ContentslistsavailableatScienceDirect
Pharmacological
Research
jo u r n al ho me p a g e :ww w . e l s e v i e r . c o m / l o c a t e / y p h r s
Review
Ferritin
nanocages:
A
biological
platform
for
drug
delivery,
imaging
and
theranostics
in
cancer
Marta
Truffi
a,
Luisa
Fiandra
a,
Luca
Sorrentino
a,b,
Matteo
Monieri
a,
Fabio
Corsi
a,b,
Serena
Mazzucchelli
a,∗aLaboratoryofNanomedicine,DepartmentofBiomedicalandClinicalSciencesUniversityofMilan,“LuigiSacco”Hospital,ViaG.B.Grassi,74,20157 Milano,Italy
bSurgeryDivision,DepartmentofBiomedicalandClinicalSciencesUniversityofMilan,“LuigiSacco”Hospital,ViaG.B.Grassi,74,20157Milano,Italy
a
r
t
i
c
l
e
i
n
f
o
Articlehistory:Received13January2016
Receivedinrevisedform24February2016 Accepted2March2016
Availableonline9March2016 Keywords: Protein-basednanocages Ferritin Drugdelivery Imaging Cancer
a
b
s
t
r
a
c
t
Nowadayscancerrepresentsaprominentchallengeinclinics.Mainachievementsincancermanagement wouldbethedevelopmentofhighlyaccurateandspecificdiagnostictoolsforearlydetectionofcancer onset,andthegenerationofsmartdrugdeliverysystemsfortargetedchemotherapyreleaseincancer cells.Inthiscontext,protein-basednanocagesholdatremendouspotentialasdevicesfortheranostics purposes.Inparticular,ferritinhasemergedasanexcellentandpromisingprotein-basednanocagethanks toitsuniquearchitecture,surfacepropertiesandhighbiocompatibility.Byexploitingnaturalrecognition oftheTransferrinReceptor1,whichisoverexpressedontumorcells,ferritinnanocagesmayensurea properdrugdeliveryandrelease.Moreover,researchershaveappliedsurfacefunctionalitiesonferritin cagesforfurtherprovidingactivetumortargeting.Encapsulationstrategiesofnonmetal-containing drugswithinferritincageshavebeenexploredandsuccessfullyperformedwithencouragingresults. Variouspreclinicalstudieshavedemonstratedthatnanoformulationwithinferritinnanocages signifi-cantlyimprovedtargetedtherapyandaccurateimagingofcancercells.Aimsofthisreviewaretodescribe structureandfunctionsofferritinnanocages,andtoprovideanoverviewaboutthenanotechnological approachesimplementedforapplyingthemtocancerdiagnosisandtreatment.
©2016ElsevierLtd.Allrightsreserved.
1. Introduction
Cancerisaleadingcauseofdeathworldwide,accountingfor8.2
milliondeathsin2012[1].Amaingoalofcurrentcancerresearchis
earlyrecognitionofcancercellsandselectivetreatment,beforethe
cancercanprogresstoanunfavourablestage.Basedonthis
ratio-nale,theaimofseveralmoderntherapeuticapproachesforcancer
istoselectivelyremovethetumorbeforeitevolvesintoits
supe-riorstages,andtheeventualonsetofmetastases.Forthisscenario
tobesuccessfulthereisagrowingneedtodevelop:(1)noveland
moresensitivediagnostictoolstoimprovescreeningaccuracyand
thedetectionrateofmalignancies,stagingandfollowupsettings,
andtoachievelessextensivesurgeryormedicaltherapy;(2)new
drugformulationswithenhancedefficacytowardcancercellsand
reducedtoxicitytowardhealthycells[2].
Nanotechnologyholdsgreatclinicalpotentialinreachingthese
majorgoalsandanumberofnanodeviceshavebeendesignedto
∗ Correspondingauthor.
