• Non ci sono risultati.

Quantum Hydrodynamics Analysis of Quantum Synchronization over Quantum Networks

N/A
N/A
Protected

Academic year: 2022

Condividi "Quantum Hydrodynamics Analysis of Quantum Synchronization over Quantum Networks"

Copied!
51
0
0

Testo completo

(1)

Quantum Hydrodynamics Analysis of Quantum Synchronization

over Quantum Networks

Pierangelo Marcati

(joint work withP. Antonelli, S.-Y. Ha, D. Kim) GranSasso Science Institute and

Universit`a degli Studi dell’Aquila - L’Aquila, Italy

(2)

Classical References

Winfree, A. T.: Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol. 16, 15-42 (1967).

T. Vicsek, A. Czir´ok, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett. 75 (1995) pp. 1226–1229.

Kuramoto, Y.: Chemical Oscillations, waves and turbulence.

Springer-Verlag, Berlin. 1984.

Kuramoto, Y.: Lecture notes in theoretical physics. 30, 420 (1975).

Strogatz S.,From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators, Physica D 143

(3)

Some applications

Computer science Parallel computing or GPUs Cryptography (including Quantum)

Digital Music ITC

Multimedia Neuroscience Physics

(4)

Synchro

Sinusoidally coupled nonlinear oscillators active rotors on the circle S1. Let xi= e

−1θi be the position of the i-th rotor.

xi determined by phase θi. In the absence of coupling, dθi

dt = Ωi, i.e., θi(t) = θi(0) + Ωit, Ωi random variable (the natural phase-velocity (frequency))

Kuramoto derived a coupled phase model heuristically from the complex Ginzburg-Landau system.

i

dt = Ωi−K N

N

X

j=1

sin(θi− θj), t > 0, i = 1, · · · , N, (1) subject to initial data θi(0) = θi0.

We say that the system SYNCHRONIZE if

(5)

Kuramoto studied -the mean-field limit N → ∞ - of the system (1) Unimodal frequency distribution function g(Ω),

g(−Ω) = g(Ω), spt(g) bounded , R g(Ω)dΩ = 1.

(one-humped , symmetric w.r.t. mean Ωpc:= N1 PN i=1i) e.g. g(Ω) = π[γ2+(Ω−Ωγ 0)2), having width γ > 0 and mean Ω0,

Continuous dynamical phase transition at a critical value of the coupling strength Kcr = πg(0)2 , in the mean-field limit.

Asymptotic order parameter r∈ [0, 1] ( phase synchronization in mean-field limit)

r(K) := lim

t→∞ lim

N →∞

1 N

N

X

i=1

e

−1θi(t) ,

(6)

Ha

Let θ = (θ1, · · · , θN) and the natural frequency set as follows.

Dθ(t) := max

1≤i,j≤Ni(t) − θj(t)|, t ≥ 0, D:= max

i,j |Ωi− Ωj|.

Theorem (Ha S.-Y., Ha T. Y. and Kim J.-H. 2010) Suppose

i = Ωj, i 6= j, K > 0, D0 := Dθ(0) < π,

and let θ = θ(t) be the smooth solution to the system (1)-(??) with initial phase θ0. Then

e−KtD0 ≤ Dθ(t) ≤ e−KαtD0, t ≥ 0, (2) where α depends on the diameter of the initial phase configuration

(7)

We also recall the estimate of existence of a trapping region for non-identical oscillators from as follows.

Lemma (Choi Y.-P., Ha S.-Y., Jung, S. and Kim, Y- 2012) Let θ = θ(t) be the global smooth solution to (1)-(??) satisfying

0 < D0 < π, D > 0, K > Ke:= D sin D0

. Then we have

(i) sup

t≥0

Dθ(t) ≤ D0 < π.

