Quantum Hydrodynamics Analysis of Quantum Synchronization
over Quantum Networks
Pierangelo Marcati
(joint work withP. Antonelli, S.-Y. Ha, D. Kim) GranSasso Science Institute and
Universit`a degli Studi dell’Aquila - L’Aquila, Italy
Classical References
Winfree, A. T.: Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol. 16, 15-42 (1967).
T. Vicsek, A. Czir´ok, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett. 75 (1995) pp. 1226–1229.
Kuramoto, Y.: Chemical Oscillations, waves and turbulence.
Springer-Verlag, Berlin. 1984.
Kuramoto, Y.: Lecture notes in theoretical physics. 30, 420 (1975).
Strogatz S.,From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators, Physica D 143
Some applications
Computer science Parallel computing or GPUs Cryptography (including Quantum)
Digital Music ITC
Multimedia Neuroscience Physics
Synchro
Sinusoidally coupled nonlinear oscillators active rotors on the circle S1. Let xi= e
√−1θi be the position of the i-th rotor.
xi determined by phase θi. In the absence of coupling, dθi
dt = Ωi, i.e., θi(t) = θi(0) + Ωit, Ωi random variable (the natural phase-velocity (frequency))
Kuramoto derived a coupled phase model heuristically from the complex Ginzburg-Landau system.
dθi
dt = Ωi−K N
N
X
j=1
sin(θi− θj), t > 0, i = 1, · · · , N, (1) subject to initial data θi(0) = θi0.
We say that the system SYNCHRONIZE if
Kuramoto studied -the mean-field limit N → ∞ - of the system (1) Unimodal frequency distribution function g(Ω),
g(−Ω) = g(Ω), spt(g) bounded , R g(Ω)dΩ = 1.
(one-humped , symmetric w.r.t. mean Ωpc:= N1 PN i=1Ωi) e.g. g(Ω) = π[γ2+(Ω−Ωγ 0)2), having width γ > 0 and mean Ω0,
Continuous dynamical phase transition at a critical value of the coupling strength Kcr = πg(0)2 , in the mean-field limit.
Asymptotic order parameter r∞∈ [0, 1] ( phase synchronization in mean-field limit)
r∞(K) := lim
t→∞ lim
N →∞
1 N
N
X
i=1
e
√−1θi(t) ,
∞
Ha
Let θ = (θ1, · · · , θN) and the natural frequency set as follows.
Dθ(t) := max
1≤i,j≤N|θi(t) − θj(t)|, t ≥ 0, DΩ:= max
i,j |Ωi− Ωj|.
Theorem (Ha S.-Y., Ha T. Y. and Kim J.-H. 2010) Suppose
Ωi = Ωj, i 6= j, K > 0, D0 := Dθ(0) < π,
and let θ = θ(t) be the smooth solution to the system (1)-(??) with initial phase θ0. Then
e−KtD0 ≤ Dθ(t) ≤ e−KαtD0, t ≥ 0, (2) where α depends on the diameter of the initial phase configuration
We also recall the estimate of existence of a trapping region for non-identical oscillators from as follows.
Lemma (Choi Y.-P., Ha S.-Y., Jung, S. and Kim, Y- 2012) Let θ = θ(t) be the global smooth solution to (1)-(??) satisfying
0 < D0 < π, DΩ > 0, K > Ke:= DΩ sin D0
. Then we have
(i) sup
t≥0
Dθ(t) ≤ D0 < π.
(ii) ∃ t0> 0 such that sup
t≥t0
Dθ(t) ≤ D∞, where D∞is defined by
Quantum Lohe Model
Phase synchronization cannot occur in quantum systems with constant linearinteractions
We consider N quantum oscillators (”nodes” ) connected by a quantum network and Nonlinear interactions
Wavefunctions at each node distributed over quantum channels to all other connected nodes, by means of quantum teleportation
Local evolution given by free evolution plus a nonlinear interaction The Kuramoto system can be generalized tonon-Abelian model where variables are n × n complex matrices Ui in U (n) where Ui∗ denotes the Hermitian conjugate of Ui and Hi is a prescribed constant n × n Hermitian matrix, i = 1....N .