E-mailaddress:[email protected](S.Mazzucchelli).
specificallytargetcancercells.Thesenanodevicescanbeloaded
withdifferentkindsofchemotherapeuticsand/orcontrastagents,
and provide unmatched promise for development of
theranos-tic devices for both cancer diagnosis and treatment. Indeed,
nanoparticleshavedemonstrated theirpotentialtosolvecrucial
issuesinvolvingbioavailability,tissuepenetrationandcirculation
time [3]. Several nanoparticles constructed frommetals,
semi-conductorsor polymers,have beentested inpreclinical studies
[4],butonlyafewofthemhavebeenclinicallyapproveddueto
theirtoxicity,immunogenicityandsequestrationbythe
reticulo-endothelialsystem[5].Therefore,muchefforthasbeendirected
intothedesignandsynthesisofchemicallyengineered
nanostruc-turesthatarebiologicallycompatible.
Naturallyoccurringnanoparticleshaveexistedformillionsof
years,andtheyincludeawidevarietyofnanostructures,whichmay
beformedbyinorganic(i.e.magnetosomes)ororganicmaterials.
Thesenanoparticlescanbeintracellularorextracellularandmay
havedifferentbiologicalroles[6].Despitethesedifferences,
natu-ralnanoparticlesarecharmingfromthebiomedicalpointofview
duetotheiruniformstructure,lowtoxicity,andabilitytoevadethe
immunesystem.Moreover,theyareeasilydegradedafterfulfilling
http://dx.doi.org/10.1016/j.phrs.2016.03.002
58 M.Truffietal./PharmacologicalResearch107(2016)57–65
theirfunction[6,7].Thesefeaturesplacethemaheadofinorganic
orsyntheticmaterialsinclinicaltranslation[7].Biological
nanopar-ticlesare assembled frommolecules oratoms synthesized in a
biologicalsystemwithsizesrangingfrom1to100nm.Theyinclude
magnetosomes,lipoproteins,viruses,exosomesandferritins[6].
Magnetosomes are specialized organelles with narrow size
(50–70nm indiameter), uniformmorphologyand low toxicity;
theyhaveevolvedfrommagnetotacticbacteriaandarecomposed
ofalipidbilayersurroundingmagneticiron-containingminerals
[8–10]. Lipoproteinsare self-assemblingstructuresthat contain
phospholipids,non-esterifiedcholesterolandspecializedproteins,
formingasphericalordiscoidalshell(from7to>80nm),which
surroundsacoreofnon-polarlipids,triacylglycerolsand
esteri-fiedcholesterols[11,12].Exosomesarenanometer-sizedstructures
secretedbycells andconsist ofanexternal lipidbilayer, which
offersanon-immunogenicandnon-toxicmechanismforthe
deliv-ery oftargeted proteinsor nucleicacids, protectingthem from
degradation and macrophage endocytosis [13–16]. Viruses and
virus-likeparticlesmayalsobeconsideredtobebiological
nanopar-ticles.Theyincludeawidevarietyofsizesandmorphologieswith
definedgeometries,uniformshapeandarobustproteinshell.They
aresuitableforchemical-andbio-conjugation.Althoughtheir
cap-sidsarestableoverawiderangeofpHandtemperatures,theyare
difficulttoproduceinbulk,andthisrepresentsaseverelimitation
fortheiruseinnanotechnology[17].
Amongallclassesofbiologicalnanoparticlesherewefocuson
ferritins,whichareironstorageandtransportproteinsfoundin
mostlivingorganisms[18].Recombinantferritinprovidesa
cen-tralcavity,whichcanbeefficientlyloadedwithtransitionmetals,
drugs,fluorescentmoleculesorcontrastagents[19,20].Sinceithas
auniformcage,ferritinallowstheprecisecontroloftheamount
ofencapsulatedmolecules,whichisacriticalfeatureindefining
drugdosage.Moreover,theproteinshellofferritinscanbe
eas-ilymodifiedeitherchemicallyorgeneticallytointroducedifferent
functionalities[21,22].Alloftheseattributeshighlightferritinand
itsderivativesaspowerfulsystemswithpotentialapplicationin
nanomedicine.Indeed,theyhavebeeninvestigatedasanoveltype
ofnano-platformforimaginganddrugdeliveryincancer[19,23].
