• Non ci sono risultati.

On higher Gauss maps

N/A
N/A
Protected

Academic year: 2021

Condividi "On higher Gauss maps"

Copied!
12
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Journal

of

Pure

and

Applied

Algebra

www.elsevier.com/locate/jpaa

On

higher

Gauss

maps

Pietro De Poia, Giovanna Ilardib,∗

a DipartimentodiMatematicaeInformatica,UniversitàdegliStudidi Udine,viadelleScienze,206,

33100Udine,Italy

bDipartimentodiMatematicaeApplicazioni,UniversitàdegliStudidiNapoli“FedericoII”,

80126 Napoli,Italy

a r t i cl e i n f o a b s t r a c t

Articlehistory:

Received8December2014 Receivedinrevisedform10April 2015

Availableonline27May2015 CommunicatedbyA.V.Geramita

MSC:

Primary:53A20;secondary:14N15; 51N35;53B99

Weprovethatthegeneralfibreofthei-thGaussmaphasdimensionm ifandonly ifatthegeneralpointthe(i+ 1)-thfundamentalformconsistsofconeswithvertex afixedPm−1,extendingaknowntheoremfortheusualGaussmap.Weprovethis viaarecursiveformulaforexpressinghigherfundamentalforms.Wealsoshowsome consequencesoftheseresults.

© 2015ElsevierB.V.All rights reserved.

1. Introduction

Let V ⊂ PN be a projective embeddedalgebraic variety and P ∈ V a point of it;with P it associates the i-th osculating space TP(i)(V ) ⊂ PN generated by the (i+ 1)-th infinitesimal neighbourhood (see e.g.

[9,Example II.3.2.5]);letdi be itsdimension.Werecallthatthei-th Gaussmap γi:V  G(di,N ) isthe

rationalmapwhichassociatestothegeneralpointP itsi-thosculatingspaceTP(i)(V ).Fori= 1 thisreduces totheusualGauss map.

The study of the Gauss map has been rather intense, both in classical (see for example [5,2,13]) and modernalgebraicgeometry (seeforexample[8,1]).Instead,thestudyof higherorderGaussmap hasbeen muchmorescarce; asfaras weknow,we canonlycite theclassicalpaperofM. Castellani[3],reviewedin modernformin[7,11]andtheveryrecentpaper[6].CloselyrelatedresultshavebeenobtainedbyR. Piene onhigherdualvarieties,seeforexample[12].WenotemoreoverthatadifferentnotionofhigherGaussmap hasbeengivenbyF. Zak:seeforexample[15].

TheauthorswerepartiallysupportedbyMIUR,PRIN2010–11project“Geometriadellevarietàalgebricheedeilorospazidi

moduli”.

* Correspondingauthor.

E-mailaddresses:pietro.depoi@uniud.it(P. De Poi),giovanna.ilardi@unina.it(G. Ilardi). http://dx.doi.org/10.1016/j.jpaa.2015.05.009

(2)

The main basicdifference between the first and higher Gauss maps is—as shownin[3,7,12]—thatthe fibresoftheGaussmap are(Zariskiopensubsetsof)linearspaces,whileforhigherGaussmapsthisisnot trueingeneral.

Inthispaper,thestudyofhigherGaussmapsistakenupfurther:inparticular,weanalysethe infinites-imal behavioursof these maps. Surprisingly enough,it turns out, see Theorem 3.6,that thegeneral fibre of thei-th Gaussmaphasdimensionm ifandonlyifatthegeneralpoint the(i+ 1)-thfundamentalform consistsofconeswithvertexafixedPm−1,asithappensfortheusualGauss map:see[8,(2.6)].Thisresult is obtainedbyvirtueofarecursiveformulaforexpressingthe(i+ 1)-th fundamentalformintermsofthe

i-th fundamental one:see Lemma 3.1. This last result isinteresting initsown right: forexample, wecan proveimmediatelyas acorollarythe(well-known)factthatJacobiansystemofthe(i+ 1)-thfundamental form is containedin thei-th fundamentalform. Finally,we show some resultsthatfollow from themain resultofthepaper:inparticular, asanexampleoftheconsequencesofthetheorem,westudy thevarieties whose image of ahigher Gauss map has as image a curve, describingcompletely theirvarieties of higher osculatingspaces.

2. Notationandpreliminaries

Weusenotationasin[8,9],andmostofthepreliminariesaretakenfrom[4].LetV ⊂ PN beaprojective variety of dimension k over C that will be always irreducible. For any point P ∈ V we use the following notation:TP(V )⊂ PN istheembeddedtangentprojectivespacetoV inP andTP(V ) istheZariskitangent

space.

