont,8N. Schul,8N. Beliy,9

T. Caebergs,9E. Daubie,9G. A. Alves,10D. De JesusDamiao,10M. E. Pol,10M. H. G. Souza,10W. Carvalho,11 E. M. Da Costa,11C. De Oliveira Martins,11S. Fonseca De Souza,11L. Mundim,11H. Nogima,11V. Oguri,11

J. M. Otalora Goicochea,11W. L. Prado Da Silva,11A. Santoro,11S. M. Silva Do Amaral,11A. Sznajder,11 F. Torres Da Silva De Araujo,11F. A. Dias,12M. A. F. Dias,12T. R. Fernandez Perez Tomei,12E. M. Gregores,12,c F. Marinho,12S. F. Novaes,12Sandra S. Padula,12N. Darmenov,13,bL. Dimitrov,13V. Genchev,13,bP. Iaydjiev,13,b

S. Piperov,13M. Rodozov,13S. Stoykova,13G. Sultanov,13V. Tcholakov,13R. Trayanov,13I. Vankov,13 M. Dyulendarova,14R. Hadjiiska,14V. Kozhuharov,14L. Litov,14E. Marinova,14M. Mateev,14B. Pavlov,14 P. Petkov,14J. G. Bian,15G. M. Chen,15H. S. Chen,15C. H. Jiang,15D. Liang,15S. Liang,15J. Wang,15J. Wang,15 X. Wang,15Z. Wang,15M. Yang,15J. Zang,15Z. Zhang,15Y. Ban,16S. Guo,16Z. Hu,16W. Li,16Y. Mao,16S. J. Qian,16

H. Teng,16B. Zhu,16A. Cabrera,17B. Gomez Moreno,17A. A. Ocampo Rios,17A. F. Osorio Oliveros,17 J. C. Sanabria,17N. Godinovic,18D. Lelas,18K. Lelas,18R. Plestina,18,dD. Polic,18I. Puljak,18Z. Antunovic,19

(6)

J. Mousa,21C. Nicolaou,21F. Ptochos,21P. A. Razis,21H. Rykaczewski,21A. Abdel-basit,22,eY. Assran,22,f M. A. Mahmoud,22,gA. Hektor,23M. Kadastik,23K. Kannike,23M. Mu¨ntel,23M. Raidal,23L. Rebane,23 V. Azzolini,24P. Eerola,24S. Czellar,25J. Ha¨rko¨nen,25A. Heikkinen,25V. Karima¨ki,25R. Kinnunen,25J. Klem,25

M. J. Kortelainen,25T. Lampe´n,25K. Lassila-Perini,25S. Lehti,25T. Linde´n,25P. Luukka,25T. Ma¨enpa¨a¨,25 E. Tuominen,25J. Tuominiemi,25E. Tuovinen,25D. Ungaro,25L. Wendland,25K. Banzuzi,26A. Korpela,26 T. Tuuva,26D. Sillou,27M. Besancon,28M. Dejardin,28D. Denegri,28B. Fabbro,28J. L. Faure,28F. Ferri,28 S. Ganjour,28F. X. Gentit,28A. Givernaud,28P. Gras,28G. Hamel de Monchenault,28P. Jarry,28E. Locci,28 J. Malcles,28M. Marionneau,28L. Millischer,28J. Rander,28A. Rosowsky,28M. Titov,28P. Verrecchia,28

S. Baffioni,29L. Bianchini,29M. Bluj,29,hC. Broutin,29P. Busson,29C. Charlot,29L. Dobrzynski,29 R. Granier de Cassagnac,29M. Haguenauer,29P. Mine´,29C. Mironov,29C. Ochando,29P. Paganini,29D. Sabes,29

R. Salerno,29Y. Sirois,29C. Thiebaux,29B. Wyslouch,29,iA. Zabi,29J.-L. Agram,30,jJ. Andrea,30A. Besson,30 D. Bloch,30D. Bodin,30J.-M. Brom,30M. Cardaci,30E. C. Chabert,30C. Collard,30E. Conte,30,jF. Drouhin,30,j C. Ferro,30J.-C. Fontaine,30,jD. Gele´,30U. Goerlach,30S. Greder,30P. Juillot,30M. Karim,30,jA.-C. Le Bihan,30

Y. Mikami,30P. Van Hove,30F. Fassi,31D. Mercier,31C. Baty,32N. Beaupere,32M. Bedjidian,32O. Bondu,32 G. Boudoul,32D. Boumediene,32H. Brun,32N. Chanon,32R. Chierici,32D. Contardo,32P. Depasse,32 H. El Mamouni,32A. Falkiewicz,32J. Fay,32S. Gascon,32B. Ille,32T. Kurca,32T. Le Grand,32M. Lethuillier,32

L. Mirabito,32S. Perries,32V. Sordini,32S. Tosi,32Y. Tschudi,32P. Verdier,32H. Xiao,32V. Roinishvili,33 G. Anagnostou,34M. Edelhoff,34L. Feld,34N. Heracleous,34O. Hindrichs,34R. Jussen,34K. Klein,34J. Merz,34

N. Mohr,34A. Ostapchuk,34A. Perieanu,34F. Raupach,34J. Sammet,34S. Schael,34D. Sprenger,34H. Weber,34 M. Weber,34B. Wittmer,34M. Ata,35W. Bender,35M. Erdmann,35J. Frangenheim,35T. Hebbeker,35A. Hinzmann,35 K. Hoepfner,35C. Hof,35T. Klimkovich,35D. Klingebiel,35P. Kreuzer,35,bD. Lanske,35,aC. Magass,35G. Masetti,35

M. Merschmeyer,35A. Meyer,35P. Papacz,35H. Pieta,35H. Reithler,35S. A. Schmitz,35L. Sonnenschein,35 J. Steggemann,35D. Teyssier,35M. Bontenackels,36M. Davids,36M. Duda,36G. Flu¨gge,36H. Geenen,36M. Giffels,36 W. Haj Ahmad,36D. Heydhausen,36T. Kress,36Y. Kuessel,36A. Linn,36A. Nowack,36L. Perchalla,36O. Pooth,36

J. Rennefeld,36P. Sauerland,36A. Stahl,36M. Thomas,36D. Tornier,36M. H. Zoeller,36M. Aldaya Martin,37 W. Behrenhoff,37U. Behrens,37M. Bergholz,37,kK. Borras,37A. Cakir,37A. Campbell,37E. Castro,37 D. Dammann,37G. Eckerlin,37D. Eckstein,37A. Flossdorf,37G. Flucke,37A. Geiser,37I. Glushkov,37J. Hauk,37

H. Jung,37M. Kasemann,37I. Katkov,37P. Katsas,37C. Kleinwort,37H. Kluge,37A. Knutsson,37D. Kru¨cker,37 E. Kuznetsova,37W. Lange,37W. Lohmann,37,kR. Mankel,37M. Marienfeld,37I.-A. Melzer-Pellmann,37 A. B. Meyer,37J. Mnich,37A. Mussgiller,37J. Olzem,37A. Parenti,37A. Raspereza,37A. Raval,37R. Schmidt,37,k

T. Schoerner-Sadenius,37N. Sen,37M. Stein,37J. Tomaszewska,37D. Volyanskyy,37R. Walsh,37C. Wissing,37 C. Autermann,38S. Bobrovskyi,38J. Draeger,38H. Enderle,38U. Gebbert,38K. Kaschube,38G. Kaussen,38 R. Klanner,38B. Mura,38S. Naumann-Emme,38F. Nowak,38N. Pietsch,38C. Sander,38H. Schettler,38P. Schleper,38 M. Schro¨der,38T. Schum,38J. Schwandt,38A. K. Srivastava,38H. Stadie,38G. Steinbru¨ck,38J. Thomsen,38R. Wolf,38