Theaimofthisreviewistodescriberecentfindingsaboutferritin
nanocages’structureandfunction,andtheirbiotechnologicaland
biomedicalapplicationsforMRI,opticalimaginganddrugdelivery
incancer.Anoverviewofstrategiesusedforferritinsurface
mod-ificationtoobtainformulationssuitablefordifferentclinicaluses
willbealsoprovided.
2. Ferritinnanocages:structureandphysiologicalrole
Ferritinisprobablythemoststudiedproteinafterhemoglobin.
Ithasbeeninvestigatedsince1937,whenLaufbergerdescribedits
purificationwithCadmiumsalts[24],andoverthelastdecadeithas
attractedtheinterestofmanynanotechnologistsduetoits
prop-erties[25].Itisaubiquitousproteinfoundineubacteria,archaea,
plantsandanimals,butnotinyeast[25].Ferritinexistsin
extracel-lularandintracellularcompartments,suchasthecytosol,nucleus
andmitochondriaanditsmainrolesareironstorageand
homeosta-sis[26].Therefore,itisoneofthemosthighlyconservedmolecules.
Ferritinisalargeproteinof450kDacomposedof24subunits
thatself-assembleintoasphericalcage-likestructurewithinner
and outerdimensions of 8 and 12nm, respectively.Eukaryotes
havetwoferritingenesencodingtheheavy(H;21kDa)andthe
light(L; 19kDa)chains.The H-chainisresponsible forthe
oxi-dationof Fe(II)to Fe(III)and includes theferroxidase catalytic
site,whiletheL-chainplaysaroleinironnucleation[27].Hand
L chainsco-assemble intoa 24-merheteropolymer, where the
H-chaintoL-chainratiovariesaccordingtoatissuespecific
dis-tribution[25].Ferritinprotectscellsfromthedamagecausedby
theFentonreactionduringoxidativestress,bysequesteringFe2+,
asourceoftoxicreactiveoxygenspecies,andconvertingitinto
harmlessFe3+,whichisstoredasferrihydritecrystals.Theferritin
proteincagecanaccommodateupto4500ironatoms[25].This
protectiveactioniscrucialinthenucleus,wheretheDNAhastobe
particularlypreservedfromiron-inducedoxidativedamage[28].
FerritintranslocatesintothenucleusthroughanATP-dependent
mechanism[28,29],andO-glycosylationoftheH-chainseemsto
beinvolvedin itsnucleartranslocation, buta Nuclear
Localiza-tionSequence(NLS)isnotrequired[29].However,itwasnotclear
whethertheintegrityofferritinwasmaintainedduring
translo-cation.Recently,theKnezgrouphasshedlight onthisissueby
demonstratingthatferritinnanoparticlesareintactduring
translo-cation[30].
Theferritinquaternarystructurehaseighthydrophilicchannels
thatseemtomediateirontransitinandoutoftheproteincage.
Therearealsosixhydrophobicchannels,whichdonotseemtobe
involvedinironexchangealthoughtheycouldmediatethe
tran-sitofprotons[31].Inspiteofthestructuralrigidityofferritinsin
thephysiologicalenvironment,theproteincagescanbereversibly
disassembledwhenthepHbecomesextremelyacidic(pH2–3)or
basic(pH10–12)[27,32].WhenthepHreturnstoneutralityferritin
monomersareabletoself-assembleinashapememoryfashion.
Moreover,theferritin cageisresistanttodenaturants,including
heatingtohightemperatures(>80◦C)[25].
Ferritin features have been extensively studied and
imple-mentedbyresearchers,thusallowingtheuseofferritinnanocages
asbiologicalnanoparticlesfornanomedicalapplications.