As in[8],we abusenotation byidentifyingtheembeddedtangentspaceinPN withtheaffinecone over it inCN +1. Withthis conventionT

P(V )∼=



TP(V )

C .Wedenote by G(t,N ) theGrassmannian oft-planes of

PN.

TostudythebehaviourofV inP ,following[8](andreferences[2,6,7,10]therein),weconsiderthemanifold

F(V ) of framesinV .Anelementof F(V ) isaDarboux frame centredinP .This meansan(N + 1)-tuple

{A0; A1, . . . , Ak; . . . , AN}

whichisabasisofCN +1suchthat,ifπ :CN +1\ {0}→ PN isthecanonicalprojection,

π(A0) = P, and π(A0), π(A1), . . . , π(Ak) span TP(V ).

LetthisframemoveinF(V );thenwehavethefollowingstructureequations(intermsoftherestrictions to V oftheMaurer–Cartan1-formsωi, ωi,j onF(PN))fortheexteriorderivativesofthis movingframe

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ωμ= 0 ∀μ > k dA0= k i=0ωiAi dAi= N j=0ωi,jAj i = 1, . . . , N dωj= k h=0ωh∧ ωh,j j = 0, . . . , k dωi,j= N h=0ωi,h∧ ωh,j i = 1, . . . , N, j = 0, . . . , N. (2.1)

Remark 2.1. Geometrically, the frame {Ai} definesacoordinate simplexin PN. The 1-forms ωi,ωi,j give

the rotationmatrixwhen thecoordinate simplexisinfinitesimally displaced; inparticular, moduloA0,as dA0 ∈ TP∗(PN) (the cotangent space), the1-forms ω1,. . . ,ωk give abasisfor the cotangentspace TP∗(V ),

thecorresponding π(Ai)= vi∈ TP(V ) giveabasisforTP(V ) suchthatvi istangentto thelineA0Ai,and

(3)

Wecandefinenow thet-thfundamentalform andthet-thosculatingspaceat P ∈ V ,fort≥ 2,see [8, §1.(b)and(d)]and[4,§1]:

Definition 2.2. Let P ∈ V , let t ≥ 2 be an integer and let I = (i1,. . . ,ik) be such that |I| ≤ t. The

t-th osculating space to V at P is the subspace T˜P(t)(V ) ⊂ PN spanned by A

0 and by all the derivatives d|I|A0 dvi1 1 · · · dv ik k ,wherev1,. . . ,vk spanTP(V ).

IfthepointP ∈ V isgeneral,wewillput

dt:= dim( ˜TP(t)(V )).

Remark2.3.Obviously,the“expected”dimensionofthet-thosculatingspace atageneralpointP for our

k-dimensional variety V ∈ PN is the minimum among N and k t :=

k+t

k

− 1;indeed, for the “general” variety,dt hasthis expecteddimension,but,asthenextexampleshows,thereareexceptions.

Example2.4. Letusconsider theso-called Togliatti surface S⊂ P5,whichisaparticularprojectionof the delPezzosexticsurfaceembeddedinP6,see[14]and[10];itistheclosureoftheimageoftherationalmap

ψ:P2 P5

(x : y : z) → (x2y : xy2: x2z : xz2: y2z : yz2).

FortheTogliattisurfacewehaved2= 4:thiscanbeeasilyseenfromthefactthattheparametrisationofS

given above,restrictedto theopen affineset x = 0, satisfiesthefollowing second order partial differential equation(classicallycalledLaplaceequation):

u2 2x ∂u2 + uv 2x ∂u∂v + v 22x ∂v2 − 2u ∂x ∂u− 2v ∂x ∂v + 2x = 0,

whereu= yx, v =zx,aretheaffinecoordinates,etc.

Example 2.5. It is immediate to see that for the Veronesesurface V2 ⊂ P5 we have dim ˜TP(2)(V2) = 5 for

everypointP ∈ V2: thereisnotahyperplanesectionofV2 withatriplepoint.

Definition 2.6.Lett ≥ 2 andV0 ⊆ V bethequasiprojective varietyofpoints where T˜P(t)(V ) hasmaximal

dimension.Thevariety

Tant(V ) :=

P∈V0 ˜

TP(t)(V )

iscalled thevariety ofosculating t-spacestoV .

Remark2.7.Obviouslywehave

dt≤ dt−1+ k− 1 + t t ≤ · · · ≤ t i=1 k + i− 1 i = kt.