(ii) ∃ t0> 0 such that sup

t≥t0

Dθ(t) ≤ D, where Dis defined by

(8)

Quantum Lohe Model

Phase synchronization cannot occur in quantum systems with constant linearinteractions

We consider N quantum oscillators (”nodes” ) connected by a quantum network and Nonlinear interactions

Wavefunctions at each node distributed over quantum channels to all other connected nodes, by means of quantum teleportation

Local evolution given by free evolution plus a nonlinear interaction The Kuramoto system can be generalized tonon-Abelian model where variables are n × n complex matrices Ui in U (n) where Ui denotes the Hermitian conjugate of Ui and Hi is a prescribed constant n × n Hermitian matrix, i = 1....N .

ik N

(9)

Lohe-Kuramoto

Whenk = 0 the decoupled system is given by the finite-dimensional analog of the Schr¨odinger equation i ˙Ui= HiUi with free dynamics Ui(t) = eiHitUi(0)

We generalize to complex n-vectors |ψii (with n = 2 for qubit models)

i~∂tii = Hiii + i~k 2N

N

X

0

aij(|ψji − |ψii hψjii)

Let d|ψii = ii

iii, Hiint = i2N~k PN

0 aij( d|ψjidhψi| − d|ψii dhψj|), then i~∂t|ψdii = (Hi+ Hiint) d|ψii

(10)

Choi,Ha version of Lohe Model (Mathematicians notations)

˜

χjk = χjkjk

kk

i∂tψj = −1

2∆ψj + Vjψj+ iK 2N

N

X

j=1

˜ χjk



ψk−hψj, ψki kψjk2 ψj



Consider for the moment N = 2, we have





i∂tψ1= − 1

2∆ψ1+ V1ψ1+ iK 4χ˜12



ψ2−hψ1, ψ2i kψ1k2 ψ1



i∂tψ2= − 1

2∆ψ2+ V2ψ2+ iK 4χ˜12



ψ1−hψ2, ψ1i kψ2k2 ψ2

 .

(11)

References on Quantum

S.-H. Choi, S.-Y. Ha, Quantum synchronization of the Schr¨odinger-Lohe model, J. Phys. A: Math. Theor. 47 (2014), 355104.

P. Antonelli and P. Marcati, On the finite energy weak solutions to a system in Quantum Fluid Dynamics, Comm. Math. Phys. 287 (2009), no 2, 657–686.

P. Antonelli and P. Marcati, The Quantum Hydrodynamics system in two space dimensions, Arch. Rat. Mech. Anal. 203 (2012), 499–527.

(12)

From NLS to QHD via WKB

i~∂tψ = −~2

2m∆ψ + V ψ + f0(|ψ|2

− ∆V = |ψ|2 Energy

E[ψ] = Z ~2

2 |∇ψ|2+ f (|ψ|2) + 1

2|∇V |2dx WKB ansatz: ψ =√

ρeiS/~, then (ρ, S) satisfy





tρ + div(ρ∇S) = 0

tS +1

2|∇S|2+ f0(ρ) + V = ~2 2

∆√

√ ρ ρ

(13)

WKB ansatz





tρ + div(ρ∇S) = 0

tS +1

2|∇S|2+ f0(ρ) + V = ~2 2

∆√

√ ρ ρ u = ∇S⇒ ∂tu + (u · ∇)u + ∇f0(ρ) + ∇V = ~2

2∇ ∆√

√ ρ ρ



J = ρu = ρ∇S ⇒ (ρ, J ) solves (QHD) & E[ψ] = E[ρ, J ]

~2|∇ψ|2 = ~2|∇√

ρ|2+ ρ|∇S|2 = ~2|∇√

ρ|2+ |J |2 ρ

(14)

Mathematical problems of WKB

vacuum: WKB ansatzψ = |ψ|eiS/~ valid only if ψ(t, x) 6= 0

; S not defined in {ψ = 0}

regularity issue: the nodal set {ψ = 0} may have dimH= 1(Federer, Ziemer)

irrotationality: ∇ ∧ u = 0, no vorticesare taken into account in the WKB description

CONCLUSION: The phases analysis is ill-posed one has to deal with the wave functions and the the first two moments (observables)

(15)

Madelung transformation

Moments associated to the wave function. ψ ρ := |ψ|2 mass density

J := ~( ¯ψ∇ψ) current density.

tρ + div J = 0,

tJ +~2div ρ(∇ ¯ψ ⊗ ∇ψ)

+ ∇P (ρ) + ρ∇V = ~2 4 ∇∆ρ

tJ +div J ⊗ J ρ



+ ∇P (ρ) + ρ∇V = ~2

2 ρ∇ ∆√

√ ρ ρ



(16)