J. Bauer,39V. Buege,39T. Chwalek,39D. Daeuwel,39W. De Boer,39A. Dierlamm,39G. Dirkes,39M. Feindt,39 J. Gruschke,39C. Hackstein,39F. Hartmann,39M. Heinrich,39H. Held,39K. H. Hoffmann,39S. Honc,39T. Kuhr,39

D. Martschei,39S. Mueller,39Th. Mu¨ller,39M. B. Neuland,39M. Niegel,39O. Oberst,39A. Oehler,39J. Ott,39 T. Peiffer,39D. Piparo,39G. Quast,39K. Rabbertz,39F. Ratnikov,39M. Renz,39A. Sabellek,39C. Saout,39 A. Scheurer,39P. Schieferdecker,39F.-P. Schilling,39G. Schott,39H. J. Simonis,39F. M. Stober,39D. Troendle,39

J. Wagner-Kuhr,39M. Zeise,39V. Zhukov,39,lE. B. Ziebarth,39G. Daskalakis,40T. Geralis,40S. Kesisoglou,40 A. Kyriakis,40D. Loukas,40I. Manolakos,40A. Markou,40C. Markou,40C. Mavrommatis,40E. Petrakou,40 L. Gouskos,41T. Mertzimekis,41A. Panagiotou,41,bI. Evangelou,42C. Foudas,42P. Kokkas,42N. Manthos,42

I. Papadopoulos,42V. Patras,42F. A. Triantis,42A. Aranyi,43G. Bencze,43L. Boldizsar,43G. Debreczeni,43 C. Hajdu,43,bD. Horvath,43,mA. Kapusi,43K. Krajczar,43,nA. Laszlo,43F. Sikler,43G. Vesztergombi,43,nN. Beni,44

J. Molnar,44J. Palinkas,44Z. Szillasi,44V. Veszpremi,44P. Raics,45Z. L. Trocsanyi,45B. Ujvari,45S. Bansal,46 S. B. Beri,46V. Bhatnagar,46M. Jindal,46M. Kaur,46J. M. Kohli,46M. Z. Mehta,46N. Nishu,46L. K. Saini,46 A. Sharma,46R. Sharma,46A. P. Singh,46J. B. Singh,46S. P. Singh,46S. Ahuja,47S. Bhattacharya,47S. Chauhan,47

B. C. Choudhary,47P. Gupta,47S. Jain,47S. Jain,47A. Kumar,47R. K. Shivpuri,47R. K. Choudhury,48D. Dutta,48 S. Kailas,48S. K. Kataria,48A. K. Mohanty,48,bL. M. Pant,48P. Shukla,48P. Suggisetti,48T. Aziz,49M. Guchait,49,o

A. Gurtu,49M. Maity,49,pD. Majumder,49G. Majumder,49K. Mazumdar,49G. B. Mohanty,49A. Saha,49 K. Sudhakar,49N. Wickramage,49S. Banerjee,50S. Dugad,50N. K. Mondal,50H. Arfaei,51H. Bakhshiansohi,51

(7)

S. M. Etesami,51A. Fahim,51M. Hashemi,51A. Jafari,51M. Khakzad,51A. Mohammadi,51

M. Mohammadi Najafabadi,51S. Paktinat Mehdiabadi,51B. Safarzadeh,51M. Zeinali,51M. Abbrescia,52a,52b L. Barbone,52a,52bC. Calabria,52a,52bA. Colaleo,52aD. Creanza,52a,52cN. De Filippis,52a,52cM. De Palma,52a,52b

A. Dimitrov,52aF. Fedele,52aL. Fiore,52aG. Iaselli,52a,52cL. Lusito,52a,52b,bG. Maggi,52a,52cM. Maggi,52a N. Manna,52a,52bB. Marangelli,52a,52bS. My,52a,52cS. Nuzzo,52a,52bN. Pacifico,52a,52bG. A. Pierro,52a A. Pompili,52a,52bG. Pugliese,52a,52cF. Romano,52a,52cG. Roselli,52a,52bG. Selvaggi,52a,52bL. Silvestris,52a

R. Trentadue,52aS. Tupputi,52a,52bG. Zito,52aG. Abbiendi,53aA. C. Benvenuti,53aD. Bonacorsi,53a S. Braibant-Giacomelli,53a,53bP. Capiluppi,53a,53bA. Castro,53a,53bF. R. Cavallo,53aM. Cuffiani,53a,53b G. M. Dallavalle,53aF. Fabbri,53aA. Fanfani,53a,53bD. Fasanella,53aP. Giacomelli,53aM. Giunta,53aC. Grandi,53a

S. Marcellini,53aM. Meneghelli,53a,53bA. Montanari,53aF. L. Navarria,53a,53bF. Odorici,53aA. Perrotta,53a A. M. Rossi,53a,53bT. Rovelli,53a,53bG. Siroli,53a,53bR. Travaglini,53a,53bS. Albergo,54a,54bG. Cappello,54a,54b

M. Chiorboli,54a,54b,bS. Costa,54a,54bA. Tricomi,54a,54bC. Tuve,54aG. Barbagli,55aG. Broccolo,55a,55b V. Ciulli,55a,55bC. Civinini,55aR. D’Alessandro,55a,55bE. Focardi,55a,55bS. Frosali,55a,55bE. Gallo,55aC. Genta,55a

P. Lenzi,55a,55bM. Meschini,55aS. Paoletti,55aG. Sguazzoni,55aA. Tropiano,55a,bL. Benussi,52S. Bianco,52 S. Colafranceschi,52,qF. Fabbri,52D. Piccolo,52P. Fabbricatore,53R. Musenich,53A. Benaglia,58a,58b G. B. Cerati,58a,58bF. De Guio,58a,58b,bL. Di Matteo,58a,58bA. Ghezzi,58a,58b,bP. Govoni,58a,58bM. Malberti,58a,58b

S. Malvezzi,58aA. Martelli,58a,58bA. Massironi,58a,58bD. Menasce,58aL. Moroni,58aM. Paganoni,58a,58b D. Pedrini,58aS. Ragazzi,58a,58bN. Redaelli,58aS. Sala,58aT. Tabarelli de Fatis,58a,58bV. Tancini,58a,58b S. Buontempo,59aC. A. Carrillo Montoya,59aA. Cimmino,59a,59bA. De Cosa,59a,59b,bM. De Gruttola,59a,59b F. Fabozzi,59a,rA. O. M. Iorio,59aL. Lista,59aP. Noli,59a,59bP. Paolucci,59aP. Azzi,60aN. Bacchetta,60aP. Bellan,60a,60b

M. Bellato,60aA. Branca,60aR. Carlin,60a,60bM. De Mattia,60a,60bT. Dorigo,60aF. Gasparini,60a,60b U. Gasparini,60a,60bP. Giubilato,60a,60bF. Gonella,60aA. Gresele,60a,60cM. Gulmini,60a,sA. Kaminskiy,60a,60b S. Lacaprara,60a,sI. Lazzizzera,60a,60cM. Margoni,60a,60bA. T. Meneguzzo,60a,60bM. Nespolo,60aM. Pegoraro,60a

L. Perrozzi,60a,bN. Pozzobon,60a,60bP. Ronchese,60a,60bF. Simonetto,60a,60bE. Torassa,60aM. Tosi,60a,60b A. Triossi,60aS. Vanini,60a,60bP. Zotto,60a,60bP. Baesso,61a,61bU. Berzano,61aC. Riccardi,61a,61bP. Torre,61a,61b

P. Vitulo,61a,61bC. Viviani,61a,61bM. Biasini,62a,62bG. M. Bilei,62aB. Caponeri,62a,62bL. Fano`,62a,62b P. Lariccia,62a,62bA. Lucaroni,62a,62b,bG. Mantovani,62a,62bM. Menichelli,62aA. Nappi,62a,62bA. Santocchia,62a,62b