(4)

Following [8]wegive

Definition 2.8. The t-th fundamental form of V in P is the linear system |It| in the projective space

P(TP(V ))∼=Pk−1 ofhypersurfacesof degreet definedsymbolicallybytheequations:

dtA0= 0.

Moreintrinsically,wewriteItas themap

It: Sym(t)T (V )→ Nt(V ) where Nt(V ) is the bundle defined locally as Nt

P(V ) :=

CN +1

˜

TP(t−1)(V ) and the map I

t is defined locally on eachv∈ TP(V ) as vt→ d tA 0 dvt mod ˜T (t−1) P (V ).

Example2.9.Withanexplicitcalculation(orfromExample 2.11)wecanshowthatthethirdfundamental form at thegeneral point P of theTogliatti surfaceS ⊂ P5 is given bya singlecubic inP(T

P(V ))∼=P1,

while for a “general” surface (i.e. if d2 = 5) of P5 the third fundamental form is the empty set; this is

obviously truefortheVeronesesurfaceV2⊂ P5.

Wewill denotethedimensionofthet-thfundamentalformbyΔt:

Δt:= dim(|It|),

i.e. |It|∼=PΔt.

Werecallthat(see[4,Corollary1.15]) Proposition 2.10.Wehave that

dt= dt−1+ Δt+ 1,

and viceversa:if dt= dt−1+ Δ+ 1,then thet-th fundamental formhas dimensionΔ.

Example 2.11.FortheTogliattisurfaceS⊂ P5 wehavethatd

3= 5 andd2= 4,and thereforeΔ3= 0.

Analogously, for a “general” surfaceof P5, d3 = d2 = 5, and Δ3 = −1, i.e. |III | = ∅; this is true for

examplefortheVeronesesurfaceV2⊂ P5.

From nowon,wewill supposethatourDarboux frame

{A0; A1, . . . , Ak; Ak+1, . . . , Ad2; Ad2+1, . . . , Ads; . . . , Adt; . . . , AN} (2.2)

is suchthatA0,A1,. . . ,Ads spanT˜ (s)

P (V ) foralls= 1,. . . ,t,withd1:= k.

Definition2.12.Lett≥ 1.Thet-th (projective) Gaussmap istherationalmap

γt: V  G(dt,PN)

(5)

Werecallthat(seeforexample[4,Theorem1.18])

Theorem2.13.The firstdifferential of γt atP isthe(t+ 1)-thfundamental formatP .

Theideaof theproof isthefollowing:wehave,bythedefinitionofγt,that

Pt: TPV  TT˜(t)

P VG(dt,P

N),

andwe recallthatTT˜(t) P VG(dt

,PN)= Hom( ˜T(t)

P V,N t+1

P (V ));moreoverifwechooseaDarbouxframe asin

(2.2),wehavethatdA0∈ ˜TPV ⊂ ˜TP(t)V and

˜ TP(t)V CA0 = TP(t)V andthereforedγt P ∈ Hom(TPV ⊗ TP(t)V,NPt+1(V )).

Now,weremark that,inourDarbouxframe,wecaninterpretγtas

γt(P ) = A0∧ · · · ∧ Adt, andthereforeby(2.1), dγtP 1≤i≤dt dt+1≤j≤N (−1)dt−i+1ω i,jA0∧ · · · ∧ ˆAi∧ · · · ∧ Adt∧ Aj, mod ˜T (t) P V ;

now,abasisforTPV ⊗ TP(t)V canbeexpressed by(Aα⊗ Aμ)α=1,...,k μ=1,...,dt , and Pt(Aα⊗ Aμ) = dt+1≤j≤N ωμ,j(Aα)Aj ∈ NPt+1(V );

ontheotherhand,forthe(t+ 1)-thfundamentalform wehave

dAμ

dvα

dt+1≤j≤N

ωμ,j(Aα)Aj mod ˜TP(t)(V ).

3. Fibresof higherGauss maps

Westartbywritinghigherfundamentalformsexplicitly:chooseaDarbouxframe

{A0; A1, . . . , Ak; Ak+1, . . . , Ad2; Ad2+1, . . . , Ads; . . . , Adt; . . . , AN}

suchthatA0,A1,. . . ,Ads spanT˜ (s)

P (V ) for alls= 1,. . . ,t,with d1:= k, T˜P(1)(V )= ˜TP(V ) (and d0 := 0).

Weuseindices1≤ i(1),i(1)1 ,. . . ,i(1)h ≤ k = d1,ds−1+ 1≤ i(s)≤ ds fors= 2,. . . t anddt+ 1≤ i(t+1)≤ N.