Madelung transformation

Moments associated to the wave function. ψ ρ := |ψ|2 mass density

J := ~( ¯ψ∇ψ) current density.

tρ + div J = 0,

tJ +~2div ρ(∇ ¯ψ ⊗ ∇ψ)

+ ∇P (ρ) + ρ∇V = ~2 4 ∇∆ρ

tJ +div J ⊗ J ρ



+ ∇P (ρ) + ρ∇V =

(17)

Madelung transformation

Moments associated to the wave function. ψ ρ := |ψ|2 mass density

J := ~( ¯ψ∇ψ) current density.

tρ + div J = 0,

tJ +~2div ρ(∇ ¯ψ ⊗ ∇ψ)

+ ∇P (ρ) + ρ∇V = ~2 4 ∇∆ρ

tJ +div J ⊗ J ρ



+ ∇P (ρ) + ρ∇V =~2

4 ∇∆ρ−~2div(∇√

ρ ⊗ ∇√ ρ)

(18)

Madelung transformation

Moments associated to the wave function. ψ ρ := |ψ|2 mass density

J := ~( ¯ψ∇ψ) current density.

tρ + div J = 0,

tJ +~2div ρ(∇ ¯ψ ⊗ ∇ψ)

+ ∇P (ρ) + ρ∇V = ~2 4 ∇∆ρ

tJ +div J ⊗ J ρ



+ ∇P (ρ) + ρ∇V =~2

4 ∇∆ρ−~2div(∇√

ρ ⊗ ∇√ ρ)

(19)

Madelung transformation

Moments associated to the wave function. ψ ρ := |ψ|2 mass density

J := ~( ¯ψ∇ψ) current density.

tρ + div J = 0,

tJ +~2div ρ(∇ ¯ψ ⊗ ∇ψ)

+ ∇P (ρ) + ρ∇V = ~2 4 ∇∆ρ

tJ +div J ⊗ J ρ



+ ∇P (ρ) + ρ∇V =~2

4 ∇∆ρ−~2div(∇√

ρ ⊗ ∇√ ρ)

(20)

Madelung transformation

Moments associated to the wave function. ψ ρ := |ψ|2 mass density

J := ~( ¯ψ∇ψ) current density.

tρ + div J = 0,

tJ +~2div ρ(∇ ¯ψ ⊗ ∇ψ)

+ ∇P (ρ) + ρ∇V =~2 4 ∇∆ρ

tJ +div J ⊗ J ρ



+ ∇P (ρ) + ρ∇V = ~2

4∇∆ρ − ~2div(∇√

ρ ⊗ ∇√ ρ)

(21)

Madelung transformation

Moments associated to the wave function. ψ ρ := |ψ|2 mass density

J := ~( ¯ψ∇ψ) current density.

tρ + div J = 0,

tJ +~2div ρ(∇ ¯ψ ⊗ ∇ψ)

+ ∇P (ρ) + ρ∇V = ~2 4 ∇∆ρ

tJ +div J ⊗ J ρ



+ ∇P (ρ) + ρ∇V =~2

4 ∇∆ρ−~2div(∇√

ρ ⊗ ∇√ ρ)

(22)

Madelung transformation

Moments associated to the wave function. ψ ρ := |ψ|2 mass density

J := ~( ¯ψ∇ψ) current density.

tρ + div J = 0,

tJ +~2div ρ(∇ ¯ψ ⊗ ∇ψ)

+ ∇P (ρ) + ρ∇V = ~2 4 ∇∆ρ

tJ +div J ⊗ J ρ



+ ∇P (ρ) + ρ∇V =~2

4 ∇∆ρ−~2div(∇√

ρ ⊗ ∇√ ρ) Formally,

(23)

Madelung transformation

Moments associated to the wave function. ψ ρ := |ψ|2 mass density

J := ~( ¯ψ∇ψ) current density.

tρ + div J = 0,

tJ +~2div ρ(∇ ¯ψ ⊗ ∇ψ)

+ ∇P (ρ) + ρ∇V = ~2 4 ∇∆ρ

tJ +div J ⊗ J ρ



+ ∇P (ρ) + ρ∇V =~2

4 ∇∆ρ−~2div(∇√

ρ ⊗ ∇√ ρ) Formally,

(24)