L. Servoli,62aS. Taroni,62a,62bM. Valdata,62a,62bR. Volpe,62a,62b,bP. Azzurri,63a,63cG. Bagliesi,63a J. Bernardini,63a,63bT. Boccali,63a,bR. Castaldi,63aR. T. D’Agnolo,63a,63cR. Dell’Orso,63aF. Fiori,63a,63b L. Foa`,63a,63cA. Giassi,63aA. Kraan,63aF. Ligabue,63a,63cT. Lomtadze,63aL. Martini,63aA. Messineo,63a,63b

F. Palla,63aF. Palmonari,63aS. Sarkar,63a,63cG. Segneri,63aA. T. Serban,63aP. Spagnolo,63aR. Tenchini,63a G. Tonelli,63a,63b,bA. Venturi,63aP. G. Verdini,63aL. Barone,64a,64bF. Cavallari,64aD. Del Re,64a,64b E. Di Marco,64a,64bM. Diemoz,64aD. Franci,64a,64bM. Grassi,64aE. Longo,64a,64bG. Organtini,64a,64b A. Palma,64a,64bF. Pandolfi,64a,64b,bR. Paramatti,64aS. Rahatlou,64a,64b,bN. Amapane,65a,65bR. Arcidiacono,65a,65c S. Argiro,65a,65bM. Arneodo,65a,65cC. Biino,65aC. Botta,65a,65b,bN. Cartiglia,65aR. Castello,65a,65bM. Costa,65a,65b N. Demaria,65aA. Graziano,65a,65b,bC. Mariotti,65aM. Marone,65a,65bS. Maselli,65aE. Migliore,65a,65bG. Mila,65a,65b V. Monaco,65a,65bM. Musich,65a,65bM. M. Obertino,65a,65cN. Pastrone,65aM. Pelliccioni,65a,65b,bA. Romero,65a,65b

M. Ruspa,65a,65cR. Sacchi,65a,65bV. Sola,65a,65bA. Solano,65a,65bA. Staiano,65aD. Trocino,65a,65b A. Vilela Pereira,65a,65b,bF. Ambroglini,66a,66bS. Belforte,66aF. Cossutti,66aG. Della Ricca,66a,66bB. Gobbo,66a

D. Montanino,66a,66bA. Penzo,66aS. G. Heo,54S. Chang,55J. Chung,55D. H. Kim,55G. N. Kim,55J. E. Kim,55 D. J. Kong,55H. Park,55D. Son,55D. C. Son,55Zero Kim,56J. Y. Kim,56S. Song,56S. Choi,57B. Hong,57M. Jo,57

H. Kim,57J. H. Kim,57T. J. Kim,57K. S. Lee,57D. H. Moon,57S. K. Park,57H. B. Rhee,57E. Seo,57S. Shin,57 K. S. Sim,57M. Choi,58S. Kang,58H. Kim,58C. Park,58I. C. Park,58S. Park,58G. Ryu,58Y. Choi,59Y. K. Choi,59

J. Goh,59J. Lee,59S. Lee,59H. Seo,59I. Yu,59M. J. Bilinskas,60I. Grigelionis,60M. Janulis,60D. Martisiute,60 P. Petrov,60T. Sabonis,60H. Castilla Valdez,61E. De La Cruz Burelo,61R. Lopez-Fernandez,61 A. Sa´nchez Herna´ndez,61L. M. Villasenor-Cendejas,61S. Carrillo Moreno,62F. Vazquez Valencia,62 H. A. Salazar Ibarguen,63E. Casimiro Linares,64A. Morelos Pineda,64M. A. Reyes-Santos,64P. Allfrey,65 D. Krofcheck,65J. Tam,65P. H. Butler,66R. Doesburg,66H. Silverwood,66M. Ahmad,67I. Ahmed,67M. I. Asghar,67 H. R. Hoorani,67W. A. Khan,67T. Khurshid,67S. Qazi,67M. Cwiok,68W. Dominik,68K. Doroba,68A. Kalinowski,68

M. Konecki,68J. Krolikowski,68T. Frueboes,69R. Gokieli,69M. Go´rski,69M. Kazana,69K. Nawrocki,69 M. Szleper,69G. Wrochna,69P. Zalewski,69N. Almeida,70A. David,70P. Faccioli,70P. G. Ferreira Parracho,70

(8)

M. Gallinaro,70P. Martins,70G. Mini,70P. Musella,70A. Nayak,70L. Raposo,70P. Q. Ribeiro,70J. Seixas,70P. Silva,70 D. Soares,70J. Varela,70,bH. K. Wo¨hri,70I. Belotelov,71P. Bunin,71M. Finger,71M. Finger, Jr.,71I. Golutvin,71 A. Kamenev,71V. Karjavin,71G. Kozlov,71A. Lanev,71P. Moisenz,71V. Palichik,71V. Perelygin,71S. Shmatov,71

V. Smirnov,71A. Volodko,71A. Zarubin,71N. Bondar,72V. Golovtsov,72Y. Ivanov,72V. Kim,72P. Levchenko,72 V. Murzin,72V. Oreshkin,72I. Smirnov,72V. Sulimov,72L. Uvarov,72S. Vavilov,72A. Vorobyev,72Yu. Andreev,73

S. Gninenko,73N. Golubev,73M. Kirsanov,73N. Krasnikov,73V. Matveev,73A. Pashenkov,73A. Toropin,73 S. Troitsky,73V. Epshteyn,74V. Gavrilov,74V. Kaftanov,74,aM. Kossov,74,bA. Krokhotin,74N. Lychkovskaya,74

G. Safronov,74S. Semenov,74I. Shreyber,74V. Stolin,74E. Vlasov,74A. Zhokin,74E. Boos,75M. Dubinin,75,u L. Dudko,75A. Ershov,75A. Gribushin,75O. Kodolova,75I. Lokhtin,75S. Obraztsov,75S. Petrushanko,75

L. Sarycheva,75V. Savrin,75A. Snigirev,75V. Andreev,76M. Azarkin,76I. Dremin,76M. Kirakosyan,76 S. V. Rusakov,76A. Vinogradov,76I. Azhgirey,77S. Bitioukov,77V. Grishin,77,bV. Kachanov,77D. Konstantinov,77

V. Krychkine,77V. Petrov,77R. Ryutin,77S. Slabospitsky,77A. Sobol,77L. Tourtchanovitch,77S. Troshin,77 N. Tyurin,77A. Uzunian,77A. Volkov,77P. Adzic,78,tM. Djordjevic,78D. Krpic,78,tJ. Milosevic,78 M. Aguilar-Benitez,79J. Alcaraz Maestre,79P. Arce,79C. Battilana,79E. Calvo,79M. Cepeda,79M. Cerrada,79 N. Colino,79B. De La Cruz,79C. Diez Pardos,79C. Fernandez Bedoya,79J. P. Ferna´ndez Ramos,79A. Ferrando,79

J. Flix,79M. C. Fouz,79P. Garcia-Abia,79O. Gonzalez Lopez,79S. Goy Lopez,79J. M. Hernandez,79M. I. Josa,79 G. Merino,79J. Puerta Pelayo,79I. Redondo,79L. Romero,79J. Santaolalla,79C. Willmott,79C. Albajar,80 G. Codispoti,80J. F. de Troco´niz,80J. Cuevas,81J. Fernandez Menendez,81S. Folgueras,81I. Gonzalez Caballero,81

L. Lloret Iglesias,81J. M. Vizan Garcia,81I. J. Cabrillo,82A. Calderon,82M. Chamizo Llatas,82S. H. Chuang,82 J. Duarte Campderros,82M. Felcini,82,uM. Fernandez,82G. Gomez,82J. Gonzalez Sanchez,82R. Gonzalez Suarez,82

