• Non ci sono risultati.

theranostics in cancer Ferritin nanocages: A biological platform for drug delivery, imagingand Pharmacological Research

N/A
N/A
Protected

Academic year: 2021

Condividi "theranostics in cancer Ferritin nanocages: A biological platform for drug delivery, imagingand Pharmacological Research"

Copied!
9
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Pharmacological

Research

jo u r n al ho me p a g e :ww w . e l s e v i e r . c o m / l o c a t e / y p h r s

Review

Ferritin

nanocages:

A

biological

platform

for

drug

delivery,

imaging

and

theranostics

in

cancer

Marta

Truffi

a

,

Luisa

Fiandra

a

,

Luca

Sorrentino

a,b

,

Matteo

Monieri

a

,

Fabio

Corsi

a,b

,

Serena

Mazzucchelli

a,∗

aLaboratoryofNanomedicine,DepartmentofBiomedicalandClinicalSciencesUniversityofMilan,“LuigiSacco”Hospital,ViaG.B.Grassi,74,20157 Milano,Italy

bSurgeryDivision,DepartmentofBiomedicalandClinicalSciencesUniversityofMilan,“LuigiSacco”Hospital,ViaG.B.Grassi,74,20157Milano,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received13January2016

Receivedinrevisedform24February2016 Accepted2March2016

Availableonline9March2016 Keywords: Protein-basednanocages Ferritin Drugdelivery Imaging Cancer

a

b

s

t

r

a

c

t

Nowadayscancerrepresentsaprominentchallengeinclinics.Mainachievementsincancermanagement wouldbethedevelopmentofhighlyaccurateandspecificdiagnostictoolsforearlydetectionofcancer onset,andthegenerationofsmartdrugdeliverysystemsfortargetedchemotherapyreleaseincancer cells.Inthiscontext,protein-basednanocagesholdatremendouspotentialasdevicesfortheranostics purposes.Inparticular,ferritinhasemergedasanexcellentandpromisingprotein-basednanocagethanks toitsuniquearchitecture,surfacepropertiesandhighbiocompatibility.Byexploitingnaturalrecognition oftheTransferrinReceptor1,whichisoverexpressedontumorcells,ferritinnanocagesmayensurea properdrugdeliveryandrelease.Moreover,researchershaveappliedsurfacefunctionalitiesonferritin cagesforfurtherprovidingactivetumortargeting.Encapsulationstrategiesofnonmetal-containing drugswithinferritincageshavebeenexploredandsuccessfullyperformedwithencouragingresults. Variouspreclinicalstudieshavedemonstratedthatnanoformulationwithinferritinnanocages signifi-cantlyimprovedtargetedtherapyandaccurateimagingofcancercells.Aimsofthisreviewaretodescribe structureandfunctionsofferritinnanocages,andtoprovideanoverviewaboutthenanotechnological approachesimplementedforapplyingthemtocancerdiagnosisandtreatment.

©2016ElsevierLtd.Allrightsreserved.

1. Introduction

Cancerisaleadingcauseofdeathworldwide,accountingfor8.2

milliondeathsin2012[1].Amaingoalofcurrentcancerresearchis

earlyrecognitionofcancercellsandselectivetreatment,beforethe

cancercanprogresstoanunfavourablestage.Basedonthis

ratio-nale,theaimofseveralmoderntherapeuticapproachesforcancer

istoselectivelyremovethetumorbeforeitevolvesintoits

supe-riorstages,andtheeventualonsetofmetastases.Forthisscenario

tobesuccessfulthereisagrowingneedtodevelop:(1)noveland

moresensitivediagnostictoolstoimprovescreeningaccuracyand

thedetectionrateofmalignancies,stagingandfollowupsettings,

andtoachievelessextensivesurgeryormedicaltherapy;(2)new

drugformulationswithenhancedefficacytowardcancercellsand

reducedtoxicitytowardhealthycells[2].

Nanotechnologyholdsgreatclinicalpotentialinreachingthese

majorgoalsandanumberofnanodeviceshavebeendesignedto

∗ Correspondingauthor.

E-mailaddress:[email protected](S.Mazzucchelli).

specificallytargetcancercells.Thesenanodevicescanbeloaded

withdifferentkindsofchemotherapeuticsand/orcontrastagents,

and provide unmatched promise for development of

theranos-tic devices for both cancer diagnosis and treatment. Indeed,

nanoparticleshavedemonstrated theirpotentialtosolvecrucial

issuesinvolvingbioavailability,tissuepenetrationandcirculation

time [3]. Several nanoparticles constructed frommetals,

semi-conductorsor polymers,have beentested inpreclinical studies

[4],butonlyafewofthemhavebeenclinicallyapproveddueto

theirtoxicity,immunogenicityandsequestrationbythe

reticulo-endothelialsystem[5].Therefore,muchefforthasbeendirected

intothedesignandsynthesisofchemicallyengineered

nanostruc-turesthatarebiologicallycompatible.

Naturallyoccurringnanoparticleshaveexistedformillionsof

years,andtheyincludeawidevarietyofnanostructures,whichmay

beformedbyinorganic(i.e.magnetosomes)ororganicmaterials.

Thesenanoparticlescanbeintracellularorextracellularandmay

havedifferentbiologicalroles[6].Despitethesedifferences,

natu-ralnanoparticlesarecharmingfromthebiomedicalpointofview

duetotheiruniformstructure,lowtoxicity,andabilitytoevadethe

immunesystem.Moreover,theyareeasilydegradedafterfulfilling

http://dx.doi.org/10.1016/j.phrs.2016.03.002

(2)

58 M.Truffietal./PharmacologicalResearch107(2016)57–65

theirfunction[6,7].Thesefeaturesplacethemaheadofinorganic

orsyntheticmaterialsinclinicaltranslation[7].Biological

nanopar-ticlesare assembled frommolecules oratoms synthesized in a

biologicalsystemwithsizesrangingfrom1to100nm.Theyinclude

magnetosomes,lipoproteins,viruses,exosomesandferritins[6].

Magnetosomes are specialized organelles with narrow size

(50–70nm indiameter), uniformmorphologyand low toxicity;

theyhaveevolvedfrommagnetotacticbacteriaandarecomposed

ofalipidbilayersurroundingmagneticiron-containingminerals

[8–10]. Lipoproteinsare self-assemblingstructuresthat contain

phospholipids,non-esterifiedcholesterolandspecializedproteins,

formingasphericalordiscoidalshell(from7to>80nm),which

surroundsacoreofnon-polarlipids,triacylglycerolsand

esteri-fiedcholesterols[11,12].Exosomesarenanometer-sizedstructures

secretedbycells andconsist ofanexternal lipidbilayer, which

offersanon-immunogenicandnon-toxicmechanismforthe

deliv-ery oftargeted proteinsor nucleicacids, protectingthem from

degradation and macrophage endocytosis [13–16]. Viruses and

virus-likeparticlesmayalsobeconsideredtobebiological

nanopar-ticles.Theyincludeawidevarietyofsizesandmorphologieswith

definedgeometries,uniformshapeandarobustproteinshell.They

aresuitableforchemical-andbio-conjugation.Althoughtheir

cap-sidsarestableoverawiderangeofpHandtemperatures,theyare

difficulttoproduceinbulk,andthisrepresentsaseverelimitation

fortheiruseinnanotechnology[17].

Amongallclassesofbiologicalnanoparticlesherewefocuson

ferritins,whichareironstorageandtransportproteinsfoundin

mostlivingorganisms[18].Recombinantferritinprovidesa

cen-tralcavity,whichcanbeefficientlyloadedwithtransitionmetals,

drugs,fluorescentmoleculesorcontrastagents[19,20].Sinceithas

auniformcage,ferritinallowstheprecisecontroloftheamount

ofencapsulatedmolecules,whichisacriticalfeatureindefining

drugdosage.Moreover,theproteinshellofferritinscanbe

eas-ilymodifiedeitherchemicallyorgeneticallytointroducedifferent

functionalities[21,22].Alloftheseattributeshighlightferritinand

itsderivativesaspowerfulsystemswithpotentialapplicationin

nanomedicine.Indeed,theyhavebeeninvestigatedasanoveltype

ofnano-platformforimaginganddrugdeliveryincancer[19,23].