3. Surfacemodificationofferritinnanoparticlesand cellularinteractions
Extracellularferritininteractswithcellsthroughthereceptor
oftransferrin1(TfR1),whichwasidentifiedin2010bySeaman’s
group [33]. They demonstrated that TfR1 specifically binds
H-ferritin,whileL-ferritinshowslow interaction.Afterbindingon
thecellsurface,theH-ferritin-TfR1complexisinternalized,and
canbefoundinearlyandrecyclingendosomes[33,27],
demon-stratingthatTfR1coordinatestheprocessingandtheuseofironby
bindingbothTransferrinandH-ferritin[34].H-ferritinisalsoable
tointeractwiththeT-cellImmunoglobulinandMucindomain-2
(TIM-2)[35,36],whichisoverexpressedinoligodendrocytesand
B-cells [37,38], and is internalized in endosomes upon binding
[39].Otherwise,L-ferritinbindstotheScavengerReceptorClassA,
Member5(SCARA-5)[40],whichisfoundinmacrophagesandthe
retina.BothHandLferritinnanoparticleshavebeenproducedvia
DNA-recombinanttechnology.H-ferritin,whichnaturallyinteracts
withtheTfR1,arethemostextensivelystudied[33].By
exploit-ing theTfR1 overexpression in many typesof tumor cells, Fan
andcoworkershavedevelopedaferritin-basedsystemfor
specif-icallyvisualizingtumorsamongnormalcellsandhealthytissues
[41].Thatstudydemonstratedthattheintrinsictargetingof
fer-ritintowardscancercellscouldbeusedtodesignnaturallytargeted
nanoparticlesfortheranosticpurposes.
Despitethenaturaltargetingofferritin towardscancercells,
several research groups have modified the surface of ferritin
nanocages by inserting a number of target motifs, such as
antibodies, peptides and antibody fragments, in order to drive
nanoparticlestowardsspecificcellsbyselectiverecognition(Fig.1).
Both lysines and cysteines on the ferritin surface have been
exploitedforchemicalconjugationusingdifferent
heterobifunc-tionalcross-linkerswithN-hydroxysuccinimide(NHS) esterand
maleimidegroups[42–44].LysandCysresidueshavealsobeen
Fig.1.Schematicrepresentationofstrategiesadoptedtoprovidesurfacefunctionalizationofferritinwithtargetingpeptides,antibodies,siRNAandfluorescentdyes.
polyethylene glycol (PEG) molecules [22,45]. Most conjugation
strategies havebeendesigned and realizedbygenetically
engi-neeringferritin monomers.Targetingmoieties,suchastheRGD
peptide[46,47],theanti-melanocytestimulatinghormonepeptide
[48,45]ortheextracellulardomainofmyelinoligodendrocyte
gly-coprotein(MOG) [49]havebeenexpressedasN-terminalfusion
proteins,allowing24targetingdomainstobeexposedonthe
fer-ritincagesurface,withuniformandpreciseorientation.Inthelast
year,thesurfaceconjugationofferritinnanoparticleswitha
com-positeoffourdifferentpeptideswasreported.Thatwasundertaken
byN-terminalcloningfourpeptidesontotheferritinsequence:an
enzymaticallycleavedpeptide(ECP)toreleasesiRNA,acationic
peptide(CAP)tocapturesiRNA,acellpenetratingpeptide(CPP)
anda tumorcelltargeting(CTP)moiety [50].N-terminal fusion
proteinshavealsobeenproducedtodisplayviralhemagglutinin
ontheferritinsurface,withtheresultingneutralizationofH1N1
viruses[51].Alternatively,theproductionofferritinnanoparticles
withpeptidesfusedattheC-terminalhasbeenreportedforthe
developmentofdendriticcell-basedvaccines[52].Beyondthese
strategies,otherapproachesfortheconjugationoftargeting
moi-etiesonferritinsurfacehavealsobeenexplored,includingferritin
nanocagebiotinylationinordertoinserttargetingfunctionalities
[53],orthegeneticengineeringofferritinforgeneratingafusion
protein,whichexploitsN-terminalproteinGforantibody
immo-bilization[54].
4. Nanotechnologicalapplicationsofferritin
Ferritinhasattracted much interestdue to itspotential use
asreaction chamber for theproduction of metal nanoparticles,
or as a template for semi-conductor production [55]. Ferritin
nanocagesallowchemical synthesis tooccurin restricted
cavi-tieswithhomogenousshapeandatomiccomposition[56].Ferritin
nanocageshavebeenextensivelyexploitedforthe
biomineraliza-tionofmetaloxides,suchasiron[57],manganese[58],cobalt[59],
chromiumandnickeloxides[60].Amongthedifferentprotocols,
thesimplestandmostsuitablemethodofmass-productionisthe
one-potsynthesisstrategydevelopedbytheYamashitaetal.[56],
whichdevelopedmetal-loadedferritinnanocageswithpotential
fornanoelectronicalapplication[56].