C. Jorda,82P. Lobelle Pardo,82A. Lopez Virto,82J. Marco,82R. Marco,82C. Martinez Rivero,82F. Matorras,82 J. Piedra Gomez,82,vT. Rodrigo,82A. Ruiz Jimeno,82L. Scodellaro,82M. Sobron Sanudo,82I. Vila,82 R. Vilar Cortabitarte,82D. Abbaneo,83E. Auffray,83P. Baillon,83A. H. Ball,83D. Barney,83F. Beaudette,83,d A. J. Bell,83,wD. Benedetti,83C. Bernet,83,dW. Bialas,83P. Bloch,83A. Bocci,83S. Bolognesi,83H. Breuker,83 G. Brona,83K. Bunkowski,83T. Camporesi,83E. Cano,83G. Cerminara,83T. Christiansen,83J. A. Coarasa Perez,83 R. Covarelli,83B. Cure´,83D. D’Enterria,83T. Dahms,83A. De Roeck,83A. Elliott-Peisert,83W. Funk,83A. Gaddi,83

S. Gennai,83G. Georgiou,83H. Gerwig,83D. Gigi,83K. Gill,83D. Giordano,83F. Glege,83

R. Gomez-Reino Garrido,83M. Gouzevitch,83S. Gowdy,83L. Guiducci,83M. Hansen,83J. Harvey,83J. Hegeman,83 B. Hegner,83C. Henderson,83H. F. Hoffmann,83A. Honma,83V. Innocente,83P. Janot,83E. Karavakis,83P. Lecoq,83

C. Leonidopoulos,83C. Lourenc¸o,83A. Macpherson,83T. Ma¨ki,83L. Malgeri,83M. Mannelli,83L. Masetti,83 F. Meijers,83S. Mersi,83E. Meschi,83R. Moser,83M. U. Mozer,83M. Mulders,83E. Nesvold,83,bT. Orimoto,83 L. Orsini,83E. Perez,83A. Petrilli,83A. Pfeiffer,83M. Pierini,83M. Pimia¨,83G. Polese,83A. Racz,83G. Rolandi,83,x

C. Rovelli,83,yM. Rovere,83H. Sakulin,83C. Scha¨fer,83C. Schwick,83I. Segoni,83A. Sharma,83P. Siegrist,83 M. Simon,83P. Sphicas,83,zD. Spiga,83M. Spiropulu,83,aaF. Sto¨ckli,83M. Stoye,83P. Tropea,83A. Tsirou,83

G. I. Veres,83,nP. Vichoudis,83M. Voutilainen,83W. D. Zeuner,83W. Bertl,84K. Deiters,84W. Erdmann,84 K. Gabathuler,84R. Horisberger,84Q. Ingram,84H. C. Kaestli,84S. Ko¨nig,84D. Kotlinski,84U. Langenegger,84 F. Meier,84D. Renker,84T. Rohe,84J. Sibille,84,bbA. Starodumov,84,ccL. Caminada,85,ddZ. Chen,85S. Cittolin,85

G. Dissertori,85M. Dittmar,85J. Eugster,85K. Freudenreich,85C. Grab,85A. Herve´,85W. Hintz,85P. Lecomte,85 W. Lustermann,85C. Marchica,85,ddP. Martinez Ruiz del Arbol,85P. Meridiani,85P. Milenovic,85,eeF. Moortgat,85

A. Nardulli,85P. Nef,85F. Nessi-Tedaldi,85L. Pape,85F. Pauss,85T. Punz,85A. Rizzi,85F. J. Ronga,85L. Sala,85 A. K. Sanchez,85M.-C. Sawley,85B. Stieger,85L. Tauscher,85,aA. Thea,85K. Theofilatos,85D. Treille,85 C. Urscheler,85R. Wallny,85,uM. Weber,85L. Wehrli,85J. Weng,85E. Aguilo´,86C. Amsler,86V. Chiochia,86 S. De Visscher,86C. Favaro,86M. Ivova Rikova,86A. Jaeger,86B. Millan Mejias,86C. Regenfus,86P. Robmann,86 T. Rommerskirchen,86A. Schmidt,86H. Snoek,86L. Wilke,86Y. H. Chang,87K. H. Chen,87W. T. Chen,87S. Dutta,87 A. Go,87C. M. Kuo,87S. W. Li,87W. Lin,87M. H. Liu,87Z. K. Liu,87Y. J. Lu,87J. H. Wu,87S. S. Yu,87P. Bartalini,88 P. Chang,88Y. H. Chang,88Y. W. Chang,88Y. Chao,88K. F. Chen,88W.-S. Hou,88Y. Hsiung,88K. Y. Kao,88Y. J. Lei,88

R.-S. Lu,88J. G. Shiu,88Y. M. Tzeng,88M. Wang,88J. T. Wei,88A. Adiguzel,89M. N. Bakirci,89S. Cerci,89,ff Z. Demir,89C. Dozen,89I. Dumanoglu,89E. Eskut,89S. Girgis,89G. Go¨kbulut,89Y. Gu¨ler,89E. Gurpinar,89I. Hos,89 E. E. Kangal,89T. Karaman,89A. Kayis Topaksu,89A. Nart,89G. O¨ nengu¨t,89K. Ozdemir,89S. Ozturk,89A. Polato¨z,89

K. Sogut,89,ggB. Tali,89H. Topakli,89D. Uzun,89L. N. Vergili,89M. Vergili,89C. Zorbilmez,89I. V. Akin,90 T. Aliev,90S. Bilmis,90M. Deniz,90H. Gamsizkan,90A. M. Guler,90K. Ocalan,90A. Ozpineci,90M. Serin,90

(9)

R. Sever,90U. E. Surat,90E. Yildirim,90M. Zeyrek,90M. Deliomeroglu,91D. Demir,91,hhE. Gu¨lmez,91A. Halu,91 B. Isildak,91M. Kaya,91,iiO. Kaya,91,iiM. O¨ zbek,91S. Ozkorucuklu,91,jjN. Sonmez,91,kkL. Levchuk,92P. Bell,93 F. Bostock,93J. J. Brooke,93T. L. Cheng,93D. Cussans,93R. Frazier,93J. Goldstein,93M. Grimes,93M. Hansen,93

G. P. Heath,93H. F. Heath,93B. Huckvale,93J. Jackson,93L. Kreczko,93S. Metson,93D. M. Newbold,93,ll K. Nirunpong,93A. Poll,93V. J. Smith,93S. Ward,93L. Basso,94K. W. Bell,94A. Belyaev,94C. Brew,94 R. M. Brown,94B. Camanzi,94D. J. A. Cockerill,94J. A. Coughlan,94K. Harder,94S. Harper,94B. W. Kennedy,94

E. Olaiya,94D. Petyt,94B. C. Radburn-Smith,94C. H. Shepherd-Themistocleous,94I. R. Tomalin,94 W. J. Womersley,94S. D. Worm,94R. Bainbridge,95G. Ball,95J. Ballin,95R. Beuselinck,95O. Buchmuller,95

D. Colling,95N. Cripps,95M. Cutajar,95G. Davies,95M. Della Negra,95J. Fulcher,95D. Futyan,95

A. Guneratne Bryer,95G. Hall,95Z. Hatherell,95J. Hays,95G. Iles,95G. Karapostoli,95L. Lyons,95A.-M. Magnan,95 J. Marrouche,95R. Nandi,95J. Nash,95A. Nikitenko,95,ccA. Papageorgiou,95M. Pesaresi,95K. Petridis,95 M. Pioppi,95,mmD. M. Raymond,95N. Rompotis,95A. Rose,95M. J. Ryan,95C. Seez,95P. Sharp,95A. Sparrow,95