Theaimofthisreviewistodescriberecentfindingsaboutferritin

nanocages’structureandfunction,andtheirbiotechnologicaland

biomedicalapplicationsforMRI,opticalimaginganddrugdelivery

incancer.Anoverviewofstrategiesusedforferritinsurface

mod-ificationtoobtainformulationssuitablefordifferentclinicaluses

willbealsoprovided.

2. Ferritinnanocages:structureandphysiologicalrole

Ferritinisprobablythemoststudiedproteinafterhemoglobin.

Ithasbeeninvestigatedsince1937,whenLaufbergerdescribedits

purificationwithCadmiumsalts[24],andoverthelastdecadeithas

attractedtheinterestofmanynanotechnologistsduetoits

prop-erties[25].Itisaubiquitousproteinfoundineubacteria,archaea,

plantsandanimals,butnotinyeast[25].Ferritinexistsin

extracel-lularandintracellularcompartments,suchasthecytosol,nucleus

andmitochondriaanditsmainrolesareironstorageand

homeosta-sis[26].Therefore,itisoneofthemosthighlyconservedmolecules.

Ferritinisalargeproteinof450kDacomposedof24subunits

thatself-assembleintoasphericalcage-likestructurewithinner

and outerdimensions of 8 and 12nm, respectively.Eukaryotes

havetwoferritingenesencodingtheheavy(H;21kDa)andthe

light(L; 19kDa)chains.The H-chainisresponsible forthe

oxi-dationof Fe(II)to Fe(III)and includes theferroxidase catalytic

site,whiletheL-chainplaysaroleinironnucleation[27].Hand

L chainsco-assemble intoa 24-merheteropolymer, where the

H-chaintoL-chainratiovariesaccordingtoatissuespecific

dis-tribution[25].Ferritinprotectscellsfromthedamagecausedby

theFentonreactionduringoxidativestress,bysequesteringFe2+,

asourceoftoxicreactiveoxygenspecies,andconvertingitinto

harmlessFe3+,whichisstoredasferrihydritecrystals.Theferritin

proteincagecanaccommodateupto4500ironatoms[25].This

protectiveactioniscrucialinthenucleus,wheretheDNAhastobe

particularlypreservedfromiron-inducedoxidativedamage[28].

FerritintranslocatesintothenucleusthroughanATP-dependent

mechanism[28,29],andO-glycosylationoftheH-chainseemsto

beinvolvedin itsnucleartranslocation, buta Nuclear

Localiza-tionSequence(NLS)isnotrequired[29].However,itwasnotclear

whethertheintegrityofferritinwasmaintainedduring

translo-cation.Recently,theKnezgrouphasshedlight onthisissueby

demonstratingthatferritinnanoparticlesareintactduring

translo-cation[30].

Theferritinquaternarystructurehaseighthydrophilicchannels

thatseemtomediateirontransitinandoutoftheproteincage.

Therearealsosixhydrophobicchannels,whichdonotseemtobe

involvedinironexchangealthoughtheycouldmediatethe

tran-sitofprotons[31].Inspiteofthestructuralrigidityofferritinsin

thephysiologicalenvironment,theproteincagescanbereversibly

disassembledwhenthepHbecomesextremelyacidic(pH2–3)or

basic(pH10–12)[27,32].WhenthepHreturnstoneutralityferritin

monomersareabletoself-assembleinashapememoryfashion.

Moreover,theferritin cageisresistanttodenaturants,including

heatingtohightemperatures(>80◦C)[25].

Ferritin features have been extensively studied and

imple-mentedbyresearchers,thusallowingtheuseofferritinnanocages

asbiologicalnanoparticlesfornanomedicalapplications.

3. Surfacemodificationofferritinnanoparticlesand cellularinteractions

Extracellularferritininteractswithcellsthroughthereceptor

oftransferrin1(TfR1),whichwasidentifiedin2010bySeaman’s

group [33]. They demonstrated that TfR1 specifically binds

H-ferritin,whileL-ferritinshowslow interaction.Afterbindingon

thecellsurface,theH-ferritin-TfR1complexisinternalized,and

canbefoundinearlyandrecyclingendosomes[33,27],

demon-stratingthatTfR1coordinatestheprocessingandtheuseofironby

bindingbothTransferrinandH-ferritin[34].H-ferritinisalsoable

tointeractwiththeT-cellImmunoglobulinandMucindomain-2

(TIM-2)[35,36],whichisoverexpressedinoligodendrocytesand

B-cells [37,38], and is internalized in endosomes upon binding

[39].Otherwise,L-ferritinbindstotheScavengerReceptorClassA,

Member5(SCARA-5)[40],whichisfoundinmacrophagesandthe

retina.BothHandLferritinnanoparticleshavebeenproducedvia

DNA-recombinanttechnology.H-ferritin,whichnaturallyinteracts

withtheTfR1,arethemostextensivelystudied[33].By

exploit-ing theTfR1 overexpression in many typesof tumor cells, Fan

andcoworkershavedevelopedaferritin-basedsystemfor

specif-icallyvisualizingtumorsamongnormalcellsandhealthytissues

[41].Thatstudydemonstratedthattheintrinsictargetingof

fer-ritintowardscancercellscouldbeusedtodesignnaturallytargeted

nanoparticlesfortheranosticpurposes.

Despitethenaturaltargetingofferritin towardscancercells,

several research groups have modified the surface of ferritin

nanocages by inserting a number of target motifs, such as

antibodies, peptides and antibody fragments, in order to drive

nanoparticlestowardsspecificcellsbyselectiverecognition(Fig.1).

Both lysines and cysteines on the ferritin surface have been

exploitedforchemicalconjugationusingdifferent

heterobifunc-tionalcross-linkerswithN-hydroxysuccinimide(NHS) esterand

maleimidegroups[42–44].LysandCysresidueshavealsobeen

(3)

Fig.1.Schematicrepresentationofstrategiesadoptedtoprovidesurfacefunctionalizationofferritinwithtargetingpeptides,antibodies,siRNAandfluorescentdyes.

polyethylene glycol (PEG) molecules [22,45]. Most conjugation

strategies havebeendesigned and realizedbygenetically

engi-neeringferritin monomers.Targetingmoieties,suchastheRGD

peptide[46,47],theanti-melanocytestimulatinghormonepeptide

[48,45]ortheextracellulardomainofmyelinoligodendrocyte

gly-coprotein(MOG) [49]havebeenexpressedasN-terminalfusion

proteins,allowing24targetingdomainstobeexposedonthe

fer-ritincagesurface,withuniformandpreciseorientation.Inthelast

year,thesurfaceconjugationofferritinnanoparticleswitha

com-positeoffourdifferentpeptideswasreported.Thatwasundertaken

byN-terminalcloningfourpeptidesontotheferritinsequence:an

enzymaticallycleavedpeptide(ECP)toreleasesiRNA,acationic

peptide(CAP)tocapturesiRNA,acellpenetratingpeptide(CPP)

anda tumorcelltargeting(CTP)moiety [50].N-terminal fusion

proteinshavealsobeenproducedtodisplayviralhemagglutinin

ontheferritinsurface,withtheresultingneutralizationofH1N1

viruses[51].Alternatively,theproductionofferritinnanoparticles

withpeptidesfusedattheC-terminalhasbeenreportedforthe

developmentofdendriticcell-basedvaccines[52].Beyondthese

strategies,otherapproachesfortheconjugationoftargeting

moi-etiesonferritinsurfacehavealsobeenexplored,includingferritin

nanocagebiotinylationinordertoinserttargetingfunctionalities

[53],orthegeneticengineeringofferritinforgeneratingafusion

protein,whichexploitsN-terminalproteinGforantibody

immo-bilization[54].

4. Nanotechnologicalapplicationsofferritin

Ferritinhasattracted much interestdue to itspotential use

asreaction chamber for theproduction of metal nanoparticles,

or as a template for semi-conductor production [55]. Ferritin

nanocagesallowchemical synthesis tooccurin restricted

cavi-tieswithhomogenousshapeandatomiccomposition[56].Ferritin

nanocageshavebeenextensivelyexploitedforthe

biomineraliza-tionofmetaloxides,suchasiron[57],manganese[58],cobalt[59],

chromiumandnickeloxides[60].Amongthedifferentprotocols,

thesimplestandmostsuitablemethodofmass-productionisthe

one-potsynthesisstrategydevelopedbytheYamashitaetal.[56],

whichdevelopedmetal-loadedferritinnanocageswithpotential

fornanoelectronicalapplication[56].