Withthesenotations,thesecond fundamentalform isgivenbythequadrics

Vi(2)() = i(1)1 ,i (1) 2 qi(1) 1 ,i (1) 2 ;i()ωi (1) 1 ωi (1) 2 , (3.1) with> k,whereq i(1)1 ,i (1) 2 ;i() (= q i(1)2 ,i (1) 1 ;i() ) aredefinedby

(6)

ωi(1) 1 ,i()= i(1)2 qi(1) 1 ,i (1) 2 ;i()ωi (1) 2 , (3.2)

whichareobtainedviatheCartanlemma from 0 = dωi()= i(1)1 ω i(1)1 ∧ ωi (1) 1 ,i(), sinceωi()= 0 onT˜P(V ).

Thehigherfundamentalformscanbeexpressed asinthefollowing Lemma3.1.The (s+ 1)-th fundamental formisgivenby thepolynomials

Vi(s+1)() = k i(1)1 ,...,i (1) s+1=1 qi(1) 1 ,...,i (1) s+1;i()ωi (1) 1 · · · ωi (1) s+1, (3.3)

with ≥ s+ 1,whichinductively satisfy therelations

ds i(s)=d s−1+1 qi(1) 1 ,...,i (1) s ;i(s)ωi(s),i()= k i(1)s+1=1 qi(1) 1 ,...,i (1) s+1;i()ωi (1) s+1, (3.4) where qi(1) 1 ,...,i (1)

s ;i(s) are the coefficients of the s-th fundamental form (and with thenatural symmetries of

theindices:q...,i(1) j ,...,i (1) k ...;i() = q...,i(1) k ,...,i (1) j ,...;i()

),andthebasisof theinduction isthesecond fundamental form (i.e.s= 1)forwhichrelations(3.3)and (3.4)aretobe readas, respectively,(3.1)and(3.2).

Proof. BythedefinitionofT˜P(s)(V ),where s∈ {1,. . . ,t− 1},we havethat

dAi(s−1) ≡ 0 mod ˜TP(s)(V ) (3.5)

and from(2.1)wecanwrite

dAi(s−1) =

N

j=ds−1+1

ωi(s−1),jAj

from whichwededuce,by(3.5)

ωi(s−1),i(s+1) = ωi(s−1),i(s+2) =· · · = ωi(s−1),i(t) = ωi(s−1),i(t+1) = 0. (3.6) These equationsimplythat

0 = dωi(s−1),i()=

i(s)

ωi(s−1),i(s)∧ ωi(s),i() ≥ s + 1;

now, bytheinductivehypothesis,wehave i(s−1) qi(1) 1 ,...,i (1) s−1;i(s−1)ωi(s−1),i() = i(1)s qi(1) 1 ,...,i (1) s ;i()ωi(1)s (3.7)

(7)

whereqi(1) 1 ,...,i

(1)

s−1;i(s−1) arethecoefficientsofthe(s− 1)-thfundamentalformandqi(1)1 ,...,i (1)

s ;i()arethoseof

thes-th fundamentalform (with theconventionthatqi(1) 1 ,...,i

(1)

s ;i() = 1 if s≤ 1,and ifs= 2, (3.7)is just (3.2)i.e.theCartan lemmausedtoobtainthesecondfundamentalform(3.1))andthen,applyingrelations

(3.7)to(a linearcombination of)(3.6),wededuce i(s−1),i(s) qi(1) 1 ,...,i (1) s−1;i(s−1)ωi(s−1),i(s)∧ ωi(s),i()= i(1)s ,i(s) qi(1) 1 ,...,i (1) s ;i(s)ωi(1)s ∧ ωi(s),i()

then,bytheCartan lemma i(s) qi(1) 1 ,...,i (1) s ;i(s)ωi(s),i()= i(1)s+1 qi(1) 1 ,...,i (1) s+1;i()ωi (1) s+1;

andthe(s+ 1)-th fundamentalform is

Vi(s+1)() = i(1)1 ,...,i (1) s+1 qi(1) 1 ,...,i (1) s+1;i()ωi (1) 1 · · · ωi (1) s+1. 2

Remark3.2. Alternatively,we can write—for example writingback relations (3.4)in (3.3) or by adirect computation

Vi(s+1)() =

i(1),...,i(s)

ωi(1)ωi(1),i(2)ωi(1),i(3)· · · ωi(s−1),i(s)ωi(s),i(),

with≥ s+ 1 andthesumvaries,as above,for1≤ i(1)≤ k = d

1,. . . ,ds−1+ 1≤ i(s)≤ ds.