ik N
Lohe-Kuramoto
Whenk = 0 the decoupled system is given by the finite-dimensional analog of the Schr¨odinger equation i ˙Ui= HiUi with free dynamics Ui(t) = eiHitUi(0)
We generalize to complex n-vectors |ψii (with n = 2 for qubit models)
i~∂t|ψii = Hi|ψii + i~k 2N
N
X
0
aij(|ψji − |ψii hψj|ψii)
Let d|ψii = hψ|ψii
i|ψii, Hiint = i2N~k PN
0 aij( d|ψjidhψi| − d|ψii dhψj|), then i~∂t|ψdii = (Hi+ Hiint) d|ψii
Choi,Ha version of Lohe Model (Mathematicians notations)
˜
χjk = χjkkψkψjk
kk
i∂tψj = −1
2∆ψj + Vjψj+ iK 2N
N
X
j=1
˜ χjk
ψk−hψj, ψki kψjk2 ψj
Consider for the moment N = 2, we have
i∂tψ1= − 1
2∆ψ1+ V1ψ1+ iK 4χ˜12
ψ2−hψ1, ψ2i kψ1k2 ψ1
i∂tψ2= − 1
2∆ψ2+ V2ψ2+ iK 4χ˜12
ψ1−hψ2, ψ1i kψ2k2 ψ2
.
References on Quantum
S.-H. Choi, S.-Y. Ha, Quantum synchronization of the Schr¨odinger-Lohe model, J. Phys. A: Math. Theor. 47 (2014), 355104.
P. Antonelli and P. Marcati, On the finite energy weak solutions to a system in Quantum Fluid Dynamics, Comm. Math. Phys. 287 (2009), no 2, 657–686.
P. Antonelli and P. Marcati, The Quantum Hydrodynamics system in two space dimensions, Arch. Rat. Mech. Anal. 203 (2012), 499–527.
From NLS to QHD via WKB
i~∂tψ = −~2
2m∆ψ + V ψ + f0(|ψ|2)ψ
− ∆V = |ψ|2 Energy
E[ψ] = Z ~2
2 |∇ψ|2+ f (|ψ|2) + 1
2|∇V |2dx WKB ansatz: ψ =√
ρeiS/~, then (ρ, S) satisfy
∂tρ + div(ρ∇S) = 0
∂tS +1
2|∇S|2+ f0(ρ) + V = ~2 2
∆√
√ ρ ρ
WKB ansatz
∂tρ + div(ρ∇S) = 0
∂tS +1
2|∇S|2+ f0(ρ) + V = ~2 2
∆√
√ ρ ρ u = ∇S⇒ ∂tu + (u · ∇)u + ∇f0(ρ) + ∇V = ~2
2∇ ∆√
√ ρ ρ
J = ρu = ρ∇S ⇒ (ρ, J ) solves (QHD) & E[ψ] = E[ρ, J ]
~2|∇ψ|2 = ~2|∇√
ρ|2+ ρ|∇S|2 = ~2|∇√
ρ|2+ |J |2 ρ
Mathematical problems of WKB
vacuum: WKB ansatzψ = |ψ|eiS/~ valid only if ψ(t, x) 6= 0
; S not defined in {ψ = 0}
regularity issue: the nodal set {ψ = 0} may have dimH= 1(Federer, Ziemer)
irrotationality: ∇ ∧ u = 0, no vorticesare taken into account in the WKB description
CONCLUSION: The phases analysis is ill-posed one has to deal with the wave functions and the the first two moments (observables)
Madelung transformation
Moments associated to the wave function. ψ ρ := |ψ|2 mass density
J := ~( ¯ψ∇ψ) current density.
∂tρ + div J = 0,
∂tJ +~2div ρ(∇ ¯ψ ⊗ ∇ψ)
+ ∇P (ρ) + ρ∇V = ~2 4 ∇∆ρ
∂tJ +div J ⊗ J ρ
+ ∇P (ρ) + ρ∇V = ~2
2 ρ∇ ∆√
√ ρ ρ
Madelung transformation
Moments associated to the wave function. ψ ρ := |ψ|2 mass density
J := ~( ¯ψ∇ψ) current density.