Nanoparticlesobtainedfrommineralizationofsemiconductors
areveryattractivefromthenanotechnologicalpointofview,since
theirfluorescencepropertiesarecloselyrelatedtonanoparticlesize
andshape[56].Inthiscontext,ferritinnanocagecavitieshavebeen
usedforthesynthesisofsemi-conductornanoparticles.However,
themaindrawbackofthisprocessisthationaggregationisinduced
byhighconcentrationsofCd2+orZn2+andSe2−duringthechemical
reaction[56,61],andbecauseofthisonlyafewresearchgroupsare
engagedinitsdevelopment[56,61].ThesynthesisofCdSeandZnSe
usingferritinsasareactionchamberhasbeensuccessfullyobtained
byYamashitaet al.[62,63]whohave designeda newchemical
approachcalledtheSlowChemicalReactionSystem.Thismethod
avoidsionaggregationsinceCd2+orZn2+areattractedinsidethe
apoferritinchamberbyinnernegativeresidues,thuspreventingthe
aggregationprocess;therefore,mineralizationinsideanapoferritin
cavityslowsdownthenucleationofCdSeorZnSe[62–65].
5. Potentialofferritinnanoparticlesincancer
Whileferritinnanoparticleshavebeenwidelyinvestigatedin
thecontext ofnanotechnology,theirmain applicationconcerns
thefieldofnanomedicine.Indeed,apartfromtheirapplicationin
thedevelopmentofvaccines[51,52],severalresearchgroupsare
engagedinthestudyofferritinasimaginganddrugdelivery
sys-temsforthediagnosisandtreatmentoftumors,assummarizedin
60 M.Truffietal./PharmacologicalResearch107(2016)57–65 Table1
Mainapplicationprospectsofferritinnanocagesincancerdiagnosisandtreatment.
Loadedwith... Functionalizedwith... Application Ref.number
Cisplatin – Chemotherapy [68–70]
Cisplatin antibodyagainstthemelanomaantigenCSPG4 Chemotherapy [42]
Doxorubicin RGDpeptide Chemotherapy [47]
Doxorubicin – Chemotherapy [27,72,73,75,30]
Curcumin – Therapy [74]
235U – RadionuclideTherapy [75]
– anti-redfluorescentprotein(RFP)siRNA RNAinterferenceTherapy [50]
Magnetitecrystal MRImaging [78,79,80]
Gadolinium MRImaging [81,83] Mn(II) MRImaging [82] Gadolinium C3d MRImaging [53] – EGF AlexaFluor750 FluorescenceImaging [85] – RGDpeptide Cy5.5 FluorescenceImaging [22] – Cy5.5 GPLGVRGpeptide
blackholequencher-3(BHQ-3)
FluorescenceImaging
64Cu RGDpeptide
Cy5.5
PositronEmissionTomography [22]
NIR – PhotothermalTherapy [90,91]
Cobalt-dopedferritenanoparticles Melanomatargetingpeptide(MSH) MagneticFluidHyperthermia [45]
5.1. Ferritinnanoparticlesasadrugdeliveryplatform
Theirhighstability,biocompatibility,abilitytodisassembleand
reassembleina shapememoryfashionand dispositionfor
sur-facemodification make ferritin nanoparticles anideal platform
for drug delivery [55]. Indeed, in physiological conditions
fer-ritinhasastable24-mercagearchitecture,whileinhighlyacidic
andbasic conditionsitsquaternary structure disassembles, and
thenreassembleswhenthepHofthesolutionisbroughtto
neu-trality[66].Thisfeaturehasbeenusedtoencapsulatemolecules
insolutionwithinferritin cavities,simplybydisassembling and
reassemblingthe24-merarchitecture(Fig.2).Drugswitha
natu-raltendencytobindmetals,suchascisplatinanddesferrioxamine
B[67],havebeeneasilyentrappedintheferritinshell.Cisplatin
encapsulation was first reported in 2007 by Yang et al. [68],
whoalsostudiedthecellularuptakeofthesenanoparticlesand
severalapplicationsin tumortreatment[69]. TheHuang group
hasusedcisplatin-loadedapoferritintostudy,withaproteomic
approach,theapoptoticprocessinducedbynanoparticlesin
gas-triccancercells[70].Moreover,a drugdeliverydevicetargeted
tomelanomashasbeendevelopedusingcisplatin-loadedferritin,
chemicallyfunctionalizedwithanantibodyagainstthemelanoma
antigenCSPG4[42].Thesestudieshaveprovidedstrongevidenceof
anenhancedefficacyofantiblastictherapywhenitisencapsulated
inferritin-basednanoparticles,particularlyintermsoftargeting
cancercellssuchasmelanoma,atypeofcancertotallyrefractory
tochemotherapyinlaterstages[42].