Nanoparticlesobtainedfrommineralizationofsemiconductors

areveryattractivefromthenanotechnologicalpointofview,since

theirfluorescencepropertiesarecloselyrelatedtonanoparticlesize

andshape[56].Inthiscontext,ferritinnanocagecavitieshavebeen

usedforthesynthesisofsemi-conductornanoparticles.However,

themaindrawbackofthisprocessisthationaggregationisinduced

byhighconcentrationsofCd2+orZn2+andSe2−duringthechemical

reaction[56,61],andbecauseofthisonlyafewresearchgroupsare

engagedinitsdevelopment[56,61].ThesynthesisofCdSeandZnSe

usingferritinsasareactionchamberhasbeensuccessfullyobtained

byYamashitaet al.[62,63]whohave designeda newchemical

approachcalledtheSlowChemicalReactionSystem.Thismethod

avoidsionaggregationsinceCd2+orZn2+areattractedinsidethe

apoferritinchamberbyinnernegativeresidues,thuspreventingthe

aggregationprocess;therefore,mineralizationinsideanapoferritin

cavityslowsdownthenucleationofCdSeorZnSe[62–65].

5. Potentialofferritinnanoparticlesincancer

Whileferritinnanoparticleshavebeenwidelyinvestigatedin

thecontext ofnanotechnology,theirmain applicationconcerns

thefieldofnanomedicine.Indeed,apartfromtheirapplicationin

thedevelopmentofvaccines[51,52],severalresearchgroupsare

engagedinthestudyofferritinasimaginganddrugdelivery

sys-temsforthediagnosisandtreatmentoftumors,assummarizedin

(4)

60 M.Truffietal./PharmacologicalResearch107(2016)57–65 Table1

Mainapplicationprospectsofferritinnanocagesincancerdiagnosisandtreatment.

Loadedwith... Functionalizedwith... Application Ref.number

Cisplatin – Chemotherapy [68–70]

Cisplatin antibodyagainstthemelanomaantigenCSPG4 Chemotherapy [42]

Doxorubicin RGDpeptide Chemotherapy [47]

Doxorubicin – Chemotherapy [27,72,73,75,30]

Curcumin – Therapy [74]

235U RadionuclideTherapy [75]

– anti-redfluorescentprotein(RFP)siRNA RNAinterferenceTherapy [50]

Magnetitecrystal MRImaging [78,79,80]

Gadolinium MRImaging [81,83] Mn(II) MRImaging [82] Gadolinium C3d MRImaging [53] – EGF AlexaFluor750 FluorescenceImaging [85] – RGDpeptide Cy5.5 FluorescenceImaging [22] – Cy5.5 GPLGVRGpeptide

blackholequencher-3(BHQ-3)

FluorescenceImaging

64Cu RGDpeptide

Cy5.5

PositronEmissionTomography [22]

NIR – PhotothermalTherapy [90,91]

Cobalt-dopedferritenanoparticles Melanomatargetingpeptide(MSH) MagneticFluidHyperthermia [45]

5.1. Ferritinnanoparticlesasadrugdeliveryplatform

Theirhighstability,biocompatibility,abilitytodisassembleand

reassembleina shapememoryfashionand dispositionfor

sur-facemodification make ferritin nanoparticles anideal platform

for drug delivery [55]. Indeed, in physiological conditions

fer-ritinhasastable24-mercagearchitecture,whileinhighlyacidic

andbasic conditionsitsquaternary structure disassembles, and

thenreassembleswhenthepHofthesolutionisbroughtto

neu-trality[66].Thisfeaturehasbeenusedtoencapsulatemolecules

insolutionwithinferritin cavities,simplybydisassembling and

reassemblingthe24-merarchitecture(Fig.2).Drugswitha

natu-raltendencytobindmetals,suchascisplatinanddesferrioxamine

B[67],havebeeneasilyentrappedintheferritinshell.Cisplatin

encapsulation was first reported in 2007 by Yang et al. [68],

whoalsostudiedthecellularuptakeofthesenanoparticlesand

severalapplicationsin tumortreatment[69]. TheHuang group

hasusedcisplatin-loadedapoferritintostudy,withaproteomic

approach,theapoptoticprocessinducedbynanoparticlesin

gas-triccancercells[70].Moreover,a drugdeliverydevicetargeted

tomelanomashasbeendevelopedusingcisplatin-loadedferritin,

chemicallyfunctionalizedwithanantibodyagainstthemelanoma

antigenCSPG4[42].Thesestudieshaveprovidedstrongevidenceof

anenhancedefficacyofantiblastictherapywhenitisencapsulated

inferritin-basednanoparticles,particularlyintermsoftargeting

cancercellssuchasmelanoma,atypeofcancertotallyrefractory

tochemotherapyinlaterstages[42].

However,mostofthecurrentlyusedchemotherapiesarenot

basedonmetalssuchascisplatin,andtheincorporationof

non-metal-containing drugs within ferritin is complicated by their

limitedinteractionwiththeproteincage.Toovercomethis

draw-back,differentapproacheshavebeenevaluated,mainlyfocusedon

formingcomplexes ofdrugswithtransitionmetalsorthe

addi-tion of charged accessorymolecules [3,71]. Doxorubicin (DOX)

encapsulationin ferritin nanocagesrepresents themost

exten-sivelyinvestigatedsystemfordeliveryofanticancerdrugs [47].

DOXisawidelyusedcytotoxicdrugforseveraltypesofsolidtumors

andhasanexcellentanticanceractivity;however,itsuseis

dose-limitingsinceitisassociatedwithseveralmajortoxicities,when

administeredathighdoses[47].DOXpre-complexedwithCu(II)

hasbeenloadedinsideferritinnanocagesandevaluatedinvitro

andinvivoinU87MGglioblastomatumormodels.Eightypercent

ofDOXwasgraduallyreleasedfromRGD-functionalized

apofer-ritinwithin10hofincubationat37◦Cinphosphatebufferedsaline

(PBS),whilethecopperremainedboundtotheinternalsurfacesof

thenanocages.Thistargetednanoformulationhasincreaseddrug

tumoruptakeandaccumulation,tumorgrowthinhibition,

circu-lationhalf-life,andhasreducedthecardiotoxicityinducedbyfree

DOX[47].OthergroupshavesetupDOXloadingstrategiesthatdo

notinvolvecomplexeswithtransitionmetals.Inthesecases,good

encapsulation efficiencyhasalso beenobtained[72,73,27], and

excellentresultsintermsoftumorgrowthinhibitionandreduced

toxicityhavebeenreported,bothinvitro[27]andinvivo[72].Invivo

resultsclearlydemonstratedthatferritinnanocagesimproveDOX

bioavailability,tumoraccumulationandclearance,andsuggested

thatferritin-mediatedactivetargetingprovidesamajor

contribu-tion(Fig.4)[72].Themechanismsandkineticsofdrugreleasefrom

ferritinshellhasnotbeencompletelyelucidated,althoughreported

datawithDOXsuggestthatencapsulationisstableinserumand

thatapH-triggeredreleasetakesplaceinvitro[75].Moreover,the

Knezgroupdemonstratedthatferritintranslocatesintothenucleus

mediatingthenuclearreleaseofDOX,whileourgrouphas

hypoth-esizedthatDOXloadedferritinactsasaTrojanhorsebecauseithas

beentranslocatedintothenucleusfollowingDNAdamagecaused

bythepartialrelease inthecytoplasmofencapsulatedDOX,by

aself-triggeredtranslocationmechanismwhichreleasesthedrug

directlyintothenuclearcompartment[27,30].

Inthis context,theuseofunfunctionalizedferritin seemsto

beadvantageousfor manyreasons:(1)higherpurificationyield

[72,27];(2)hightumorrecognition[72]specifictumorrecognition

mediatedbyTfR1;(3)ferritinspecificphysiologicalbehaviorisnot

prevented,allowingthenucleartranslocationforthereleaseofDOX

tobeexploited[27].Furthermore,ferritinnanoparticleshavebeen

usedtostabilizelipophilicdrugs,suchascurcumin[74].However,

todatefewstudieshavebeenpublishedonthis,probablybecause

lowdrughydrosolubilitystronglyaffectstheencapsulation

reac-tion.