∂tρ + div J = 0,
∂tJ +~2div ρ(∇ ¯ψ ⊗ ∇ψ)
+ ∇P (ρ) + ρ∇V = ~2 4 ∇∆ρ
∂tJ +div J ⊗ J ρ
+ ∇P (ρ) + ρ∇V =
Madelung transformation
Moments associated to the wave function. ψ ρ := |ψ|2 mass density
J := ~( ¯ψ∇ψ) current density.
∂tρ + div J = 0,
∂tJ +~2div ρ(∇ ¯ψ ⊗ ∇ψ)
+ ∇P (ρ) + ρ∇V = ~2 4 ∇∆ρ
∂tJ +div J ⊗ J ρ
+ ∇P (ρ) + ρ∇V =~2
4 ∇∆ρ−~2div(∇√
ρ ⊗ ∇√ ρ)
Madelung transformation
Moments associated to the wave function. ψ ρ := |ψ|2 mass density
J := ~( ¯ψ∇ψ) current density.
∂tρ + div J = 0,
∂tJ +~2div ρ(∇ ¯ψ ⊗ ∇ψ)
+ ∇P (ρ) + ρ∇V = ~2 4 ∇∆ρ
∂tJ +div J ⊗ J ρ
+ ∇P (ρ) + ρ∇V =~2
4 ∇∆ρ−~2div(∇√
ρ ⊗ ∇√ ρ)
Madelung transformation
Moments associated to the wave function. ψ ρ := |ψ|2 mass density
J := ~( ¯ψ∇ψ) current density.
∂tρ + div J = 0,
∂tJ +~2div ρ(∇ ¯ψ ⊗ ∇ψ)
+ ∇P (ρ) + ρ∇V = ~2 4 ∇∆ρ
∂tJ +div J ⊗ J ρ
+ ∇P (ρ) + ρ∇V =~2
4 ∇∆ρ−~2div(∇√
ρ ⊗ ∇√ ρ)
Madelung transformation
Moments associated to the wave function. ψ ρ := |ψ|2 mass density
J := ~( ¯ψ∇ψ) current density.
∂tρ + div J = 0,
∂tJ +~2div ρ(∇ ¯ψ ⊗ ∇ψ)
+ ∇P (ρ) + ρ∇V =~2 4 ∇∆ρ
∂tJ +div J ⊗ J ρ
+ ∇P (ρ) + ρ∇V = ~2
4∇∆ρ − ~2div(∇√
ρ ⊗ ∇√ ρ)
Madelung transformation
Moments associated to the wave function. ψ ρ := |ψ|2 mass density
J := ~( ¯ψ∇ψ) current density.
∂tρ + div J = 0,
∂tJ +~2div ρ(∇ ¯ψ ⊗ ∇ψ)
+ ∇P (ρ) + ρ∇V = ~2 4 ∇∆ρ
∂tJ +div J ⊗ J ρ
+ ∇P (ρ) + ρ∇V =~2
4 ∇∆ρ−~2div(∇√
ρ ⊗ ∇√ ρ)
Madelung transformation
Moments associated to the wave function. ψ ρ := |ψ|2 mass density
J := ~( ¯ψ∇ψ) current density.
∂tρ + div J = 0,
∂tJ +~2div ρ(∇ ¯ψ ⊗ ∇ψ)
+ ∇P (ρ) + ρ∇V = ~2 4 ∇∆ρ
∂tJ +div J ⊗ J ρ
+ ∇P (ρ) + ρ∇V =~2
4 ∇∆ρ−~2div(∇√
ρ ⊗ ∇√ ρ) Formally,
Madelung transformation
Moments associated to the wave function. ψ ρ := |ψ|2 mass density
J := ~( ¯ψ∇ψ) current density.