However,mostofthecurrentlyusedchemotherapiesarenot
basedonmetalssuchascisplatin,andtheincorporationof
non-metal-containing drugs within ferritin is complicated by their
limitedinteractionwiththeproteincage.Toovercomethis
draw-back,differentapproacheshavebeenevaluated,mainlyfocusedon
formingcomplexes ofdrugswithtransitionmetalsorthe
addi-tion of charged accessorymolecules [3,71]. Doxorubicin (DOX)
encapsulationin ferritin nanocagesrepresents themost
exten-sivelyinvestigatedsystemfordeliveryofanticancerdrugs [47].
DOXisawidelyusedcytotoxicdrugforseveraltypesofsolidtumors
andhasanexcellentanticanceractivity;however,itsuseis
dose-limitingsinceitisassociatedwithseveralmajortoxicities,when
administeredathighdoses[47].DOXpre-complexedwithCu(II)
hasbeenloadedinsideferritinnanocagesandevaluatedinvitro
andinvivoinU87MGglioblastomatumormodels.Eightypercent
ofDOXwasgraduallyreleasedfromRGD-functionalized
apofer-ritinwithin10hofincubationat37◦Cinphosphatebufferedsaline
(PBS),whilethecopperremainedboundtotheinternalsurfacesof
thenanocages.Thistargetednanoformulationhasincreaseddrug
tumoruptakeandaccumulation,tumorgrowthinhibition,
circu-lationhalf-life,andhasreducedthecardiotoxicityinducedbyfree
DOX[47].OthergroupshavesetupDOXloadingstrategiesthatdo
notinvolvecomplexeswithtransitionmetals.Inthesecases,good
encapsulation efficiencyhasalso beenobtained[72,73,27], and
excellentresultsintermsoftumorgrowthinhibitionandreduced
toxicityhavebeenreported,bothinvitro[27]andinvivo[72].Invivo
resultsclearlydemonstratedthatferritinnanocagesimproveDOX
bioavailability,tumoraccumulationandclearance,andsuggested
thatferritin-mediatedactivetargetingprovidesamajor
contribu-tion(Fig.4)[72].Themechanismsandkineticsofdrugreleasefrom
ferritinshellhasnotbeencompletelyelucidated,althoughreported
datawithDOXsuggestthatencapsulationisstableinserumand
thatapH-triggeredreleasetakesplaceinvitro[75].Moreover,the
Knezgroupdemonstratedthatferritintranslocatesintothenucleus
mediatingthenuclearreleaseofDOX,whileourgrouphas
hypoth-esizedthatDOXloadedferritinactsasaTrojanhorsebecauseithas
beentranslocatedintothenucleusfollowingDNAdamagecaused
bythepartialrelease inthecytoplasmofencapsulatedDOX,by
aself-triggeredtranslocationmechanismwhichreleasesthedrug
directlyintothenuclearcompartment[27,30].