Ferritin-basednanocagescouldbeimplementedforthedelivery

ofradioisotopesincreasingloadingefficiencyandimproving

phar-macokinetics.Hainfeldhasdevelopedferritincageswithapayload

of about 800235U atoms/nanoparticle,able to kill surrounding

tumorcells[75].Thesamestrategyhasbeensuggestedasbeing

applicablewithotherisotopescurrentlyusedin clinics,suchas

(5)

Fig.2.Schematicrepresentationofferritindevelopedfordrugdeliverytocancer.

Finally,ferritin nanocageshave beenemployed forsiRNA or

miRNAdelivery.Theseshortnon-codingRNAmolecules,havebeen

stronglyrelated toeithercancerprogressionor resistance,

sug-gestingthatmiRNA/siRNA-basedtherapycouldbeassociatedwith

standardtreatment.Leeandcoworkershaverecentlyproposeda

geneticvariantofH-ferritindesignedtomediatetargeted

deliv-eryandinternalizationofsiRNAimmobilizedonthenanoparticle

surfacesthrough charge-chargeinteraction[50]. Invitro results

demonstratedtheefficacyoftheas-designednanoparticlein

tar-geting tumor cells and the nanoparticle-mediated intracellular

delivery of an anti-red fluorescent protein (RFP) siRNA, which

inducedRFPsuppression[50].Thisresultpavesthewayforfuture

applicationofferritinnanoparticlesingenesilencing.

5.2. Ferritinnanoparticlesforinvivoimaging

Theplasticityofferritinasamineralizationchamberforheavy

atoms or complexes, and the possibility of modifying ferritin

nanocagesbyproteinengineeringorbychemicalreactiontoinsert

probemolecules,arefeaturesthat makeferritin anidealdevice

forimaging[53].Inparticular,ferritinshavefoundgreat

applica-tioninmagneticresonanceimaging(MRI)andoptical[44]imaging

(Fig. 3). Indeed, MRI is a powerful diagnostic technique with

wideinvolvementintumorimaging,thankstoitshighsensitivity

andaccuracy[55].However,thecurrentlyusedgadolinium-based

contrastagents indistinctlyenhance allhighly vascularized

tis-sues,andthuslackspecificityforcancercellsresultinginahigh

rateof false positives.On theotherhand,occult cancer

micro-depositsmaybenotdetectedonMRIduetoaninsufficientspatial

resolution, and oligometastatic disease could be misdiagnosed

[76,77].Bothendogenousand exogenousferritins have

demon-stratedgreatutilityinthisareabyovercomingtheselimitations.

Ferritin nanoparticles loadedwith magnetic species have been

developed as MRI contrast agents for tumor imaging. Cao and

coworkershaveobtainedananoparticlewithtransverserelaxivity

r2of224mM−1s−1,bysynthesizingasinglecrystalofmagnetite

inside theferritin cage [78]. Injection of suchnanoparticles in

MDA-231 tumor-bearing mice caused a drop of the T2 signal

duetoTfR1-dependenttumoraccumulation[78].Moreover,iron

nanoparticleshavebeenproducedintoferritincages,and

optimiz-ingstrategieshavebeendevelopedbyUchidaetal.[79]bysimply

adjustingtheextentofFeloading.Theincreasedamountofiron

inthereactionmixturedetermines anincreasein thecoresize

ofironnanoparticlesencapsulatedintoferritin,whichisdirectly

relatedtoT2contrastpower[79,80].OthertypesofMRI-detectable

nanoparticleshavebeenproducedusingtheferritincavityasa

reac-tionchamber.FivenmGdnanoparticleshavebeenproducedinside

ferritins,obtainingnanoparticleswithlongitudinalandtransverse

relaxivityfrom10to70timeshigherthancommerciallyavailable

Gd-chelates[81].Mn-coupledferritin-basedMRIcontrastagent,

obtainedbyreductionof␤-MnOOH,hasbeenreportedbyKalman

andcoworkers.Thisnanoparticlecontainsupto300–400Mn(II)

ionsandanr1relaxivityrangingbetween4000and7000s−1[82].

Aimeetal.[83]exploitedapH-mediatedferritindisassemblyto

loadabout8–10Gd-HPDO3A/nanoparticle,obtainingar1relaxivity

of80mM−1s−1.UponmodificationwithC3d,apeptidethat

specif-icallyrecognizesvesselendothelium,Gd-nanoparticlesshoweda

30%signalincreaseintumorinamousemodel[53].

Ferritin nanoparticles can also be conjugated with dye

molecules and find application as optical imaging probes in

imaging-guidedsurgery for cancer[84].Li etal. [85]employed

a ferritin H-chaingeneticallyfused withepidermal growth

fac-tor(EGF),andsubsequentlylabeledCysresidueswithAlexaFluor

(6)

62 M.Truffietal./PharmacologicalResearch107(2016)57–65

Fig.3.Schematicrepresentationofferritindevelopedforcancerimaging.

Fig.4.Schematicrepresentationofinvivodrugdeliveryofferritinnanoparticles.

Besides,Linetal.[22]developedaCy5.5-labelledferritinby

react-ingthe dye withtheprotein’s primary amine.Then, using the

pH-disassemblyprocedure,theCy5.5-labelledferritinmonomers

weremixed withRGD-bearingferritinmonomers.Theresulting

hybridferritin,whichdisplaysonthesurfaceboththeCy5.5dye

andtheRGDpeptide,hasbeeninjectedintoU87MGtumor-bearing

micedemonstratinggoodtumoraccumulation.Inanotherstudy,

(7)

Fig.5. Invivoimagingwithferritinnanoparticles.Invivoimagesof(a)positronemissiontomography(PET)and(b)near-infraredfluorescenceimagesafteradministration offerritinnanocages.30minbeforeferritinprobeadministration,micewereinjectedwithablockingdoseofc(RGDyK)todemonstratetargetspecificity.(Reprintedwith permissionfromRef.[22].Copyright2011AmericanChemicalSociety).

Cy5.5-GPLGVRGpeptideorwiththeblackholequencher-3

(BHQ-3),obtainingahybridnanoparticlethatemitsfluorescenceonlyina

metalloproteinaserichenvironment,suchasthatfoundintumors

[43]. This nanoparticle was further implemented through the

encapsulationof64Cu,aradioisotopecommonlyusedinpositron

emissiontomography(PET),thusobtainingaferritinplatformfor

multimodalimaging(Fig.5)[22].Combiningopticaland

nanotar-getedstrategiescouldimproveandrefineintraoperativeimaging,

toproperlyexciseatumorlesionwithadequatemargins,and

pro-videtargeteddiagnostictoolsforcancerfollowup.

5.3. Ferritinnanoparticlesinphotothermaltherapy

Thankstoitshighbiocompatibility, lowimmunogenicityand

good pharmacokinetics profile ferritin is useful in

photother-maltherapy(PTT)[86].PTTemploysphotothermalagents,which

absorbtheirradiation energyof anoptical laser and convertit

intoheatforkillingcancercells.Indeed,mostofthe

photother-malagentsshowhighimmunogenicity,non-biodegradability,long

termtoxicity and poorpharmacokinetics, which stronglyaffect

their clinical application [87,88]. Haung et al. have reported

thedevelopmentofanearinfra-red(NIR)-loadedferritin,which

displayed strongabsorbance in theNIRregion for

photoacous-tic/fluorescence multimodal imaging-guided PTT [89,90]. The

as-designedferritin nanovector exhibited invivo highPTT

effi-cacyandlowsystemictoxicityincomparisontothefreedye[90].

Anotherkindofferritinnanoparticlehasbeendevelopedbythe

Cecigroupas aplatform for hyperthermia.Theyfunctionalized

theferritincagewiththemelanomatargetingpeptideandused

itasamineralizationchamberforthesynthesisofcobalt-doped

ferritenanoparticles.Theas-synthesizednanoparticleswere

uni-forminsize(6–7nm)andmorphology(spherical).Moreover,they

displayedaninvitrohyperthermicefficacyinverselyrelatedtothe

amountofCousedforthedoping[45].Altogether,thereporteddata

suggestthatferritinnanocagescouldbeapromisingvectorfor

pho-tothermaltherapy,althoughfurtherstudieshavetobeperformed

tobetterinvestigateferritin’spotentialinthisfield.