Werecall

Definition3.3. LetΣ bethelinearsystemofdimension d ofhypersurfacesof degreen> 1 inPN (N > 1),

generatedbythed+ 1 hypersurfacesf0= 0,. . . ,fd= 0.TheJacobiansystem J (Σ) ofΣ isthelinearsystem

definedbythepartial derivativesoftheforms f0,. . . ,fd:

J (Σ) := (∂fi/∂xj) i = 0, . . . , d; j = 0, . . . , r.

Remark 3.4. Obviously, theJacobian system J (Σ) does not depend on the choice of f0,. . . ,fd, butonly

on Σ.

Corollary 3.5. The (s+ 1)-th fundamental form is a linear system of polynomials of degree s+ 1 whose

Jacobiansystemis containedinthes-thfundamental form.

Proof. Wehave,byLemma 3.1

∂Vi(s+1)() ∂ωi(1) j = i(1)1 ,...,i (1) s ,i(s) qi(1) 1 ,...,i (1) s ;i()ωi(1)1 · · · ωi (1) s ∂ωi(s),i() ∂ωi(1) j . 2 (3.8)

Wearenowabletoprovethefollowing fact(see[8,(2.6)])

Theorem 3.6. The s-th Gaussmap γs (s≥ 1) has fibres of dimension m if and only if at a general point

P ∈ V theformsofdegrees+ 1 ofthe(s+ 1)-thfundamental form|Is+1| areconesoveraPm−1⊂ PT P(V ).

(8)

Proof. We chooseaDarbouxframeas above,i.e.

{A0; A1, . . . , Ak; Ak+1, . . . , Ad2; Ad2+1, . . . , Ads; . . . , Adt; . . . , Adt+1; . . . , AN}

suchthatA0,A1,. . . ,Ads spanT˜ (s)

P (V ) andindicesds−1+ 1≤ i(s)≤ dsforalls= 1,. . . ,t+ 1,withd1:= k,

etc.

Incoordinates,thes-thGauss mapγs is

γs(P ) = A0∧ · · · ∧ Ads,

and thereforeby(2.1), itsdifferential, whichisthe(s+ 1)-thfundamentalform,isgivenby

Ps 1≤i≤ds ds+1≤j≤N (−1)ds−i+1ω i,jA0∧ · · · ∧ ˆAi∧ · · · ∧ Ads∧ Aj, mod ˜T (s) P V ;

therefore, sinceγshasfibres ofdimensionm if andonly ifs

P hasrankk− m (recallthatP isageneral

point) γshasfibresofdimensionm ifandonlyifthespace

U∗:=ωi,j 1≤i≤ds

ds+1≤j≤N

⊂ T∗ P(V )

has dimension k− m. Dually, this space defines a subspace U ⊂ TP(V ) of dimension m, defined by the

equations

ωi(h),i() = 0, h = 1, . . . , s; ≥ s + 1.

Now, we prove that Vi(s+1)() are cones with vertex P(U): let us suppose to choose a frame such that

ωm+1,. . . ,ωk form abasisforU∗,thatis

ωi,j 1≤i≤ds

ds+1≤j≤N

=ωm+1, . . . , ωk. (3.9)

Moreover, wechooseindices 1≤ j1(1),. . . ,jh(1)≤ m,andm+ 1≤ k(1)1 ,. . . ,k(1)h ≤ k.

From (3.4),thepointsofU satisfyalso 0 = i(h) qi(1) 1 ,...,i (1) h ;i(h)ωi (h),i()= i(1)h+1 qi(1) 1 ,...,i (1) h+1;i()ωi (1) h+1, (3.10)

whichimplies,foreverychoiceoftheindicesasabove,that

qi(1) 1 ,...,j

(1) h+1;i()

= 0. From thisweinfer,from (3.3), that

Vi(s+1)() = k(1)1 ,...,k (1) s+1 qk(1) 1 ,...,k (1) s+1;i()ωk (1) 1 · · · ωk (1) s+1, (3.11) thatis,V(s+1)

i() isaconewithvertex P

(9)

Viceversa,let ussuppose thatthe polynomials Vi(s+1)() aresingular alongaPm−1 =P(U);by choosing ourframe,wecansupposethatU isdefinedby