Madelung transformation

Moments associated to the wave function. ψ ρ := |ψ|2 mass density

J := ~( ¯ψ∇ψ) current density.

tρ + div J = 0,

tJ +~2div ρ(∇ ¯ψ ⊗ ∇ψ)

+ ∇P (ρ) + ρ∇V = ~2 4 ∇∆ρ

tJ +div J ⊗ J ρ



+ ∇P (ρ) + ρ∇V =~2

4 ∇∆ρ−~2div(∇√

ρ ⊗ ∇√ ρ) Formally,

~2ρ(∇ ¯ψ ⊗ ∇ψ) = ~2ρ (ψ∇ ¯ψ) ⊗ ( ¯ψ∇ψ)

|ψ|2



(25)

Madelung transformation

Moments associated to the wave function. ψ ρ := |ψ|2 mass density

J := ~( ¯ψ∇ψ) current density.

tρ + div J = 0,

tJ +~2div ρ(∇ ¯ψ ⊗ ∇ψ)

+ ∇P (ρ) + ρ∇V = ~2 4 ∇∆ρ

tJ +div J ⊗ J ρ



+ ∇P (ρ) + ρ∇V =~2

4 ∇∆ρ−~2div(∇√

ρ ⊗ ∇√ ρ) Formally,

2 1h

2

(26)

Madelung transformation

Moments associated to the wave function. ψ ρ := |ψ|2 mass density

J := ~( ¯ψ∇ψ) current density.

tρ + div J = 0,

tJ +~2div ρ(∇ ¯ψ ⊗ ∇ψ)

+ ∇P (ρ) + ρ∇V = ~2 4 ∇∆ρ

tJ +div J ⊗ J ρ



+ ∇P (ρ) + ρ∇V =~2

4 ∇∆ρ−~2div(∇√

ρ ⊗ ∇√ ρ) Formally,

~2ρ(∇ ¯ψ ⊗ ∇ψ) = 1 ρ h

~2ρ( ¯ψ∇ψ) ⊗ ρ( ¯ψ∇ψ)

(27)

Madelung transformation

Moments associated to the wave function. ψ ρ := |ψ|2 mass density

J := ~( ¯ψ∇ψ) current density.

tρ + div J = 0,

tJ +~2div ρ(∇ ¯ψ ⊗ ∇ψ)

+ ∇P (ρ) + ρ∇V = ~2 4 ∇∆ρ

tJ +div J ⊗ J ρ



+ ∇P (ρ) + ρ∇V =~2

4 ∇∆ρ−~2div(∇√

ρ ⊗ ∇√ ρ) Formally,

(28)

Madelung transformation

Moments associated to the wave function. ψ ρ := |ψ|2 mass density

J := ~( ¯ψ∇ψ) current density.

tρ + div J = 0,

tJ +~2div ρ(∇ ¯ψ ⊗ ∇ψ)

+ ∇P (ρ) + ρ∇V = ~2 4 ∇∆ρ

tJ +div J ⊗ J ρ



+ ∇P (ρ) + ρ∇V = Formally,

~2ρ(∇ ¯ψ ⊗ ∇ψ)=~2∇√

ρ ⊗ ∇√

ρ + J ⊗ J ρ .

(29)

Madelung transformation

Moments associated to the wave function. ψ ρ := |ψ|2 mass density

J := ~( ¯ψ∇ψ) current density.

tρ + div J = 0,

tJ +~2div ρ(∇ ¯ψ ⊗ ∇ψ)

+ ∇P (ρ) + ρ∇V = ~2 4 ∇∆ρ

tJ +div J ⊗ J ρ



+ ∇P (ρ) + ρ∇V = Formally,

√ √ J ⊗ J

(30)

Polar Factorization

Let ψ ∈ H1(R3), define

P (ψ) =φ ∈ Ls.t. kφkL ≤ 1, ψ = φ|ψ| a.e. R3 .

φ ∈ P (ψ), implies |φ| = 1, √

ρ dx-a.e. in R3, φ is uniquely defined √

ρ dx−a.e. in R3.

(Lieb, Loss, Thm. 6.19), ψ ∈ Wloc1,1, ∇ψ = 0 a.e. in {ψ = 0}.

We call (any) φ ∈ P (ψ) polar factorassociated to ψ.