6. Conclusionsandfutureperspectives

Sofar,nanotechnologyhasemerged aspromisingfrontierin

cancertreatment. Super-paramagnetic iron oxide nanoparticles

(SPIONs)are beingtested in clinicaltrialsas magneticcontrast

agents for MRI and for intraoperative sentinel node

identifica-tionduringbreast cancersurgery [91,92].Liposomeshavebeen

alreadyestablishedinclinicalpracticeforimproving

bioavailabil-ityandreducingtoxicityprofileofsomeexcellentcytotoxicdrugs

associatedwithseverecardiotoxicity,suchasanthracyclines[93].

Nanoformulatedalbumin-bound paclitaxelhasbeennotoriously

introducedinclinicalmanagementofvarioustypesofcancerwith

encouraging results in terms of anticancer efficacy [94].

How-ever,thesebasicnanoparticleslacka specificmethodofcancer

targeting, and despite theirbenefit in reducing side effects of

cytotoxicdrugsin clinicaltrials,nosubstantialimprovementin

long-termoutcomeshasbeendocumented[95].Inthiscontext,

ferritinnanocagesappeartobepowerfulandfascinatingtoolsfor

bothimagingandtherapeuticpurposes,inparticularconsidering

thatferritinisaproteinnormallypresentinphysiologicalsystems.

Different strategies ofloading ferritin withdrugs,molecules

andmetalshavebeensuccessfullyexplored;nevertheless,some

aspects particularly regarding their kinetic release from the

nanovector still need to be investigated in detail. Much work

hasalreadybeendonetoincreasethetypesofmolecules

encap-sulated,particularly inthe case of non-metal-containingdrugs,

whichincludethemajorityofchemotherapeutics.However,afew

questionsremain:(1)thefateofferritinanditsderivativesafter

sys-temicinjectionand(2)thepossibilitytosuppressferritinuptakein

off-targetorgansand/orsequestrationbythereticulo-endothelial

system,and thereby(3)thehopetoextenda drug’shalf-lifeby

modifyingtheferritinsurfacewithstealthmoieties.Someresearch

groupshavetakenadvantageoftheabilityofH-ferritinto

specif-icallyrecognizeTfR1[33],areceptorexpressedonthesurfaceof

manytypesofcancercells[41].Othergroupshavechemicallyor

geneticallyinsertedtargetingmotifsontotheferritinsurface,to

improvetumorhoming[42–54].Thisstrategyhasbeen

demon-stratedtobeverypromising,sincetargetedtherapiesareprobably

thekeyforcancertreatment[96].Specifictargetingofcancercell

receptorsenhancesanticanceractivitybyselectiveinhibitionofthe

underlyingcellularpathways,andmediatesaselectivereleaseof

cytotoxicdrugs.However,despitethefactthatsurface

modifica-tionofferritin impartstargetspecificity,it isnotclearwhether

ornotthesemodificationsalterthenanoparticle’s

immunogenic-ity. Anotheraspectwhich shouldnot beunderestimated is the

possibilityofcombinationtherapy.Encapsulationofvariousdrugs

into thesame nanocage would provide contemporary multiple

anticancer activitiestowards various cancer survival pathways.

Finally, theintrinsic capabilityof ferritinnanocages toundergo

nucleartranslocationcanbeexploitedtodesignanovelclassof

smartnanodrugs,whichcouldactas“Trojanhorses”,by

releas-ingchemotherapyintothenucleusofcancercells,thusstrongly

improving theircytotoxic activity.At present, unfunctionalized

DOX-loadedferritinrepresentsthemostextensivelyinvestigated

oftheferritin-basednanoparticles,andseveralinvitroandinvivo

(8)

64 M.Truffietal./PharmacologicalResearch107(2016)57–65

nanoparticlesarecurrentlynotusedinclinicalpractice,and

fur-therresearchisrequiredbeforeclinicaltranslation.Ferritinhasalso

foundanintriguingapplicationinthefieldofinvivoimaging.

Partic-ularly,ferritin-basedcontrastagentsforMRIhavebeendeveloped,

providinganimagingplatformwithincreasedtumor

accumula-tionincomparisontothecontrastagentscurrentlyusedinclinical

practice.However,toxicity,biodistributionandclearanceofthese

nanocompoundsneedstobemoreclearlyunderstoodbeforetheir

clinicaltranslation.Overall,ferritinnanocagesarepromising

nano-platformsforimagingandtherapyofcancer.Someissuesstillneed

tobethoroughlyinvestigated,butmanysignificantresultshave

alreadybeenobtained.Physiologicalfeaturesandthe

bioengineer-ingversatilityofferritin-basednanocagesmaketheirtranslation

from bench to bedside a reasonable possibility. Moreover, the

combinationofimagingandtherapeuticfunctionalityintoferritin

nanocagesseemstobethemostpromisingandfascinatingfrontier

incancertheranostics.

Conflictofinterest

Theauthorsdeclarethatthereisnoconflictofinterest.

Acknowledgements

Theresearchwassupportedby FondazioneRegionaleper la

RicercaBiomedica(NANODRUGplatformproject).FRRBsupported

S.M,L.F.andM.T.WethankChiaraSRLandE.Fezzuoglioforfigures

andgraphicalabstract.

References

[1]B.W.Stewart,C.P.Wild,WorldCancerReport2014,in:W.BernardStewart,P. ChristopherWild(Eds.),InternationalAgencyforResearchonCancer,Lyon, 2014.

[2]M.Colombo,F.Corsi,E.Mazzantini,S.Mazzucchelli,C.Marasso,E.Occhipinti, L.Polito,D.Prosperi,S.Ronchi,P.Verderio,HER2targetingasatwo-sided strategyforbreastcancerdiagnosisandtreatment:outlookandrecent implicationsinnanomedicalapproaches,Pharm.Res.62(2010)150–165.

[3]A.Maham,Z.Tang,H.Wu,J.Wang,Y.Lin,Protein-basednanomedicine platformsfordrugdelivery,Small5(2009)1706–1721.

[4]D.Peer,J.M.Karp,S.Hong,O.C.Farokhzad,R.Margalit,R.Langer,Nanocarriers asanemergingplatformforcancertherapy,Nat.Nanotechnol.2(2007) 751–760.

[5]H.Mok,M.Zhang,Superparamagneticironoxidenanoparticle-baseddelivery systemsforbiotherapeutics,ExpertOpin.DrugDeliv.10(2013)73–87.

[6]S.Stanley,Biologicalnanoparticlesandtheirinfluenceonorganisms,Curr. Opin.Biotechnol.28(2014)69–74.

[7]W.H.DeWong,P.J.Borm,Drugdeliveryandnanoparticles:applicationsand hazards,Int.J.Nanomed.3(2008)133–149.

[8]C.T.Lefevre,D.A.Bazylinski,Ecology,diversityandevolutionofmagnetotactic bacteria,Microbiol.Mol.Biol.Rev.77(2013)497–526.

[9]A.Arakaki,H.Nakazawa,M.Nemoto,T.Mori,T.Matsunaga,Formationof magnetitebybacteriaanditsapplication,J.R.Soc.Interface5(2008)977–999.

[10]C.Lang,D.Schuler,D.Faivre,Synthesisofmagnetitenanoparticlesfor bio-andnanotechnology:geneticengineeringandbiomimeticsofbacterial magnetosomes,Macromol.Biosci.7(2007)144–151.

[11]A.Jonas,M.C.Phillips,Lipoproteinstructure,in:D.E.Vance,J.E.Vance(Eds.), BiochemistryofLipids,LipoproteinsandMembranes,ElsevierScience, Amsterdam,2008,pp.485–506.

[12]R.O.Ryan,Nanobiotechnologyapplicationsofreconstitutedhighdensity lipoprotein,J.Nanobiotechnol.8(2010)28.