∂tρ + div J = 0,
∂tJ +~2div ρ(∇ ¯ψ ⊗ ∇ψ)
+ ∇P (ρ) + ρ∇V = ~2 4 ∇∆ρ
∂tJ +div J ⊗ J ρ
+ ∇P (ρ) + ρ∇V =~2
4 ∇∆ρ−~2div(∇√
ρ ⊗ ∇√ ρ) Formally,
Madelung transformation
Moments associated to the wave function. ψ ρ := |ψ|2 mass density
J := ~( ¯ψ∇ψ) current density.
∂tρ + div J = 0,
∂tJ +~2div ρ(∇ ¯ψ ⊗ ∇ψ)
+ ∇P (ρ) + ρ∇V = ~2 4 ∇∆ρ
∂tJ +div J ⊗ J ρ
+ ∇P (ρ) + ρ∇V =~2
4 ∇∆ρ−~2div(∇√
ρ ⊗ ∇√ ρ) Formally,
~2ρ(∇ ¯ψ ⊗ ∇ψ) = ~2ρ (ψ∇ ¯ψ) ⊗ ( ¯ψ∇ψ)
|ψ|2
Madelung transformation
Moments associated to the wave function. ψ ρ := |ψ|2 mass density
J := ~( ¯ψ∇ψ) current density.
∂tρ + div J = 0,
∂tJ +~2div ρ(∇ ¯ψ ⊗ ∇ψ)
+ ∇P (ρ) + ρ∇V = ~2 4 ∇∆ρ
∂tJ +div J ⊗ J ρ
+ ∇P (ρ) + ρ∇V =~2
4 ∇∆ρ−~2div(∇√
ρ ⊗ ∇√ ρ) Formally,
2 1h
2
Madelung transformation
Moments associated to the wave function. ψ ρ := |ψ|2 mass density
J := ~( ¯ψ∇ψ) current density.
∂tρ + div J = 0,
∂tJ +~2div ρ(∇ ¯ψ ⊗ ∇ψ)
+ ∇P (ρ) + ρ∇V = ~2 4 ∇∆ρ
∂tJ +div J ⊗ J ρ
+ ∇P (ρ) + ρ∇V =~2
4 ∇∆ρ−~2div(∇√
ρ ⊗ ∇√ ρ) Formally,
~2ρ(∇ ¯ψ ⊗ ∇ψ) = 1 ρ h
~2ρ( ¯ψ∇ψ) ⊗ ρ( ¯ψ∇ψ)
Madelung transformation
Moments associated to the wave function. ψ ρ := |ψ|2 mass density
J := ~( ¯ψ∇ψ) current density.
∂tρ + div J = 0,
∂tJ +~2div ρ(∇ ¯ψ ⊗ ∇ψ)
+ ∇P (ρ) + ρ∇V = ~2 4 ∇∆ρ
∂tJ +div J ⊗ J ρ
+ ∇P (ρ) + ρ∇V =~2
4 ∇∆ρ−~2div(∇√
ρ ⊗ ∇√ ρ) Formally,
Madelung transformation
Moments associated to the wave function. ψ ρ := |ψ|2 mass density
J := ~( ¯ψ∇ψ) current density.
∂tρ + div J = 0,
∂tJ +~2div ρ(∇ ¯ψ ⊗ ∇ψ)
+ ∇P (ρ) + ρ∇V = ~2 4 ∇∆ρ
∂tJ +div J ⊗ J ρ
+ ∇P (ρ) + ρ∇V = Formally,
~2ρ(∇ ¯ψ ⊗ ∇ψ)=~2∇√
ρ ⊗ ∇√
ρ + J ⊗ J ρ .
Madelung transformation
Moments associated to the wave function. ψ ρ := |ψ|2 mass density
J := ~( ¯ψ∇ψ) current density.
∂tρ + div J = 0,
∂tJ +~2div ρ(∇ ¯ψ ⊗ ∇ψ)
+ ∇P (ρ) + ρ∇V = ~2 4 ∇∆ρ
∂tJ +div J ⊗ J ρ
+ ∇P (ρ) + ρ∇V = Formally,
√ √ J ⊗ J
Polar Factorization
Let ψ ∈ H1(R3), define
P (ψ) =φ ∈ L∞s.t. kφkL∞ ≤ 1, ψ = φ|ψ| a.e. R3 .