(31)

Stability lemma

Lemma

Let φ ∈ L(R3), ψ = |ψ|φ a.e. and kφkL(R3) ≤ 1 then

∇√

ρ = Re( ¯φ∇ψ) a.e., Λ := ~Im( ¯φ∇ψ) a.e.

~2ρ(∇ ¯ψ ⊗ ∇ψ) = ~2∇√

ρ ⊗ ∇√

ρ + Λ ⊗ Λ a.e.

H1−stability: {ψn} ⊂ H1(R3), ψn→ ψ in H1,

∇√

ρn→ ∇√

ρ, Λn→ Λ in L2(R3).

Remark

However φn* φ weak in L.

(32)

Finite energy weak solutions

The pair (ρ, J ) is afinite energy weak solution to the QHD system in [0, T ) × R3, if there exist locally integrable functions √

ρ, Λ, s.t.

√ρ ∈ L2loc([0, T ); Hloc1 (R3)),Λ ∈ L2loc([0, T ); L2loc(R3));

∀ η, ζ ∈ C0([0, T ) × R3), ρ := (√

ρ)2, J :=√

ρΛ satisfy Z

ρ∂tη + J · ∇η dxdt + Z

ρ0η(0) dx = 0, Z

J · ∂tζ + Λ ⊗ Λ : ∇ζ + P (ρ) div ζ − ρ∇V · ζ −~2

4 ρ∆ div ζ + ~2∇√

ρ ⊗ ∇√

ρ : ∇ζ dxdt + Z

J0· ζ(0) dx = 0;

generalized irrotationality condition,∇ ∧ J = 2∇√

ρ ∧ Λ. In the

(33)

Finite Energy Weak Solutions - II

Proposition

Let f (ρ) ∼ ργ, with 1 ≤ γ < 3. Given ψ0 ∈ H1(R3), let

ρ0:= |ψ0|2, J0:= Im( ¯ψ0∇ψ0) .Then there exists a global finite energy weak solution to the QHD system with initial data (ρ0, J0). Furthermore, the energy is conserved.

Proof.

Consider ψ ∈ C([0, ∞); H1(R3)) solution to the Cauchy problem for NLS equation with ψ(0) = ψ0, define √

ρ := |ψ|, Λ := Im( ¯φ∇ψ), then use the polar factorization Lemma.

(34)

Remarks

The only constraint on the initial data is that they are associated to a prescribed wave function in H1(R3);

no regularity assumptions;

no smallness;

no boundedness away from zero.

(35)

QHD with Interactions









tρ + div J = 0

tJ + div J ⊗ J ρ



+ ∇P (ρ) + ρ∇V +K= ~2

2 ρ∇ ∆√

√ ρ ρ



− ∆V = ρ

K in the case semiconductor device (Bløtekjær, Baccarani, Wordeman) takes the form K = 1τJ

Energy:

E[ρ, J ] = Z

R3

{~2 2 |∇√

ρ|2+1 2

K · J

ρ + f (ρ) +1

2|∇V |2 }dx, dissipates along the flow of solutions

(36)

Mathematical Tools, Dispersion and Local Smoothing

Strichartz estimates (Strichartz, Ginibre-Velo, Keel-Tao)

(q, r) are admissible if 2 ≤ q ≤ ∞, 2 ≤ r ≤ 6 and 1q = 32 121r ke2it∆f kLq

tLrx . kf kL2

k Z t

0

e2i(t−s)∆F (s) dskLq

tLrx . kF kLq0˜

t L˜r0x

Local smoothing estimates (Constantin-Saut, Sj¨olin, Vega) ke2it∆f k

L2([0,T ];Hloc1/2(R3)). kf kL2

k Z t

0

e2i(t−s)∆F (s) dskL2([0,T ];H1/2

loc(R3)). kF kL1tL2x

(37)

Theorem (Existence)

Let ψ0∈ H1(R3) and let ρ0 := |ψ0|2, J0:= ~Im( ¯ψ0∇ψ0). Then for any 0 < T < ∞ there exists a finite energy weak solution (ρ, J ) to the QHD system with collisions in [0, T ] × R3 with initial data (ρ0, J0). The solution satisfies

√ρ ∈ L(R+: H1(R3)), Λ ∈ L(R+; L2(R3)) ∩ L2(R+; L2(R3))

and √

ρ ∈ Lq([0, T ]; W1,r(R3)), Λ ∈ Lq([0, T ]; Lr(R3)),

for any 0 < T < ∞, where (q, r) is any arbitrary (Strichartz) admissible pair for Schr¨odinger in R3.