[13]A.V.Vlassov,S.Magdaleno,R.Setterquist,R.Conrad,Exosomes:current knowledgeoftheircomposition,biologicalfunctions,anddiagnosticand therapeuticpotentials,Biochim.Biophys.Acta1820(2012)940–948.

[14]Z.Suntres,M.Smith,F.Momen-Heravi,J.Hu,X.Zhang,Y.Wu,H.Zhu,J.Wang, J.Zhou,W.Kuo,Therapeuticusesofexosomes,ExosomesMicrovesicles (2013),http://dx.doi.org/10.5772/56522.

[15]L.Varez-Erviti,Y.Seow,H.Yin,C.Betts,S.Lakhal,M.J.Wood,Deliveryof siRNAtothemousebrainbysystemicinjectionoftargetedexosomes,Nat. Biotechnol.29(2011)341–345.

[16]S.C.Jang,O.Y.Kim,C.M.Yoon,D.S.Choi,T.Y.Roh,J.Park,J.Nilsson,J.Lotvall, Y.K.Kim,Y.S.Gho,Bioinspiredexosome-mimeticnanovesiclesfortargeted deliveryofchemotherapeuticstomalignanttumors,ACSNano7(9)(2013) 7698–7710.

[17]A.Zeltins,Constructionandcharacterizationofvirus-likeparticles:areview, Mol.Biotechnol.53(2013)92–107.

[18]H.N.Munro,M.C.Linder,Ferritin:structure,biosynthesis,androleiniron metabolism,Physiol.Rev.58(1978)317–396.

[19]Z.Zhen,W.Tang,C.Guo,H.Chen,X.Lin,G.Liu,B.Fei,X.Chen,B.Xu,J.Xie, Ferritinnanocagestoencapsulateanddeliverphotosensitizersforefficient photodynamictherapyagainstcancer,ACSNano7(2013)6988–6996.

[20]C.Sun,H.Yang,Y.Yuan,X.Tian,L.Wang,Y.Guo,L.Xu,J.Lei,N.Gao,G.J. Anderson,X.J.Liang,C.Chen,Y.Zhao,G.Nie,Controllingassemblyofpaired goldclusterswithinapoferritinnanoreactorforinvivokidneytargetingand biomedicalimaging,J.Am.Chem.Soc.133(2011)8617–8624.

[21]J.F.Hainfeld,Uranium-loadedapoferritinwithantibodies

attached—moleculardesignforuraniumneutron-capturetherapy,Proc.Natl. Acad.Sci.U.S.A.89(1992)11064–11068.

[22]X.Lin,J.Xie,G.Niu,F.Zhang,H.Gao,M.Yang,Q.Quan,M.A.Aronova,G. Zhang,S.Lee,R.Leapman,X.Chen,Chimericferritinnanocagesformultiple functionloadingandmultimodalimaging,NanoLett.11(2011)814–819.

[23]Z.Zhen,W.Tang,H.Chen,X.Lin,T.Todd,G.Wang,T.Cowger,X.Chen,J.Xie, RGD-modifiedapoferritinnanoparticlesforefficientdrugdeliverytotumors, ACSNano7(2013)4830–4837.

[24]V.Laufberger,Surlacristallisationdelaferritine,Bull.Soc.Chim.Biol.19 (1937)1575–1582.

[25]P.Arosio,R.Ingrassia,P.Cavdini,Ferritins:afamilyofmoleculesforiron storage,antioxidationandmore,Biochim.Biophys.Acta1790(2009) 589–599.

[26]N.D.Charsteen,Ferritin.Uptake,storageandreleaseofiron,Met.IonsBiol. Syst.35(1998)479–514.

[27]M.Bellini,S.Mazzucchelli,E.Galbiati,S.Sommaruga,L.Fiandra,M.Truffi, M.A.Rizzuto,M.Colombo,P.Tortora,F.Corsi,D.Prosperi,Proteinnanocages forself-triggerednucleardeliveryofDNA-targetedchemotherapeuticsin CancerCells,J.ControlledRelease196(2014)184–196.

[28]K.J.Thompson,M.G.Fried,Z.Ye,P.Boyer,J.R.Connor,Regulation,mechanisms andproposedfunctionofferritintranslocationtocellnuclei,J.CellSci.115 (2002)2165–2177.

[29]T.Douglas,D.R.Ripoll,Calculatedelectrostaticgradientsinrecombinant humanH-chainferritin,ProteinSci.7(1998)1083–1091.

[30]L.Zhang,L.Li,A.DiPenta,U.Carmona,F.Yang,R.Schops,M.Brandsch,J.L. Zugaza,M.Knez,H-ChainFerritin,Anaturalnucleitargetingandbioactive deliverynanovector,Adv.HealthcareMater.4(2015)1305–1310.

[31]N.Surguladze,S.Patton,A.Cozzi,M.G.Fried,J.R.Connor,Characterizationof nuclearferritinandmechanismoftranslocation,Biochem.J.388(2005) 731–740.

[32]M.Kim,Y.Rho,K.Z.Jin,B.Ahn,S.Jung,H.Kim,ReeM.pH-dependent structuresofferritinandapoferritininsolution:disassemblyandreassembly, Biomacromolecules12(2011)1629–1640.

[33]L.Li,C.J.Fang,J.C.Ryan,E.C.Niemil,J.A.Lebrón,P.J.Björkman,H.Arase,F.M. Torti,S.V.Torti,M.C.Nakamura,W.E.Seaman,Bindinganduptakeof H-ferritinaremediatedbyhumantransferringreceptor-1,Proc.Natl.Acad. Sci.U.S.A.107(2010)3505–3510.

[34]K.Fan,L.Gao,X.Yan,Humanferritinfortumordetectionandtherapy,WIREs Nanomed.Nanobiotechnol.5(2013)287–298.

[35]T.T.Chen,D.H.Chung,C.D.Allen,S.V.Torti,F.M.Torti,J.G.Cyster,TIM-2is expressedonBcellsandinliverandkidneyandisareceptorforH-ferritin endocytosis,J.Exp.Med.202(2005)955–965.

[36]J.Han,W.E.Seaman,X.Di,W.Wang,M.Willingham,F.M.Torti,S.V.Torti,Iron uptakemediatedbybindingofH-ferritintotheTIM-2receptorinmouse cells,PLoSOne6(8)(2011)e23800.

[37]B.Todorich,X.Zhang,B.Slagle-Webb,W.E.Seaman,J.R.Connor,Tim-2isthe receptorforH-ferritinonoligodendrocytes,J.Neurochem.107(2008) 1495–1505.

[38]T.T.Chen,L.Li,D.-H.Chung,C.D.C.Allen,S.V.Torti,F.M.Torti,J.G.Cyster,C.-Y. Chen,F.M.Brodsky,E.C.Niemi,M.C.Nakamura,W.E.Seaman,M.R.Daws, TIM-2isexpressedonBcellsandinliverandkidneyandisareceptorfor H-ferritinendocytosis,J.Exp.Med.202(2005)955–965.

[39]T.T.Chen,L.Li,D.-H.Chung,C.D.C.Allen,S.V.Torti,F.M.Torti,J.G.Cyster,C.-Y. Chen,F.M.Brodsky,E.C.Niemi,M.C.Nakamura,W.E.Seaman,M.R.Daws,JEM 202(2005)655–965.

[40]J.Y.Li,N.Paragas,R.M.Ned,A.Qiu,M.Viltard,T.Leete,I.R.Drexler,X.Chen,S. Sanna-Cherchi,F.Mohammed,D.Williams,C.S.Lin,K.M.Schmidt-Ott,N.C. Andrews,J.Barasch,Scara5isaferritinreceptormediatingnon-transferrin irondelivery,Dev.Cell16(2009)35–46.

[41]K.Fan,C.Cao,Y.Pan,D.Lu,D.Yang,J.Feng,L.Song,M.Liang,X.Yan, Magnetoferritinnanoparticlesfortargetingandvisualizingtumourtissues, Nat.Nanotechnol.7(2012)459–464.

[42]E.Falvo,E.Tremante,R.Fraioli,C.Leonetti,C.Zamparelli,A.Boffi,V.Morea,P. Ceci,P.Giacomini,Antibody-drugconjugates:targetingmelanomawith cisplatinencapsulatedinprotein-cagenanoparticlesbasedonhumanferritin, Nanoscale5(2013)12278–12285.