φ ∈ P (ψ), implies |φ| = 1, √
ρ dx-a.e. in R3, φ is uniquely defined √
ρ dx−a.e. in R3.
(Lieb, Loss, Thm. 6.19), ψ ∈ Wloc1,1, ∇ψ = 0 a.e. in {ψ = 0}.
We call (any) φ ∈ P (ψ) polar factorassociated to ψ.
Stability lemma
Lemma
Let φ ∈ L∞(R3), ψ = |ψ|φ a.e. and kφkL∞(R3) ≤ 1 then
∇√
ρ = Re( ¯φ∇ψ) a.e., Λ := ~Im( ¯φ∇ψ) a.e.
~2ρ(∇ ¯ψ ⊗ ∇ψ) = ~2∇√
ρ ⊗ ∇√
ρ + Λ ⊗ Λ a.e.
H1−stability: {ψn} ⊂ H1(R3), ψn→ ψ in H1,
∇√
ρn→ ∇√
ρ, Λn→ Λ in L2(R3).
Remark
However φn* φ weak ∗ in L∞.
Finite energy weak solutions
The pair (ρ, J ) is afinite energy weak solution to the QHD system in [0, T ) × R3, if there exist locally integrable functions √
ρ, Λ, s.t.
√ρ ∈ L2loc([0, T ); Hloc1 (R3)),Λ ∈ L2loc([0, T ); L2loc(R3));
∀ η, ζ ∈ C0∞([0, T ) × R3), ρ := (√
ρ)2, J :=√
ρΛ satisfy Z
ρ∂tη + J · ∇η dxdt + Z
ρ0η(0) dx = 0, Z
J · ∂tζ + Λ ⊗ Λ : ∇ζ + P (ρ) div ζ − ρ∇V · ζ −~2
4 ρ∆ div ζ + ~2∇√
ρ ⊗ ∇√
ρ : ∇ζ dxdt + Z
J0· ζ(0) dx = 0;
generalized irrotationality condition,∇ ∧ J = 2∇√
ρ ∧ Λ. In the
√
Finite Energy Weak Solutions - II
Proposition
Let f (ρ) ∼ ργ, with 1 ≤ γ < 3. Given ψ0 ∈ H1(R3), let
ρ0:= |ψ0|2, J0:= Im( ¯ψ0∇ψ0) .Then there exists a global finite energy weak solution to the QHD system with initial data (ρ0, J0). Furthermore, the energy is conserved.
Proof.
Consider ψ ∈ C([0, ∞); H1(R3)) solution to the Cauchy problem for NLS equation with ψ(0) = ψ0, define √
ρ := |ψ|, Λ := Im( ¯φ∇ψ), then use the polar factorization Lemma.
Remarks
The only constraint on the initial data is that they are associated to a prescribed wave function in H1(R3);
no regularity assumptions;
no smallness;
no boundedness away from zero.