(38)

Fractional step (operator splitting)

solve the QHD without collisions (NLS) update with collisions / interactions

tJ + K = 0 ⇒ Jnew = F unction(τ, Jold) ⇒difficult part

(39)

Potentials Decomposition

Theorem (Ortner, S¨uli )

(decomposition of function in ˙W1,6) Let ˜V ∈ Lqtx1,6,2 ≤ q ≤ +∞ then

V = V˜ (Cxunbounded) + Vp(∈ LqtWx1,6) in particular

(i) V(t, ·) ∈ Cx, ; (ii) kVpkLq

tWx1,6 ≤ Ck∇ ˜V kLq

tL6x; (iii) k∇VqkLq

tL6x+ k∇VqkL

t,x ≤ Ck∇ ˜V kLq

tL6x;

(40)

Time dependent potentials (Antonelli, D’Amico and M.)

i∂tψ = −1

2∆ψ + Vψ + Vpψ + |ψ|2(γ−1)ψ ψ(0) = ψ0.

One has Global Well Posedness in Σ(R3) by extending to Lqt D. Fujiwara, A construction of the fundamental equation for the Schr¨odinger equation, Journ. Anal. Math. 35 (1979), 41-96 where

Σ(R3) = {ψ ∈ H1(R3) : | · |ψ ∈ L2(R3)}.

The parametrix given by the oscillatory integral (E(t, s)φ)(x) :=

 −i

2}π(t − s)

d2 Z

Rd

eiS(t,s,x,y) } φ(y)dy

(41)

back to Schr¨ odinger - Lohe model









i∂tψ1= − 1

2∆ψ1+ V ψ1+ iKχ12



ψ2−hψ1, ψ2i kψ1k2L2 ψ1



i∂tψ2= − 1

2∆ψ2+ V ψ2+ iKχ12



ψ1−hψ2, ψ1i kψ2k2L2

ψ2

 ,

(3)

Let ρk := |ψk|2, Jk= Im( ¯ψk∇ψk), rk:=R ρkdx = kψkk2L2

ρkj = Re( ¯ψkψj)(k 6= j), rkj = Re(hψk, ψji) =R ρkjdx Equation for the mass densities

tρk+ div Jk=2KχkjRe

 ψ¯k



ψj−hψk, ψji kψkkL2

ψk



(42)

Densities correlations

Since dtdr1 = dtdr2 = 0, we assume r1 = r2= 1.

tρkj =Re

 

−i

2∆ ¯ψ1+ iV ¯ψk+ Kχkj( ¯ψj− hψj, ψki ¯ψk

 ψ2

+ ¯ψk i

2∆ψj− iV ψj+ Kχ − kj(ψk− hψ2, ψk2

 

= −1

2Imψ¯k∆ψj− ∆ ¯ψkψj + Kχkjk+ ρj − 2(rkjρkj− skjσkj)) , σkj := Im( ¯ψ1ψ2), skj := Im(hψj, ψki) =R σkjdx.

tρkj+ div Jkj = Kχ12k+ ρj− 2(rkjρkj− skjσkj)) ,

(43)

Sigma correlations

tσ12=Im

 

−i

2∆ ¯ψ1+ iV ¯ψ1+ Kχ12( ¯ψ2− hψ2, ψ1i ¯ψ1

 ψ2 + ¯ψ1 i

2∆ψ2− iV ψ2+ Kχ − 12(ψ1− hψ2, ψ12

 

= − 1

2Re ∆ ¯ψ1ψ2− ¯ψ1∆ψ2 + Kχ12Im(−2hψ2, ψ1i ¯ψ1ψ2).

tσ12+ div G12= −2Kχ12(r12σ12+ s12ρ12) .

(44)

Density correlations closure









tρ1+ div J1=2Kχ1212− r12ρ1)

tρ2+ div J2=2Kχ1212− r12ρ2)

tρ12+ div J12=Kχ121+ ρ2− 2(r12ρ12− s12σ12))

tσ12+ div G12= − 2Kχ12(r12σ12+ s12ρ12).