[43]X.Lin,J.Xie,L.Zhu,S.Lee,G.Niu,Y.Ma,K.Kim,X.Chen,Hybridferritin nanoparticlesasactivatableprobesfortumorimaging,Angew.Chem.Int.Ed. 50(2011)1569–1572.

[44]Y.J.Kang,H.J.Yang,S.Jeon,Y.do,S.Y.Hong,S.Kang,Polyvalentdisplayof monosaccharidesonferritinproteincagenanoparticlesfortherecognition andbindingofceel-surfacelectins,Macromol.Biosci.14(2014)619–625.

(9)

treatment:cobalt-dopedferritenanoparticlesmineralizedinhumanferritin cages,ACSNano8(2014)4705–4719.

[46]M.Uchida,D.A.Willits,K.Muller,A.F.Wills,L.Jackiw,M.Jutila,M.J.Young, A.E.Porter,T.Douglas,Intracellulardistributionofmacrophagetargeting ferritin-ironoxidenanocomposite,Adv.Mater.21(2009)458–462.

[47]Z.Zheng,W.Tang,H.Chen,X.Lin,T.Todd,G.Wang,T.Cowger,X.Chen,J.Xie, RGD-modifiednanoparticlesforefficientdrugdeliverytotumors,ACSNano7 (2013)4830–4837.

[48]L.Vannucci,E.Falvo,M.Fornara,P.DiMicco,O.Benada,J.Krizan,J.Svoboda, K.Hulikova-Capkova,V.Morea,A.Boffi,P.Ceci,Selectivetargetingof melanomabyPEG-maskedprotein-basedmultifunctionalnanoparticles,Int.J. Nanomed.7(2012)1489–1509.

[49]J.-H.Lee,H.S.Seo,J.A.Song,K.C.Kwon,E.J.Lee,H.J.Kim,E.B.Lee,Y.J.Cha,J. Lee,Proteinticleengineeringforaccurate3Ddiagnosis,ACSNano7(2013) 10879–10886.

[50]E.J.Lee,S.J.Lee,Y.-S.Kang,J.H.Ryu,K.C.Kwon,E.Jo,J.Y.Yhee,I.C.Kwon,K. Kim,J.Lee,EngineeredproteinticlesfortargeteddeliveryofsiRNAtocancer cells,Adv.Funct.Mater.25(2015)1279–1286.

[51]M.Kanekiyo,C.-J.Wei,H.M.Yassine,P.M.McTamney,J.C.Boyington,J.R.R. Whittle,S.S.Rao,W.-P.Kong,L.Wang,G.J.Nabel,Self-assemblinginfluenza nanoparticlesvaccineselicitbroadlyneutralizingH1N1antibodies,Nature 499(2013)102–106.

[52]J.-A.Han,Y.J.Kang,C.Shin,J.-S.Ra,H.-H.Shin,S.Y.Hong,Y.Do,S.Kang, Ferritinproteincagenanoparticlesasversatileantigendelivery

nanoplatformsfordendriticcell(DC)-basedvaccinedevelopment,Nanomed.: Nanotechnol.Biol.Med.10(2014)561–569.

[53]S.GeninattiCrich,B.Bussolati,L.Tei,C.Grange,G.Esposito,S.Lanzardo,G. Camussi,S.Aime,Magneticresonancevisualizationoftumorangiogenesisby targetingneuralcelladhesionmoleculeswiththehighlysensitive

gadolinium-loadedapoferritinprobe,CancerRes.66(2006)9196–9201.

[54]M.Hwang,J.-W.Lee,K.E.Lee,K.H.Lee,Thinkmodular:asimple apoferritin-basedplatformforthemultifaceteddetectionofpancreatic cancer,ACSNano9(2013)8167–8174.

[55]D.He,J.Marles-Wright,Ferritinfamilyproteinsandtheirusein bionanotechnology,NewBiotechnol.32(2015)651–657.

[56]I.Yamashita,K.Iwahori,S.Kumagai,Ferritininthefieldofnanodevices, Biochim.Biophys.Acta1800(2010)846–857.

[57]F.C.Meldrum,B.R.Heywood,S.Mann,Magnetoferritin:invitrosynthesisofa novelmagneticprotein,Science257(1992)522–523.

[58]F.C.Meldrum,T.Douglas,S.Lesi,P.Arosio,S.Mann,Reconstitutionof manganeseoxidecoresinhorsespleenandrecombinantferritins,J.Inorg. Chem.58(1995)59–68.

[59]T.Douglas,V.T.Stark,Nanophasecobaltoxihydroxidemineralsynthesis withintheproteincageofferritin,Inorg.Chem.39(2000)1828–1830.

[60]M.Okuda,K.Iwahori,I.Yamashita,H.Yoshimura,FabricationofNickeland chromiumnanoparticlesusingtheproteincageofapoferritin,Biotech. Bioeng.84(2003)187–193.

[61]R.Xing,X.Wang,L.Yan,C.Zhang,Z.Tang,X.Wang,Z.Guo,Fabricationof watersolubleandbiocompatibleCdSenanoparticlesinapoferritinwiththe aidofEDTA,DaltonTrans.(2009)1710–1713.

[62]I.Yamashita,J.Hayashi,M.Hara,Bio-templatesynthesisofuniformCdSe nanoparticlesusingcage-shapedproteinapoferritin,Chem.Lett.33(2004) 1158–1159.

[63]K.Iwahori,K.Yoshizawa,M.Muraoka,I.Yamashita,FabricationofZnSe nanoparticlesintheapoferritincavitybydesigningaslowchemicalreaction system,Inorg.Chem.44(2005)6393–6400.

[64]K.Iwahori,I.Yamashita,FabricationofCdSnanoparticlesinthebio-template, apoferritincavitybyaslowchemicalreactionsystem,J.Phys.CS61(2007) 492–496.

[65]K.Iwahori,I.Yamashita,Size-controlledone-potsynthesisoffluorescent cadmiumsulfidesemiconductornanoparticlesinanapoferritincavity, Nanotechnology19(2008)495601.

[66]A.Jaaskelainen,T.Soukka,T.Lamminmaki,T.Korpimaki,M.Virta, Nanotechnology-basedapproachesforthedevelopmentofdiagnostics, therapeutics,andvaccines,Biotechnol.Bioeng.102(2009)1012–1024.

[67]J.M.Dominguez-Vera,Iron(III)complexationofDesferoxamineB encapsulatedinapoferritin,J.Inorg.Biochem.75(2004)3145–3157.

[68]Z.Yang,X.Wang,H.Diao,J.Zhang,H.Li,H.Sun,Z.Guo,Encapsulationof platinumanticancerdrugsbyapoferritin,Chem.Commun.33(2007) 3453–3455.

[69]R.Xing,X.Wang,C.Zhang,Y.Zhang,Q.Wang,Z.Yang,Z.Guo, Characterizationandcellularuptakeofplatinumanticancerdrugs encapsulatedinapoferritin,J.Inorg.Biochem.103(2009)1039–1044.

[70]H.-T.Ji,L.Huang,H.-Q.Huang,Constructionofnanometercisplatin core-ferritin(NCC-F)andproteomicanalysisofgastriccancercellapoptosis inducedwithcisplatinreleasedfromtheNCC-F,J.Proteomics75(2012) 3145–3157.

[71]A.Maham,H.Wu,J.Wang,X.Kang,Y.Zhang,Y.Lin,Apoferritin-based nanomedicineplatformfordrugdelivery:equilibriumbindingstudyof daunomycinwithDNA,J.Mater.Chem.21(2011)8700–8708.

[72]M.Liang,K.Fan,M.Zhou,D.Duan,J.Zheng,D.Yang,J.Feng,X.Yan, H-ferritin-nanocageddoxorubicinnanoparticlesspecificallytargetandkill tumorswithasingle-doseinjection,Proc.Natl.Acad.Sci.U.S.A.111(2014) 14900–14905.

[73]M.A.Kilic,E.Ozlu,S.Calis,Anovelprotein-basedanticancerdrug encapsulatingnanosphere:apoferritin-doxorubicincomplex,J.Biomed. Nanotechnol.8(2012)508–514.