A. Tapper,95S. Tourneur,95M. Vazquez Acosta,95T. Virdee,95,bS. Wakefield,95D. Wardrope,95T. Whyntie,95 M. Barrett,96M. Chadwick,96J. E. Cole,96P. R. Hobson,96A. Khan,96P. Kyberd,96D. Leslie,96W. Martin,96

I. D. Reid,96L. Teodorescu,96K. Hatakeyama,97T. Bose,98E. Carrera Jarrin,98A. Clough,98C. Fantasia,98 A. Heister,98J. St. John,98P. Lawson,98D. Lazic,98J. Rohlf,98D. Sperka,98L. Sulak,98A. Avetisyan,99 S. Bhattacharya,99J. P. Chou,99D. Cutts,99S. Esen,99A. Ferapontov,99U. Heintz,99S. Jabeen,99G. Kukartsev,99 G. Landsberg,99M. Narain,99D. Nguyen,99M. Segala,99T. Speer,99K. V. Tsang,99M. A. Borgia,100R. Breedon,100

M. Calderon De La Barca Sanchez,100D. Cebra,100M. Chertok,100J. Conway,100P. T. Cox,100J. Dolen,100 R. Erbacher,100E. Friis,100W. Ko,100A. Kopecky,100R. Lander,100H. Liu,100S. Maruyama,100T. Miceli,100 M. Nikolic,100D. Pellett,100J. Robles,100T. Schwarz,100M. Searle,100J. Smith,100M. Squires,100M. Tripathi,100

R. Vasquez Sierra,100C. Veelken,100V. Andreev,101K. Arisaka,101D. Cline,101R. Cousins,101A. Deisher,101 J. Duris,101S. Erhan,101C. Farrell,101J. Hauser,101M. Ignatenko,101C. Jarvis,101C. Plager,101G. Rakness,101

P. Schlein,101J. Tucker,101V. Valuev,101J. Babb,102R. Clare,102J. Ellison,102J. W. Gary,102F. Giordano,102 G. Hanson,102G. Y. Jeng,102S. C. Kao,102F. Liu,102H. Liu,102A. Luthra,102H. Nguyen,102G. Pasztor,102,nn A. Satpathy,102B. C. Shen,102,aR. Stringer,102J. Sturdy,102S. Sumowidagdo,102R. Wilken,102S. Wimpenny,102

W. Andrews,103J. G. Branson,103E. Dusinberre,103D. Evans,103F. Golf,103A. Holzner,103R. Kelley,103 M. Lebourgeois,103J. Letts,103B. Mangano,103J. Muelmenstaedt,103S. Padhi,103C. Palmer,103G. Petrucciani,103 H. Pi,103M. Pieri,103R. Ranieri,103M. Sani,103V. Sharma,103,bS. Simon,103Y. Tu,103A. Vartak,103F. Wu¨rthwein,103

A. Yagil,103D. Barge,104R. Bellan,104C. Campagnari,104M. D’Alfonso,104T. Danielson,104P. Geffert,104 J. Incandela,104C. Justus,104P. Kalavase,104S. A. Koay,104D. Kovalskyi,104V. Krutelyov,104S. Lowette,104 N. Mccoll,104V. Pavlunin,104F. Rebassoo,104J. Ribnik,104J. Richman,104R. Rossin,104D. Stuart,104W. To,104

J. R. Vlimant,104M. Witherell,104A. Bornheim,105J. Bunn,105Y. Chen,105M. Gataullin,105D. Kcira,105 V. Litvine,105Y. Ma,105A. Mott,105H. B. Newman,105C. Rogan,105K. Shin,105V. Timciuc,105P. Traczyk,105 J. Veverka,105R. Wilkinson,105Y. Yang,105R. Y. Zhu,105B. Akgun,106A. Calamba,106R. Carroll,106T. Ferguson,106

Y. Iiyama,106D. W. Jang,106S. Y. Jun,106Y. F. Liu,106M. Paulini,106J. Russ,106N. Terentyev,106H. Vogel,106 I. Vorobiev,106J. P. Cumalat,107M. E. Dinardo,107B. R. Drell,107C. J. Edelmaier,107W. T. Ford,107B. Heyburn,107 E. Luiggi Lopez,107U. Nauenberg,107J. G. Smith,107K. Stenson,107K. A. Ulmer,107S. R. Wagner,107S. L. Zang,107

L. Agostino,108J. Alexander,108F. Blekman,108A. Chatterjee,108S. Das,108N. Eggert,108L. J. Fields,108 L. K. Gibbons,108B. Heltsley,108K. Henriksson,108W. Hopkins,108A. Khukhunaishvili,108B. Kreis,108 V. Kuznetsov,108Y. Liu,108G. Nicolas Kaufman,108J. R. Patterson,108D. Puigh,108D. Riley,108A. Ryd,108 M. Saelim,108X. Shi,108W. Sun,108W. D. Teo,108J. Thom,108J. Thompson,108J. Vaughan,108Y. Weng,108 L. Winstrom,108P. Wittich,108A. Biselli,109G. Cirino,109D. Winn,109S. Abdullin,110M. Albrow,110J. Anderson,110 G. Apollinari,110M. Atac,110J. A. Bakken,110S. Banerjee,110L. A. T. Bauerdick,110A. Beretvas,110J. Berryhill,110 P. C. Bhat,110I. Bloch,110F. Borcherding,110K. Burkett,110J. N. Butler,110V. Chetluru,110H. W. K. Cheung,110 F. Chlebana,110S. Cihangir,110M. Demarteau,110D. P. Eartly,110V. D. Elvira,110I. Fisk,110J. Freeman,110Y. Gao,110

E. Gottschalk,110D. Green,110K. Gunthoti,110O. Gutsche,110A. Hahn,110J. Hanlon,110R. M. Harris,110 J. Hirschauer,110B. Hooberman,110E. James,110H. Jensen,110M. Johnson,110U. Joshi,110R. Khatiwada,110 B. Kilminster,110B. Klima,110K. Kousouris,110S. Kunori,110S. Kwan,110P. Limon,110R. Lipton,110J. Lykken,110

K. Maeshima,110J. M. Marraffino,110D. Mason,110P. McBride,110T. McCauley,110T. Miao,110K. Mishra,110 S. Mrenna,110Y. Musienko,110,ooC. Newman-Holmes,110V. O’Dell,110S. Popescu,110R. Pordes,110O. Prokofyev,110

(10)

N. Saoulidou,110E. Sexton-Kennedy,110S. Sharma,110A. Soha,110W. J. Spalding,110L. Spiegel,110P. Tan,110 L. Taylor,110S. Tkaczyk,110L. Uplegger,110E. W. Vaandering,110R. Vidal,110J. Whitmore,110W. Wu,110F. Yang,110

F. Yumiceva,110J. C. Yun,110D. Acosta,111P. Avery,111D. Bourilkov,111M. Chen,111G. P. Di Giovanni,111 D. Dobur,111A. Drozdetskiy,111R. D. Field,111M. Fisher,111Y. Fu,111I. K. Furic,111J. Gartner,111S. Goldberg,111

B. Kim,111S. Klimenko,111J. Konigsberg,111A. Korytov,111K. Kotov,111A. Kropivnitskaya,111T. Kypreos,111 K. Matchev,111G. Mitselmakher,111L. Muniz,111Y. Pakhotin,111M. Petterson,111C. Prescott,111R. Remington,111

M. Schmitt,111B. Scurlock,111P. Sellers,111N. Skhirtladze,111M. Snowball,111D. Wang,111J. Yelton,111 M. Zakaria,111C. Ceron,112V. Gaultney,112L. Kramer,112L. M. Lebolo,112S. Linn,112P. Markowitz,112

G. Martinez,112D. Mesa,112J. L. Rodriguez,112T. Adams,113A. Askew,113J. Bochenek,113J. Chen,113 B. Diamond,113S. V. Gleyzer,113J. Haas,113S. Hagopian,113V. Hagopian,113M. Jenkins,113K. F. Johnson,113