(4)

Then 



 d

dtr12=2Kχ12(1 + s212− r122 ) d

dts12= − 4Kχ12s12r12.

We have, as r12(0) 6= −1 r12(t) → 1, s12(t) → 0, and furthermore 1 − r12(t) . e−2Kχ12t. s12(t) . e−4Kχ12t (5)

(45)

Phase portrait

y

x´ = 2*(1+y²-x²) y´ = -4*x*y

-0,8 -0,6 -0,4 -0,2 0 0,2 0,4 0,6 0,8 1 1,2 1,4

(46)

Total Energy Bounds

E(t) = Z 1

2|∇ψ1|2+1

2|∇ψ2|2+ V (|ψ1|2+ |ψ2|2) dx.

d

dtE(t)= − 2Kχ12r12E(t) + 2Kχ12 Z

Re∇ ¯ψ1· ∇ψ2+ 2V ¯ψ1ψ2 dx

= − 2Kχ12r12E(t) − 2Kχ12 Z 1

2|∇(ψ1− ψ2)|2+ V |ψ1− ψ2|2dx+

2Kχ12E(t) ≤2Kχ12(1 − r12(t))E(t).

By Gronwall’s inequality we get that E(t) ≤ e2Kχ12

Rt

0(1−r12(s)) dsE(0)

(47)

First Variation Energy

Consider

E(t) =˜ Z 1

2|∇(ψ1− ψ2)|2+ V |ψ1− ψ2|2dx, then

d

dtE(t) = −2Kχ˜ 12(1 + r12) ˜E(t) − 4Kχ12s12

Z 1

2Im(∇ ¯ψ1· ∇ψ2) + V σ12dx.

E(t) ≤e˜ −2Kχ12tE(0) + 2Kχ˜ 12C Z t

0

e−2Kχ12(t−s)e−csds

≤e−2Kχ12tE(0) + 2Kχ˜ 12C0

e−2Kχ12t− e−ct

(48)

Synchronization

Since we know limt→∞r12= 1, limt→∞s12= 0 then

t→∞lim kψ1− ψ2kL2 = 0

By the previous inequality on the energy of the first variation

t→∞lim kψ1− ψ2kH1 = 0 To show the full hierarchy, let

ρd:= |ψ1− ψ2|2, Jd:= Im(( ¯ψ1− ¯ψ2)∇(ψ1− ψ2))

ρa:= 1

2|ψ1− iψ2|2, Ja:= 1

2Im( ¯ψa∇ψa)

1 1

(49)

Full Hierarchy

The whole set of hydrodynamic equations is now closed, and reads

(50)

Existence of the interacting dynamics

Theorem (Existence)

For any initial datum ρ..., J...., there exists a globally in time finite energy weak solution of the full Hierarchy system

Remark (NonUniqueness)

The same non uniqueness phenomena proved by Camillo De Lellis and L´aszl`o Sz´ekelyhidi for the Euler system was proved for QHD by Donatelli, Feireisl, M. (CPDE 2015)

(51)

Thank You !

Riferimenti

Documenti correlati

Conferimento della Laurea magistrale ad honorem in Scienze archivistiche e biblioteconomiche a Michele Casalini = Award of the Laurea magistrale ad honorem in Library and

We tested the association of 1,084 tagging SNPs with prostate cancer risk in a study of 815 prostate cancer cases and 1,266 controls nested within the European Prospective

1) Static Inductive Charging: The inductive coupler can be used as a high frequency transformer inside the DC-DC converter. It consists in two similar coils, a

Si svela così il potenziale distruttivo del regionalismo differenziato che, se realizzato secondo le indica- zioni ricavabili dai poco trasparenti processi in corso, sembra destinato

A vector modulator, modulate fundamental signal with second harmonic signals, makes the inverse third order intermodulation distortion (IMD3) signals of power amplifier and

Although the top PDMS coat (unfilled self-levelling polymer solution) smoothed out the roughness features due to the primer coat (corresponding to control fabric

Method: we used: (1) hierarchical cluster analysis to discriminate pinewood health conditions (good and bad); (2) non-metric multidimensional scaling (NMS) to