QHD with Interactions
∂tρ + div J = 0
∂tJ + div J ⊗ J ρ
+ ∇P (ρ) + ρ∇V +K= ~2
2 ρ∇ ∆√
√ ρ ρ
− ∆V = ρ
K in the case semiconductor device (Bløtekjær, Baccarani, Wordeman) takes the form K = 1τJ
Energy:
E[ρ, J ] = Z
R3
{~2 2 |∇√
ρ|2+1 2
K · J
ρ + f (ρ) +1
2|∇V |2 }dx, dissipates along the flow of solutions
Mathematical Tools, Dispersion and Local Smoothing
Strichartz estimates (Strichartz, Ginibre-Velo, Keel-Tao)
(q, r) are admissible if 2 ≤ q ≤ ∞, 2 ≤ r ≤ 6 and 1q = 32 12 −1r ke2it∆f kLq
tLrx . kf kL2
k Z t
0
e2i(t−s)∆F (s) dskLq
tLrx . kF kLq0˜
t L˜r0x
Local smoothing estimates (Constantin-Saut, Sj¨olin, Vega) ke2it∆f k
L2([0,T ];Hloc1/2(R3)). kf kL2
k Z t
0
e2i(t−s)∆F (s) dskL2([0,T ];H1/2
loc(R3)). kF kL1tL2x
Theorem (Existence)
Let ψ0∈ H1(R3) and let ρ0 := |ψ0|2, J0:= ~Im( ¯ψ0∇ψ0). Then for any 0 < T < ∞ there exists a finite energy weak solution (ρ, J ) to the QHD system with collisions in [0, T ] × R3 with initial data (ρ0, J0). The solution satisfies
√ρ ∈ L∞(R+: H1(R3)), Λ ∈ L∞(R+; L2(R3)) ∩ L2(R+; L2(R3))
and √
ρ ∈ Lq([0, T ]; W1,r(R3)), Λ ∈ Lq([0, T ]; Lr(R3)),
for any 0 < T < ∞, where (q, r) is any arbitrary (Strichartz) admissible pair for Schr¨odinger in R3.
Fractional step (operator splitting)
solve the QHD without collisions (NLS) update with collisions / interactions
∂tJ + K = 0 ⇒ Jnew = F unction(τ, Jold) ⇒difficult part
√
Potentials Decomposition
Theorem (Ortner, S¨uli )
(decomposition of function in ˙W1,6) Let ˜V ∈ LqtW˙x1,6,2 ≤ q ≤ +∞ then
V = V˜ ∞(Cx∞unbounded) + Vp(∈ LqtWx1,6) in particular
(i) V∞(t, ·) ∈ Cx∞, ; (ii) kVpkLq
tWx1,6 ≤ Ck∇ ˜V kLq
tL6x; (iii) k∇VqkLq
tL6x+ k∇VqkL∞
t,x ≤ Ck∇ ˜V kLq
tL6x;
Time dependent potentials (Antonelli, D’Amico and M.)
i∂tψ = −1
2∆ψ + V∞ψ + Vpψ + |ψ|2(γ−1)ψ ψ(0) = ψ0.
One has Global Well Posedness in Σ(R3) by extending to Lqt D. Fujiwara, A construction of the fundamental equation for the Schr¨odinger equation, Journ. Anal. Math. 35 (1979), 41-96 where
Σ(R3) = {ψ ∈ H1(R3) : | · |ψ ∈ L2(R3)}.
The parametrix given by the oscillatory integral (E(t, s)φ)(x) :=
−i
2}π(t − s)
d2 Z
Rd
eiS(t,s,x,y) } φ(y)dy
back to Schr¨ odinger - Lohe model
i∂tψ1= − 1
2∆ψ1+ V ψ1+ iKχ12
ψ2−hψ1, ψ2i kψ1k2L2 ψ1
i∂tψ2= − 1
2∆ψ2+ V ψ2+ iKχ12
ψ1−hψ2, ψ1i kψ2k2L2
ψ2
,
(3)
Let ρk := |ψk|2, Jk= Im( ¯ψk∇ψk), rk:=R ρkdx = kψkk2L2
ρkj = Re( ¯ψkψj)(k 6= j), rkj = Re(hψk, ψji) =R ρkjdx Equation for the mass densities
∂tρk+ div Jk=2KχkjRe
ψ¯k
ψj−hψk, ψji kψkkL2
ψk
Densities correlations
Since dtdr1 = dtdr2 = 0, we assume r1 = r2= 1.
∂tρkj =Re
−i
2∆ ¯ψ1+ iV ¯ψk+ Kχkj( ¯ψj− hψj, ψki ¯ψk
ψ2
+ ¯ψk i
2∆ψj− iV ψj+ Kχ − kj(ψk− hψ2, ψkiψ2
= −1
2Imψ¯k∆ψj− ∆ ¯ψkψj + Kχkj(ρk+ ρj − 2(rkjρkj− skjσkj)) , σkj := Im( ¯ψ1ψ2), skj := Im(hψj, ψki) =R σkjdx.