H. Prosper,113S. Sekmen,113V. Veeraraghavan,113M. M. Baarmand,114B. Dorney,114S. Guragain,114 M. Hohlmann,114H. Kalakhety,114R. Ralich,114I. Vodopiyanov,114M. R. Adams,115I. M. Anghel,115 L. Apanasevich,115Y. Bai,115V. E. Bazterra,115R. R. Betts,115J. Callner,115R. Cavanaugh,115C. Dragoiu,115 E. J. Garcia-Solis,115C. E. Gerber,115D. J. Hofman,115S. Khalatyan,115F. Lacroix,115C. O’Brien,115C. Silvestre,115

A. Smoron,115D. Strom,115N. Varelas,115U. Akgun,116E. A. Albayrak,116B. Bilki,116K. Cankocak,116,pp W. Clarida,116F. Duru,116C. K. Lae,116E. McCliment,116J.-P. Merlo,116H. Mermerkaya,116A. Mestvirishvili,116

A. Moeller,116J. Nachtman,116C. R. Newsom,116E. Norbeck,116J. Olson,116Y. Onel,116F. Ozok,116S. Sen,116 J. Wetzel,116T. Yetkin,116K. Yi,116B. A. Barnett,117B. Blumenfeld,117A. Bonato,117C. Eskew,117D. Fehling,117

G. Giurgiu,117A. V. Gritsan,117Z. J. Guo,117G. Hu,117P. Maksimovic,117S. Rappoccio,117M. Swartz,117 N. V. Tran,117A. Whitbeck,117P. Baringer,118A. Bean,118G. Benelli,118O. Grachov,118M. Murray,118D. Noonan,118

V. Radicci,118S. Sanders,118J. S. Wood,118V. Zhukova,118D. Bandurin,119T. Bolton,119I. Chakaberia,119 A. Ivanov,119M. Makouski,119Y. Maravin,119S. Shrestha,119I. Svintradze,119Z. Wan,119J. Gronberg,120 D. Lange,120D. Wright,120A. Baden,121M. Boutemeur,121S. C. Eno,121D. Ferencek,121J. A. Gomez,121 N. J. Hadley,121R. G. Kellogg,121M. Kirn,121Y. Lu,121A. C. Mignerey,121K. Rossato,121P. Rumerio,121 F. Santanastasio,121A. Skuja,121J. Temple,121M. B. Tonjes,121S. C. Tonwar,121E. Twedt,121B. Alver,122 G. Bauer,122J. Bendavid,122W. Busza,122E. Butz,122I. A. Cali,122M. Chan,122V. Dutta,122P. Everaerts,122 G. Gomez Ceballos,122M. Goncharov,122K. A. Hahn,122P. Harris,122Y. Kim,122M. Klute,122Y.-J. Lee,122W. Li,122

C. Loizides,122J. Lopez,122P. D. Luckey,122T. Ma,122S. Nahn,122C. Paus,122C. Roland,122G. Roland,122 M. Rudolph,122G. S. F. Stephans,122K. Sumorok,122K. Sung,122E. A. Wenger,122S. Xie,122M. Yang,122

Y. Yilmaz,122A. S. Yoon,122M. Zanetti,122P. Cole,123S. I. Cooper,123P. Cushman,123B. Dahmes,123 A. De Benedetti,123P. R. Dudero,123G. Franzoni,123J. Haupt,123K. Klapoetke,123Y. Kubota,123J. Mans,123 V. Rekovic,123R. Rusack,123M. Sasseville,123A. Singovsky,123L. M. Cremaldi,124R. Godang,124R. Kroeger,124 L. Perera,124R. Rahmat,124D. A. Sanders,124D. Summers,124K. Bloom,125S. Bose,125J. Butt,125D. R. Claes,125

A. Dominguez,125M. Eads,125J. Keller,125T. Kelly,125I. Kravchenko,125J. Lazo-Flores,125C. Lundstedt,125 H. Malbouisson,125S. Malik,125G. R. Snow,125U. Baur,126A. Godshalk,126I. Iashvili,126A. Kharchilava,126 A. Kumar,126K. Smith,126J. Zennamo,126G. Alverson,127E. Barberis,127D. Baumgartel,127O. Boeriu,127 M. Chasco,127K. Kaadze,127S. Reucroft,127J. Swain,127D. Wood,127J. Zhang,127A. Anastassov,128A. Kubik,128

N. Odell,128R. A. Ofierzynski,128B. Pollack,128A. Pozdnyakov,128M. Schmitt,128S. Stoynev,128M. Velasco,128 S. Won,128L. Antonelli,129D. Berry,129M. Hildreth,129C. Jessop,129D. J. Karmgard,129J. Kolb,129T. Kolberg,129 K. Lannon,129W. Luo,129S. Lynch,129N. Marinelli,129D. M. Morse,129T. Pearson,129R. Ruchti,129J. Slaunwhite,129

N. Valls,129J. Warchol,129M. Wayne,129J. Ziegler,129B. Bylsma,130L. S. Durkin,130J. Gu,130C. Hill,130 P. Killewald,130T. Y. Ling,130M. Rodenburg,130G. Williams,130N. Adam,131E. Berry,131P. Elmer,131 D. Gerbaudo,131V. Halyo,131P. Hebda,131A. Hunt,131J. Jones,131E. Laird,131D. Lopes Pegna,131D. Marlow,131 T. Medvedeva,131M. Mooney,131J. Olsen,131P. Piroue´,131H. Saka,131D. Stickland,131C. Tully,131J. S. Werner,131 A. Zuranski,131J. G. Acosta,132X. T. Huang,132A. Lopez,132H. Mendez,132S. Oliveros,132J. E. Ramirez Vargas,132

A. Zatserklyaniy,132E. Alagoz,133V. E. Barnes,133G. Bolla,133L. Borrello,133D. Bortoletto,133A. Everett,133 A. F. Garfinkel,133Z. Gecse,133L. Gutay,133M. Jones,133O. Koybasi,133A. T. Laasanen,133N. Leonardo,133 C. Liu,133V. Maroussov,133M. Meier,133P. Merkel,133D. H. Miller,133N. Neumeister,133K. Potamianos,133

I. Shipsey,133D. Silvers,133A. Svyatkovskiy,133H. D. Yoo,133J. Zablocki,133Y. Zheng,133P. Jindal,134 N. Parashar,134C. Boulahouache,135V. Cuplov,135K. M. Ecklund,135F. J. M. Geurts,135J. H. Liu,135J. Morales,135

B. P. Padley,135R. Redjimi,135J. Roberts,135J. Zabel,135B. Betchart,136A. Bodek,136Y. S. Chung,136

(11)

P. de Barbaro,136R. Demina,136Y. Eshaq,136H. Flacher,136A. Garcia-Bellido,136P. Goldenzweig,136Y. Gotra,136 J. Han,136A. Harel,136D. C. Miner,136D. Orbaker,136G. Petrillo,136D. Vishnevskiy,136M. Zielinski,136A. Bhatti,137

L. Demortier,137K. Goulianos,137G. Lungu,137C. Mesropian,137M. Yan,137O. Atramentov,138A. Barker,138 D. Duggan,138Y. Gershtein,138R. Gray,138E. Halkiadakis,138D. Hidas,138D. Hits,138A. Lath,138S. Panwalkar,138 R. Patel,138A. Richards,138K. Rose,138S. Schnetzer,138S. Somalwar,138R. Stone,138S. Thomas,138G. Cerizza,139