ωj = 0, j = m + 1, . . . , k,

orthat(3.9)holds.Then,we have

0 = dωi(h),i()= ds i=1 ωi(h),i∧ ωi,i()+ N j=ds+1 ωi(h),j∧ ωj,i() (3.12)

and ωi,i(),ωi(h),j ∈ U∗ and thereforethe Frobeniusintegrability conditionsfor ωm+1,. . . ,ωk are satisfied; then,from dAi(s) = N j=ds+1 ωi(s),jAj

we conclude that the s-th osculating space remains constant along the leaves of the foliation defined by

ωm+1,. . . ,ωk. 2

Remark3.7.Aswerecalledintheintroduction,onecandeduce,fromTheorem 3.6,that,fors= 1 (i.e.the usual Gaussmap), thefibres ofγ1 are(Zariskiopensubsets of)linearspaces: see[8, (2.10)]. Moreover,in [8,§3]they giveageneraldescriptionofthese varieties;we will pursuefurtherthis kindofdescription for highers inSubsection 3.1.

Example 3.8. Thefirst nontrivial exampleof applicationof the precedingtheorem with s≥ 2 is given by surfaceswhosesecondGaussmapγ2hasas imageacurve;thiscasehasbeenstudiedin[3]andin[7]:they proved thatthe curveswhich are fibres of γ2 are indeedcontained in3-dimensional projective spaces; by Theorem 3.6,wededucethatthethirdfundamentalform atthegeneralpointisgivenbyaperfectcube.

Letusseethefollowing consequenceoftheprecedingresult.

Corollary 3.9. If thes-th Gaussmapγs (s≥ 1)for ak-dimensionalvariety V has fibresof dimension m,

then ds+1≤ ds+ k− m + s s + 1 , (3.13)

andtheequalityisreachedifandonlyifthe(s+ 1)-thfundamental form|Is+1| isgivenbythelinearsystem

of allthecones overaPm−1⊂ PTP(V ).

Proof. By Proposition 2.10 we have to estimate the dimension Δs+1 of the linear system given by the

(s+ 1)-th fundamental form, butthis, by Theorem 3.6, is formed bydegree (s+ 1) hypersurfaces which are cones over a Pm−1 in a Pk−1(= P(TP(V ))). Since the linear systems of these cones has (projective)

dimensionk−m+ss+1 −1 (isequaltothecompletelinearsystemofdegree(s+ 1) hypersurfacesinaPk−m−2), wehavetheassertion. 2

(10)

3.1. Varietieswith acurveastheimage of thes-thGaussmap

Letus startwiththefollowing

Lemma 3.11. If ds+1 = ds+ 1, then ds+2 ≤ ds+ 2. Moreover, if ds+2 = ds+ 2, then |Is+1| and|Is+2| are

generatedbypowersofthesamelinearform,andifds+ 1= ds+2,thenourvarietyV iscontainedinPds+2.

Proof. We apply Proposition 2.10 to deducethat the(s+ 1)-th fundamentalform |Is+1| is generated by onlyoneform.Callthisform f ;byCorollary 3.5,ifg isaform in|Is+2|, thenallitspartialderivativesare

in|Is+1|;therefore,byEuler’sformula

g = 1 s + 2 k i=1 ωi ∂g ∂ωi = 1 s + 2 k i=1 ωiaif

ai ∈ C,i= 1,. . . ,k,andwededucethateitherg iszeroorg = f ,where is alinearform.Ifg = f ,bya

changeofcoordinateswecansupposethat= ω1;then,wehave ∂g ∂ω1 = f + ω1 ∂f ∂ω1 ∈ |I s+1| = (f) ∂g ∂ωj = ω1 ∂f ∂ωj ∈ |I s+1| = (f) j = 2, . . . , k

whichimplythateitherf doesnotdependonω1,buttheng isthezeroform,orf isreducibleoftheform f = ω1h.Wecannowproceedbyinductiontoprovethatf = ω1s+1:iff = ω1φ,then

∂g ∂ω1 = ( + 1)ωφ + ω+11 ∂φ ∂ω1 = nω1 ∂g ∂ωj = ω1+1 ∂φ ∂ωj = njω1 j = 2, . . . , k

n,nj ∈ C,j = 1,. . . ,k, and,as above,eitherφ doesnotdependonω1,buttheng isthezeroform,or φ is

reducible oftheformφ= ω1φ.

Ifg = 0, thenwecanconcludefrom Theorem 3.6(or, better,from Example 3.10). 2

Corollary3.12.Ifds+2= ds+1+ 1= ds+ 2,thenthes-thand(s+ 1)-thGaussmapshavefibresofdimension

k− 1.