[74]L.Chen,G.Bai,S.Yang,R.Yang,G.Zhao,C.Xu,W.Leung,Encapsulationof curcumininrecombinanthumanH-chainferritinincreasesits

water-solubilityandstability,FoodRes.Int.62(2014)1147–1153.

[75]J.F.Hainfeld,Uranium-loadedapoferritinwithantibodiesattached-molecular designforuraniumneutron-capturetherapy,Proc.Natl.Acad.Sci.U.S.A.89 (1992)11064–11068.

[76]M.N.Plana,C.Carreira,A.Muriel,M.Chiva,V.Abraira,J.I.Emparanza,X. Bonfill,J.Zamora,Magneticresonanceimaginginthepreoperative assessmentofpatientswithprimarybreastcancer:systematicreviewof diagnosticaccuracyandmeta-analysis,Eur.Radiol.22(1)(2012)26–38.

[77]I.Millet,E.Pages,D.Hoa,S.Merigeaud,F.CurrosDoyon,X.Prat,P.Taourel, PearlsandpitfallsinbreastMRI,Br.J.Radiol.85(1011)(2012)197–207.

[78]C.Cao,X.Wang,Y.Cai,L.Sun,L.Tian,H.Wu,X.He,H.Lei,W.Liu,G.Chen,R. Zhu,Y.Pan,TargetedInvivoimagingofmicroscopictumorswith ferritin-Basednanoprobesacrossbiologicalbarriers,Adv.Mater.26(2014) 2566–2571.

[79]M.Uchida,M.L.Flenniken,M.Allen,D.A.Willits,B.E.Crowley,S.Brumfield, A.F.Willis,L.Jackiw,M.Jutila,M.J.Young,T.Douglas,Targetingofcancercells withferrimagneticferritincagenanoparticles,J.Am.Chem.Soc.128(2006) 16626–16633.

[80]Y.Cai,C.Cao,X.He,C.Yang,L.Tian,R.Zhu,Y.Pan,Enhancedmagnetic resonanceimagingandstainingofcancercellsusingferromagneticH-ferritin nanoparticleswithincreasingcoresize,Int.J.Nanomed.10(2015)2619–2634.

[81]P.Sanchez,E.Valero,N.Galvez,J.M.Domínguez-Vera,M.Marinone,G.Poletti, M.Corti,A.Lascialfari,MRIrelaxationpropertiesofwater-soluble

apoferritin-encapsulatedgadoliniumoxide-hydroxidenanoparticles,Dalton Trans.5(2009)800–804.

[82]F.K.Kalman,S.Geninatti-Crich,S.Aime,Reduction/dissolutionofa beta-MnOOHnanophaseintheferritincavitytoyieldahighlysensitive, biologicallycompatiblemagneticresonanceimagingagent,Angew.Chem.Int. Ed.Engl.49(2010)612–615.

[83]S.Aime,L.Frullano,S.Geninatti-Crich,Compartimentalizationofa

gadoliniumcomplexintheapoferritincavity:aroutetoobtainhighrelaxivity contrastagentsformagneticresonanceimaging,Angew.Chem.Int.Ed.Engl. 114(2002)1059–1061.

[84]C.Chi,Y.Du,J.Ye,D.Kou,J.Qiu,J.Wang,J.Tian,X.Chen,Intraoperative imaging-guidedcancersurgery:fromcurrentfluorescencemolecularimaging methodstofuturemulti-modalityimagingtechnology,Theranostics4(11) (2014)1072–1084.

[85]X.Li,L.Qui,P.Zhu,X.Tao,T.Imanaka,J.Zhao,Y.Huang,Y.Tu,X.Cao, Epidermalgrowthfactor-ferritinH-chainproteinnanoparticlesfortumor activetargeting,Small8(2012)2505–2514.

[86]W.S.Kuo,C.N.Chang,Y.T.Chang,M.H.Yang,Y.H.Chien,S.J.Chen,C.S.Yeh, Goldnanorodsinphotodynamictherapy,ashyperthermiaagents,andin near-Infraredopticalimaging,Angew.Chem.Int.Ed.122(2010)2771–2775.

[87]Z.Zha,Z.Deng,Y.Li,C.Li,J.Wang,S.Wang,E.Qu,Z.Dai,Biocompatible polypyrrolenanoparticlesasanovelorganicphotoacousticcontrastagentfor deeptissueimaging,Nanoscale5(2013)4462–4467.

[88]A.Fernandez-Fernandez,R.Manchanda,T.Lei,D.A.Carvajal,Y.Tang,S.Z. Kazmi,A.J.McGoron,Comparativestudyoftheopticalandheatgeneration propertiesofIR820andindocyaninegreen,Mol.Imaging11(2012)99–113.

[89]F.P.Gao,Y.X.Lin,L.L.Li,Y.Liu,U.Mayerhöffer,P.Spenst,J.G.Su,J.Y.Li,F. Würthner,H.Wang,Supramolecularadductsofsquaraineandproteinfor noninvasivetumorimagingandphotothermaltherapyinvivo,Biomaterials 35(2014)1004–1014.

[90]P.Huang,P.Rong,A.Jia,X.Yan,M.G.Zhang,J.Lin,H.Hu,Z.Wang,X.Yue,W. Li,G.Niu,W.Zeng,W.Wang,K.Zhou,X.Chen,Dye-loadedferritinnanocages formultimodalimagingandphotothermaltherapy,Adv.Mater.26(2014) 6401–6408.

[91]Z.Bakhtiary,A.A.Saei,M.J.Hajipour,M.Raoufi,O.Vermesh,M.Mahmoudi, Targetedsuperparamagneticironoxidenanoparticlesforearlydetectionof cancer:possibilitiesandchallenges,Nanomedicine(2015),http://dx.doi.org/ 10.1016/j.nano.2015.10.019.

[92]M.Ahmed,B.Anninga,S.Goyal,P.Young,Q.A.Pankhurst,M.Douek, MagSNOLLTrialistsGroup:magneticsentinelnodeandoccultlesion localizationinbreastcancer(MagSNOLLTrial),Br.J.Surg.102(6)(2015) 646–652.

[93]E.Tahover,Y.P.Patil,A.A.Gabizon,Emergingdeliverysystemstoreduce doxorubicincardiotoxicityandimprovetherapeuticindex:focuson liposomes,AnticancerDrugs.26(3)(2015)241–258.

[94]X.Yu,C.Jin,Applicationofalbumin-basednanoparticlesinthemanagement ofcancer,J.Mater.Sci.Mater.Med.27(1)(2016)4,http://dx.doi.org/10.1007/ s10856-015-5618-9.

[95]M.Xing,F.Yan,S.Yu,P.Shen,Efficacyandcardiotoxicityofliposomal doxorubicin-basedchemotherapyinadvancedBreastcancer:ameta-analysis oftenrandomizedcontrolledtrials,PLoSOne10(7)(2015)e0133569.

Riferimenti

Documenti correlati

Results: The main finding concerned the detection, across all clinical conditions, of a higher prevalence of phobic personality style, with Amyotrophic Lateral Sclerosis showing

В 1901-1903 годах Ту- ган-Барановский подверг критике не только этот перевод, но и самого Маркса, якобы не различавшего понятия

Nach Strohner (1990: 78) handelt es sich dabei um folgende Teilinformationen: a) die perzeptuelle Teilinformation, die zur Erkennung der einzelnen Textteile führt und als

Nella presente memoria vengono descritte una soluzione analitica dell'equazione del trasferimento radiativo ed un algoritmo, basato sulla tecnica Split-Wmdow, per la

Valori di indicatori configurati il cui valore dipende dalle fasi schedulate, dalla capacità delle Risorse e/o della Disponibilità Giacenze Richiama le funzioni:. -Confronti Dati

Basile, Il diritto penale nelle società multiculturali: i reati culturalmente motivati, in Ragion Pratica, rivista online, n.. Basile, Immigrazione e reati

We know from the literature that RFRs are present in infancy in children as young as 6 years ( Deschamps et al., 2012 ) and it has been recently shown ( Geangu et al., 2016 )

Assumere e tematizzare il principio di fraternità come riferimento e come faro nella costruzione di un terreno che sia in grado di marginalizzare e di iso- lare alla radice