M. Hollingsworth,139S. Spanier,139Z. C. Yang,139A. York,139J. Asaadi,140R. Eusebi,140J. Gilmore,140 A. Gurrola,140T. Kamon,140V. Khotilovich,140R. Montalvo,140C. N. Nguyen,140J. Pivarski,140A. Safonov,140 S. Sengupta,140A. Tatarinov,140D. Toback,140M. Weinberger,140N. Akchurin,141C. Bardak,141J. Damgov,141 C. Jeong,141K. Kovitanggoon,141S. W. Lee,141P. Mane,141Y. Roh,141A. Sill,141I. Volobouev,141R. Wigmans,141

E. Yazgan,141E. Appelt,142E. Brownson,142D. Engh,142C. Florez,142W. Gabella,142W. Johns,142P. Kurt,142 C. Maguire,142A. Melo,142P. Sheldon,142J. Velkovska,142M. W. Arenton,143M. Balazs,143S. Boutle,143 M. Buehler,143S. Conetti,143B. Cox,143B. Francis,143R. Hirosky,143A. Ledovskoy,143C. Lin,143C. Neu,143

T. Patel,143R. Yohay,143S. Gollapinni,144R. Harr,144P. E. Karchin,144M. Mattson,144C. Milste`ne,144 A. Sakharov,144M. Anderson,145M. Bachtis,145J. N. Bellinger,145D. Carlsmith,145S. Dasu,145J. Efron,145 L. Gray,145K. S. Grogg,145M. Grothe,145R. Hall-Wilton,145,bM. Herndon,145P. Klabbers,145J. Klukas,145 A. Lanaro,145C. Lazaridis,145J. Leonard,145J. Liu,145D. Lomidze,145R. Loveless,145A. Mohapatra,145

W. Parker,145D. Reeder,145I. Ross,145A. Savin,145W. H. Smith,145J. Swanson,145and M. Weinberg145

(CMS Collaboration) 1

Yerevan Physics Institute, Yerevan, Armenia

2Institut fu¨r Hochenergiephysik der OeAW, Wien, Austria 3National Centre for Particle and High Energy Physics, Minsk, Belarus

4Universiteit Antwerpen, Antwerpen, Belgium 5Vrije Universiteit Brussel, Brussel, Belgium 6Universite´ Libre de Bruxelles, Bruxelles, Belgium

7Ghent University, Ghent, Belgium 8

Universite´ Catholique de Louvain, Louvain-la-Neuve, Belgium

9Universite´ de Mons, Mons, Belgium

10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil 12Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil

13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria 14University of Sofia, Sofia, Bulgaria

15Institute of High Energy Physics, Beijing, China

16State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China 17Universidad de Los Andes, Bogota, Colombia

18Technical University of Split, Split, Croatia 19University of Split, Split, Croatia 20Institute Rudjer Boskovic, Zagreb, Croatia

21University of Cyprus, Nicosia, Cyprus

22Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics,

Cairo, Egypt

23

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

24Department of Physics, University of Helsinki, Helsinki, Finland 25Helsinki Institute of Physics, Helsinki, Finland

26Lappeenranta University of Technology, Lappeenranta, Finland

27Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France 28DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

29Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

30Institut Pluridisciplinaire Hubert Curien, Universite´ de Strasbourg, Universite´ de Haute Alsace Mulhouse, CNRS/IN2P3,

Strasbourg, France

31

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France

32Universite´ de Lyon, Universite´ Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucle´aire de Lyon, Villeurbanne, France 33E. Andronikashvili Institute of Physics, Academy of Science, Tbilisi, Georgia

34RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany 35RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

(12)

36RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany 37Deutsches Elektronen-Synchrotron, Hamburg, Germany

38University of Hamburg, Hamburg, Germany 39Institut fu¨r Experimentelle Kernphysik, Karlsruhe, Germany 40Institute of Nuclear Physics ‘‘Demokritos,’’ Aghia Paraskevi, Greece

41University of Athens, Athens, Greece 42University of Ioa´nnina, Ioa´nnina, Greece

43KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary 44

Institute of Nuclear Research ATOMKI, Debrecen, Hungary

45University of Debrecen, Debrecen, Hungary 46Panjab University, Chandigarh, India

47University of Delhi, Delhi, India 48Bhabha Atomic Research Centre, Mumbai, India 49Tata Institute of Fundamental Research–EHEP, Mumbai, India 50Tata Institute of Fundamental Research–HECR, Mumbai, India 51Institute for Studies in Theoretical Physics & Mathematics (IPM), Tehran, Iran

52aINFN Sezione di Bari, Bari, Italy 52bUniversita` di Bari, Bari, Italy 52cPolitecnico di Bari, Bari, Italy 53aINFN Sezione di Bologna, Bologna, Italy

53bUniversita` di Bologna, Bologna, Italy 54aINFN Sezione di Catania, Catania, Italy

54bUniversita` di Catania, Catania, Italy 55aINFN Sezione di Firenze, Firenze, Italy

55b

Universita` di Firenze, Firenze, Italy

52INFN Laboratori Nazionali di Frascati, Frascati, Italy 53INFN Sezione di Genova, Genova, Italy 58aINFN Sezione di Milano-Biccoca, Milano, Italy

58bUniversita` di Milano-Bicocca, Milano, Italy 59aINFN Sezione di Napoli, Napoli, Italy 59bUniversita` di Napoli ‘‘Federico II,’’ Napoli, Italy

60aINFN Sezione di Padova, Padova, Italy 60bUniversita` di Padova, Padova, Italy 60cUniversita` di Trento (Trento), Padova, Italy

61aINFN Sezione di Pavia, Pavia, Italy 61bUniversita` di Pavia, Pavia, Italy 62aINFN Sezione di Perugia, Perugia, Italy

62bUniversita` di Perugia, Perugia, Italy 63aINFN Sezione di Pisa, Pisa, Italy

63bUniversita` di Pisa, Pisa, Italy 63cScuola Normale Superiore di Pisa, Pisa, Italy

64aINFN Sezione di Roma, Roma, Italy 64bUniversita` di Roma ‘‘La Sapienza,’’ Roma, Italy

65aINFN Sezione di Torino, Torino, Italy 65bUniversita` di Torino, Torino, Italy

65cUniversita` del Piemonte Orientale (Novara), Torino, Italy 66aINFN Sezione di Trieste, Trieste, Italy

66b

Universita` di Trieste, Trieste, Italy

54Kangwon National University, Chunchon, Korea 55Kyungpook National University, Daegu, Korea

56Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea 57Korea University, Seoul, Korea

58University of Seoul, Seoul, Korea 59Sungkyunkwan University, Suwon, Korea

60Vilnius University, Vilnius, Lithuania

61Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico 62

Universidad Iberoamericana, Mexico City, Mexico

63Benemerita Universidad Autonoma de Puebla, Puebla, Mexico 64Universidad Auto´noma de San Luis Potosı´, San Luis Potosı´, Mexico

65University of Auckland, Auckland, New Zealand 66University of Canterbury, Christchurch, New Zealand

(13)

67National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan 68Institute of Experimental Physics, Warsaw, Poland

69Soltan Institute for Nuclear Studies, Warsaw, Poland

70Laborato´rio de Instrumentac¸a˜o e Fı´sica Experimental de Partı´culas, Lisboa, Portugal 71Joint Institute for Nuclear Research, Dubna, Russia

72Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia 73Institute for Nuclear Research, Moscow, Russia

74Institute for Theoretical and Experimental Physics, Moscow, Russia 75

Moscow State University, Moscow, Russia

76P.N. Lebedev Physical Institute, Moscow, Russia

77State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia 78University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

79Centro de Investigaciones Energe´ticas Medioambientales y Tecnolo´gicas (CIEMAT), Madrid, Spain 80Universidad Auto´noma de Madrid, Madrid, Spain

81Universidad de Oviedo, Oviedo, Spain

82Instituto de Fı´sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain 83CERN, European Organization for Nuclear Research, Geneva, Switzerland