Proof. ByLemma 3.11wehavethatthe|Is+1| and|Is+2| areconesoveraPk−2,therefore,byTheorem 3.6,

thethesisfollows. 2

Thecaseweareinterestedinnowistheonewithm= k− 1 (i.e. thenextafterExample 3.10),therefore, by(3.13),(ds≤)ds+1≤ ds+ 1;ifds+1< ds+ 1,thends+1= ds,butinthiscasewewouldhavenoelements

in |Is+1|, and thereforewe would be in Example 3.10. We deduce thatd

s+1 = ds+ 1, and we are inthe

caseof Lemma 3.11, andbyTheorem 3.6theimage ofthes-thGauss map hasdimension 1;the complete description ofsuch caseswill followfrom [8, (2.4)].To usethis result,we needsomenotations andresult: we startbyrecallingthenotationintroducedin[8,§2(a)];letB beanr-dimensionalvarietyand let

(11)

beamorphism;lety∈ B beageneralpoint,andletSy ⊂ V (wherePN=P(V ))bethe(d+ 1)-dimensional

vectorspacewhichcorresponds tof (y).Then,thedifferentialoff iny can bethoughtof

dyf : TyB → Hom(Sy, Ny),

where Ny := SVy. Moreexplicitly, ify1,. . . ,yr are local coordinatesofB near y,and ife0(y),. . . ed(y) is a

basisforthe (d+ 1)-dimensionalvectorspacesnearSy, wehave

dyf ∂yi (ej(y))≡ ∂(ej(y)) ∂yi mod Sy

fori= 1,. . . ,r andj = 0,. . . , d.Then, fixedw∈ TyB,onecandefinethe“infinitelynear”space

Sy

dw := Im dyf (w)⊂ Ny,

andifwedenoteby[v] theclassof v∈ V inNy, weconsiderthefollowingsubspacesof V :

Sy+ Sy dw :=  v∈ V | v = s + t, s ∈ Sy, [t]∈ Sy dw  Sy∩ Sy dw :=  s∈ Sy| ([0] =)[s] ∈ Sy dw  = ker(dyf (w)). Obviously,we have rk(dyf ) = ρ ⇐⇒ dim(Sy+ Sy dw) = d + 1 + ρ ⇐⇒ dim(Sy∩ Sy dw) = d + 1− ρ.

WealsodenotetheprojectivesubspacesofPN associatedtothevectorspacesjustdefinedby

Pd y+ Pd y dw :=P(Sy+ Sy dw) Pd y∩ Pd y dw :=P(Sy∩ Sy dw).

Thecaseofr = 1 iscompletely solvedin[8];asinthecitedarticle,withabuseofnotationwedenote by

y thelocalcoordinateofB nearourgeneralpoint y:

Proposition 3.13.(See[8, (2.4)].) Withnotationsas above,if r = 1 anddim(Pd y∩

Pd y

dw)= d− ρ,thenthere

existρ curves inPN,C

1,. . . ,Cρ parametrised byy, a1,. . . ,aρ ∈ N, andafixed (d−ρi=1ai)-dimensional

subspace H ⊂ PN such that Pd

y is the span of H together with the (ai − 1)-osculating (ai − 1)-planes

˜ T(ai−1) P (Ci)⊂ PN,that is Pd y= ˜T (a1−1) P (C1), . . . , ˜T (aρ−1) P (Cρ), H.

Letusnowusethis resultinourcase:we takeB astheimage ofthes-thGaussmap:

γs: V → Im(γs) =: B→ G(di s, N ),

dim B = 1 and Sy denotes just the ds-dimensionalvector subspace T˜P(s)(V ) ⊂ CN +1, where y = γs(P ),

(12)

havethatB definesalsoaruledvariety,whichisindeedthevarietyofosculatings-spacestoV :Tans(V ):=

∪y∈BPds

y ofdimensionds+ 1.ByCorollary 3.12,ifT˜P(s)(V ) = ˜T

(s+1)

P (V ),thesamehappenswithT˜

(s+1)

P (V ):

we have,on B, theSy’s,whichare theds+1-dimensionalvector subspacesT˜P(s+1)(V )⊂ CN +1,they define

the(ruled)varietyofosculating(s+ 1)-spacestoV Tans+1(V ):=∪y∈BPdys+1 ofdimensionds+ 2 suchthat

V ⊂ Tans(V )⊂ Tans+1(V ).