∂tρkj+ div Jkj = Kχ12(ρk+ ρj− 2(rkjρkj− skjσkj)) ,
Sigma correlations
∂tσ12=Im
−i
2∆ ¯ψ1+ iV ¯ψ1+ Kχ12( ¯ψ2− hψ2, ψ1i ¯ψ1
ψ2 + ¯ψ1 i
2∆ψ2− iV ψ2+ Kχ − 12(ψ1− hψ2, ψ1iψ2
= − 1
2Re ∆ ¯ψ1ψ2− ¯ψ1∆ψ2 + Kχ12Im(−2hψ2, ψ1i ¯ψ1ψ2).
∂tσ12+ div G12= −2Kχ12(r12σ12+ s12ρ12) .
Density correlations closure
∂tρ1+ div J1=2Kχ12(ρ12− r12ρ1)
∂tρ2+ div J2=2Kχ12(ρ12− r12ρ2)
∂tρ12+ div J12=Kχ12(ρ1+ ρ2− 2(r12ρ12− s12σ12))
∂tσ12+ div G12= − 2Kχ12(r12σ12+ s12ρ12).
(4)
Then
d
dtr12=2Kχ12(1 + s212− r122 ) d
dts12= − 4Kχ12s12r12.
We have, as r12(0) 6= −1 r12(t) → 1, s12(t) → 0, and furthermore 1 − r12(t) . e−2Kχ12t. s12(t) . e−4Kχ12t (5)
Phase portrait
y
x´ = 2*(1+y²-x²) y´ = -4*x*y
-0,8 -0,6 -0,4 -0,2 0 0,2 0,4 0,6 0,8 1 1,2 1,4
Total Energy Bounds
E(t) = Z 1
2|∇ψ1|2+1
2|∇ψ2|2+ V (|ψ1|2+ |ψ2|2) dx.
d
dtE(t)= − 2Kχ12r12E(t) + 2Kχ12 Z
Re∇ ¯ψ1· ∇ψ2+ 2V ¯ψ1ψ2 dx
= − 2Kχ12r12E(t) − 2Kχ12 Z 1
2|∇(ψ1− ψ2)|2+ V |ψ1− ψ2|2dx+
2Kχ12E(t) ≤2Kχ12(1 − r12(t))E(t).
By Gronwall’s inequality we get that E(t) ≤ e2Kχ12
Rt
0(1−r12(s)) dsE(0)
First Variation Energy
Consider
E(t) =˜ Z 1
2|∇(ψ1− ψ2)|2+ V |ψ1− ψ2|2dx, then
d
dtE(t) = −2Kχ˜ 12(1 + r12) ˜E(t) − 4Kχ12s12
Z 1
2Im(∇ ¯ψ1· ∇ψ2) + V σ12dx.
E(t) ≤e˜ −2Kχ12tE(0) + 2Kχ˜ 12C Z t
0
e−2Kχ12(t−s)e−csds
≤e−2Kχ12tE(0) + 2Kχ˜ 12C0
e−2Kχ12t− e−ct
Synchronization
Since we know limt→∞r12= 1, limt→∞s12= 0 then
t→∞lim kψ1− ψ2kL2 = 0
By the previous inequality on the energy of the first variation
t→∞lim kψ1− ψ2kH1 = 0 To show the full hierarchy, let
ρd:= |ψ1− ψ2|2, Jd:= Im(( ¯ψ1− ¯ψ2)∇(ψ1− ψ2))
ρa:= 1
2|ψ1− iψ2|2, Ja:= 1
2Im( ¯ψa∇ψa)
1 1
Full Hierarchy
The whole set of hydrodynamic equations is now closed, and reads
Existence of the interacting dynamics
Theorem (Existence)
For any initial datum ρ..., J...., there exists a globally in time finite energy weak solution of the full Hierarchy system
Remark (NonUniqueness)
The same non uniqueness phenomena proved by Camillo De Lellis and L´aszl`o Sz´ekelyhidi for the Euler system was proved for QHD by Donatelli, Feireisl, M. (CPDE 2015)