84Paul Scherrer Institut, Villigen, Switzerland

85Institute for Particle Physics, ETH Zurich, Zurich, Switzerland 86Universita¨t Zu¨rich, Zurich, Switzerland

87National Central University, Chung-Li, Taiwan 88National Taiwan University (NTU), Taipei, Taiwan

89Cukurova University, Adana, Turkey

90Middle East Technical University, Physics Department, Ankara, Turkey 91

Bogazici University, Istanbul, Turkey

92National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine 93University of Bristol, Bristol, United Kingdom

94Rutherford Appleton Laboratory, Didcot, United Kingdom 95Imperial College, London, United Kingdom 96Brunel University, Uxbridge, United Kingdom

97Baylor University, Waco, Texas 76798, USA 98Boston University, Boston, Massachusetts 02215, USA 99Brown University, Providence, Rhode Island 02912, USA 100University of California, Davis, Davis, California 95616, USA 101University of California, Los Angeles, Los Angeles, California 90095, USA

102University of California, Riverside, Riverside, California 92521, USA 103University of California, San Diego, La Jolla, California 92093, USA 104University of California, Santa Barbara, Santa Barbara, California 93106, USA

105California Institute of Technology, Pasadena, California 91125, USA 106Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA 107University of Colorado at Boulder, Boulder, Colorado 80309, USA

108Cornell University, Ithaca, New York 14853-5001, USA 109Fairfield University, Fairfield, Connecticut 06824, USA

110Fermi National Accelerator Laboratory, Batavia, Illinois 60510-0500, USA 111University of Florida, Gainesville, Florida 32611-8440, USA 112Florida International University, Miami, Florida 33199, USA 113Florida State University, Tallahassee, Florida 32306-4350, USA 114

Florida Institute of Technology, Melbourne, Florida 32901, USA

115University of Illinois at Chicago (UIC), Chicago, Illinois 60607-7059, USA 116The University of Iowa, Iowa City, Iowa 52242-1479, USA 117Johns Hopkins University, Baltimore, Maryland 21218, USA

118The University of Kansas, Lawrence, Kansas 66045, USA 119Kansas State University, Manhattan, Kansas 66506, USA

120Lawrence Livermore National Laboratory, Livermore, California 94720, USA 121University of Maryland, College Park, Maryland 20742, USA 122Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

123

University of Minnesota, Minneapolis, Minnesota 55455, USA

124University of Mississippi, University, Mississippi 38677, USA 125University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0111, USA 126State University of New York at Buffalo, Buffalo, New York 14260-1500, USA

(14)

128Northwestern University, Evanston, Illinois 60208-3112, USA 129University of Notre Dame, Notre Dame, Indiana 46556, USA

130The Ohio State University, Columbus, Ohio 43210, USA 131Princeton University, Princeton, New Jersey 08544-0708, USA

132University of Puerto Rico, Mayaguez, Puerto Rico 00680 133Purdue University, West Lafayette, Indiana 47907-1396, USA

134Purdue University Calumet, Hammond, Indiana 46323, USA 135Rice University, Houston, Texas 77251-1892, USA 136

University of Rochester, Rochester, New York 14627-0171, USA

137The Rockefeller University, New York 10021-6399, USA

138Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854-8019, USA 139University of Tennessee, Knoxville, Tennessee 37996-1200, USA

140Texas A&M University, College Station, Texas 77843-4242, USA 141Texas Tech University, Lubbock, Texas 79409-1051, USA

142Vanderbilt University, Nashville, Tennessee 37235, USA 143University of Virginia, Charlottesville, Virginia 22901, USA

144Wayne State University, Detroit, Michigan 48202, USA 145University of Wisconsin, Madison, Wisconsin 53706, USA

aDeceased.

bAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland. cAlso at Universidade Federal do ABC, Santo Andre, Brazil.

dAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France. eAlso at Cairo University, Cairo, Egypt.

fAlso at Suez Canal University, Suez, Egypt. gAlso at Fayoum University, El-Fayoum, Egypt.

hAlso at Soltan Institute for Nuclear Studies, Warsaw, Poland.

iAlso at Massachusetts Institute of Technology, Cambridge, MA, USA. jAlso at Universite´ de Haute-Alsace, Mulhouse, France.

kAlso at Brandenburg University of Technology, Cottbus, Germany. lAlso at Moscow State University, Moscow, Russia.

m

Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary. nAlso at Eo¨tvo¨s Lora´nd University, Budapest, Hungary.

oAlso at Tata Institute of Fundamental Research–HECR, Mumbai, India. pAlso at University of Visva-Bharati, Santiniketan, India.

qAlso at Facolta’ Ingegneria Universita` di Roma ‘‘La Sapienza,’’ Roma, Italy. rAlso at Universita` della Basilicata, Potenza, Italy.

sAlso at Laboratori Nazionali di Legnaro dell’ INFN, Legnaro, Italy. tAlso at Faculty of Physics of University of Belgrade, Belgrade, Serbia. uAlso at University of California, Los Angeles, Los Angeles, CA, USA. vAlso at University of Florida, Gainesville, FL, USA.

wAlso at Universite´ de Gene`ve, Geneva, Switzerland. xAlso at Scuola Normale e Sezione dell’ INFN, Pisa, Italy.

yAlso at INFN Sezione di Roma; Universita` di Roma ‘‘La Sapienza,’’ Roma, Italy. zAlso at University of Athens, Athens, Greece.

aa

Also at California Institute of Technology, Pasadena, CA, USA. bbAlso at The University of Kansas, Lawrence, KS, USA.

ccAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia. ddAlso at Paul Scherrer Institut, Villigen, Switzerland.

eeAlso at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia. ffAlso at Adiyaman University, Adiyaman, Turkey.

ggAlso at Mersin University, Mersin, Turkey.

hhAlso at Izmir Institute of Technology, Izmir, Turkey. iiAlso at Kafkas University, Kars, Turkey.

jjAlso at Suleyman Demirel University, Isparta, Turkey. kkAlso at Ege University, Izmir, Turkey.

llAlso at Rutherford Appleton Laboratory, Didcot, U.K..

(15)

mmAlso at INFN Sezione di Perugia; Universita` di Perugia, Perugia, Italy.

nnAlso at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary. ooAlso at Institute for Nuclear Research, Moscow, Russia.

Figura

TABLE I. Systematic uncertainties on R  related to the mea- mea-surement of R  (detector uncertainties) and to the QCD model (model uncertainties)
Figure 2 shows our data in comparison with the null hypothesis. Alternative hypotheses with contact interaction scales of  ¼ 3 and 4 TeV are also shown

Riferimenti

Documenti correlati

In details: a contingent valuation survey (based on triple bounded dichotomous questions) was conducted between July and October 2016, using nationwide internet-based interviews

Moreover, partial least squares regression (PLSR) models for the prediction of vitamin C, ascorbic acid (AA), phenols and antioxidant activity were formulated

Assessing gaps and needs for integrating building performance optimization tools in net zero energy buildings design.. A review of computational optimisation methods applied

Forse serve immaginare un futuro dell’insegnamento che sia mi- sto, o per meglio dire blended, sviluppando un modello di scuola ed università nel quale si mantenga la possibilità

Nella ricerca etnografica sono state coinvolte alcune delle ospiti e beneficiarie 29 che hanno deciso di partecipare alla ricerca, le volon- tarie 30 e gli operatori, pur prendendo

Onchocerca lupi paramyosin (Ol-para, 2,643 bp cDNA) was herein isolated and characterised in adults, both males and females, and microfilariae.. The predicted Ol- PARA protein (i.e.

In 2012, during a conference in Rome about Late Antique plates deco- rated with engravings, I presented a paper about the potentially very useful contribute that the

Nicola Barbuti, ha curato sia la progettazione e realizzazione del tracciato in open data utilizzato per indicizzare e pubblicare on line una selezione di volumi a stampa