Since, bydefinitionofthe(s+ 1) osculating space,wehavethat,fory∈ B,

Pds y + Pds y dy ⊂ P ds+1 y , whichimplies dim(Pds y Pds y dy ) = ds− 1. Then, byProposition 3.13

Proposition 3.14. If the s-th Gauss map has dimension one, then there exists a curve C ⊂ PN having

(a− 1)-osculating(a− 1) planes Pa−1y := ˜Ty(a−1)(C) andafixed PN−a−1 suchthat

Pds

y =Pa−1y +PN−a−1.

In otherwords,Tans(V ),istheconeoverPN−a−1 ofTana−1(C) (andthesameholdstrueforhigherGauss

maps).

Clearly, onecandeducemoregeneralresultson thevarietiesof osculatings-spacesinthe sameveinas at theendof[8,§3].

Acknowledgement

Wewouldlike tothanktheanonymousrefereeforvaluablesuggestionsand remarks. References

[1]M.A.Akivis,V.V.Goldberg,DifferentialGeometryofVarietieswithDegenerateGaussMaps,CMSBooksMath.,vol. 18, Springer-Verlag,NewYork,2004.

[2]E.Bertini,Introduzioneallageometriaprojettivadegliiperspaziconappendicesullecurvealgebricheelorosingolarità, E.Spoerri,Pisa,1907.

[3]M.Castellani,Sullesuperficieicuispaziosculatorisonobiosculatori,Rom.Acc.L.Rend.(5)31 (1)(1922)347–350. [4]P.DePoi,R.DiGennaro,G.Ilardi,Onvarietieswithhigherosculatingspaces,Rev.Mat.Iberoam.29 (4)(2013)191–1210. [5]P.delPezzo,Suglispazi tangentiadunasuperficieoadunavarietàimmersainunospaziodipiúdimensioni,Nap.Rend.

XXV(1886)176–180.

[6]S.DiRocco,K.Jabbusch,A.Lundman,AnoteonhigherorderGaussmaps,arXiv:1410.4811[math.AG]. [7]D.Franco,G.Ilardi,Onmultiosculatingspaces,Commun.Algebra29 (7)(2001)2961–2976.

[8]P.Griffiths,J.Harris,Algebraicgeometryandlocaldifferentialgeometry,Ann.Sci.Éc.Norm.Super.(4)12 (3)(1979) 355–452.

[9]R.Hartshorne,AlgebraicGeometry,Grad.TextsMath.,vol. 52,Springer-Verlag,NewYork,1977. [10]G.Ilardi,Togliattisystems,OsakaJ.Math.43 (1)(2006)1–12.

[11]J.M.Landsberg,Onsecondfundamentalformsofprojectivevarieties,Invent.Math.117 (2)(1994)303–315.

[12]R.Piene,Anoteonhigherorderdualvarieties,withanapplicationtoscrolls,in:Singularities,Part2,Arcata,CA,1981, 1983,pp. 335–342.

[13]C.Segre,Preliminaridiunateoriadellevarietàluoghidispazi,PalermoRend.30(1910)87–121.

[14]E.Togliatti,Alcuniesempîdisuperficiealgebrichedegliiperspazîcherappresentanoun’equazionediLaplace,Comment. Math.Helv.1(1929)255–272.

[15]F.L.Zak,TangentsandSecantsofAlgebraicVarieties,Transl.Math.Monogr.,vol. 127,AmericanMathematicalSociety, Providence,RI,1993,translatedfromtheRussianmanuscriptbytheauthor.

Riferimenti

Documenti correlati

A mathematical reconstruction of a possible derivation made by Gauss of the linking number has been presented, together with explicit proofs of modern, equivalent interpretations of

Hansen was heavily influenced by Gauss in his astronomical work, but does not mention Gauss in the development of his algorithms for harmonic analysis, for reasons

Throughout the development of the concept of the authenticity, the author tried to identify an alternative approach for the benefits of professionals in order both to promote

Pathway analysis focused on these genes was carried on with KEGG tool (http://www.genome.jp/kegg/pathway.html) and is also reported in the Supplementary Tables 1 and

consumption of online news 60 and on their engagement with those same news (i.e. shar- ing) in social media has shown, the act of sharing news (and thus circulating and

Most of the simulation and analysis work developed in this thesis have been proved useful to the LAT Collaboration for studying and developing detection and analysis strategy in

[3] Eran Fishler, Alex Haimovich, Rick Blum, Len Cimini, Dimtry Chizhiz, Reinaldo Valenzuela “MIMO RADAR: AN IDEA.. WHOSE TIME HAS

Models based on intensity have been elaborated exploiting some stochastic differential equations, for example CIR-short rate models.. That