Inthis context,theuseofunfunctionalizedferritin seemsto
beadvantageousfor manyreasons:(1)higherpurificationyield
[72,27];(2)hightumorrecognition[72]specifictumorrecognition
mediatedbyTfR1;(3)ferritinspecificphysiologicalbehaviorisnot
prevented,allowingthenucleartranslocationforthereleaseofDOX
tobeexploited[27].Furthermore,ferritinnanoparticleshavebeen
usedtostabilizelipophilicdrugs,suchascurcumin[74].However,
todatefewstudieshavebeenpublishedonthis,probablybecause
lowdrughydrosolubilitystronglyaffectstheencapsulation
reac-tion.
Ferritin-basednanocagescouldbeimplementedforthedelivery
ofradioisotopesincreasingloadingefficiencyandimproving
phar-macokinetics.Hainfeldhasdevelopedferritincageswithapayload
of about 800235U atoms/nanoparticle,able to kill surrounding
tumorcells[75].Thesamestrategyhasbeensuggestedasbeing
applicablewithotherisotopescurrentlyusedin clinics,suchas
Fig.2.Schematicrepresentationofferritindevelopedfordrugdeliverytocancer.
Finally,ferritin nanocageshave beenemployed forsiRNA or
miRNAdelivery.Theseshortnon-codingRNAmolecules,havebeen
stronglyrelated toeithercancerprogressionor resistance,
sug-gestingthatmiRNA/siRNA-basedtherapycouldbeassociatedwith
standardtreatment.Leeandcoworkershaverecentlyproposeda
geneticvariantofH-ferritindesignedtomediatetargeted
deliv-eryandinternalizationofsiRNAimmobilizedonthenanoparticle
surfacesthrough charge-chargeinteraction[50]. Invitro results
demonstratedtheefficacyoftheas-designednanoparticlein
tar-geting tumor cells and the nanoparticle-mediated intracellular
delivery of an anti-red fluorescent protein (RFP) siRNA, which
inducedRFPsuppression[50].Thisresultpavesthewayforfuture
applicationofferritinnanoparticlesingenesilencing.
5.2. Ferritinnanoparticlesforinvivoimaging
Theplasticityofferritinasamineralizationchamberforheavy
atoms or complexes, and the possibility of modifying ferritin
nanocagesbyproteinengineeringorbychemicalreactiontoinsert
probemolecules,arefeaturesthat makeferritin anidealdevice
forimaging[53].Inparticular,ferritinshavefoundgreat
applica-tioninmagneticresonanceimaging(MRI)andoptical[44]imaging
(Fig. 3). Indeed, MRI is a powerful diagnostic technique with
wideinvolvementintumorimaging,thankstoitshighsensitivity
andaccuracy[55].However,thecurrentlyusedgadolinium-based
contrastagents indistinctlyenhance allhighly vascularized
tis-sues,andthuslackspecificityforcancercellsresultinginahigh
rateof false positives.On theotherhand,occult cancer
micro-depositsmaybenotdetectedonMRIduetoaninsufficientspatial
resolution, and oligometastatic disease could be misdiagnosed
[76,77].Bothendogenousand exogenousferritins have
demon-stratedgreatutilityinthisareabyovercomingtheselimitations.
Ferritin nanoparticles loadedwith magnetic species have been
developed as MRI contrast agents for tumor imaging. Cao and
coworkershaveobtainedananoparticlewithtransverserelaxivity
r2of224mM−1s−1,bysynthesizingasinglecrystalofmagnetite
inside theferritin cage [78]. Injection of suchnanoparticles in
MDA-231 tumor-bearing mice caused a drop of the T2 signal
duetoTfR1-dependenttumoraccumulation[78].Moreover,iron
nanoparticleshavebeenproducedintoferritincages,and
optimiz-ingstrategieshavebeendevelopedbyUchidaetal.[79]bysimply
adjustingtheextentofFeloading.Theincreasedamountofiron
inthereactionmixturedetermines anincreasein thecoresize
ofironnanoparticlesencapsulatedintoferritin,whichisdirectly
relatedtoT2contrastpower[79,80].OthertypesofMRI-detectable
nanoparticleshavebeenproducedusingtheferritincavityasa
reac-tionchamber.FivenmGdnanoparticleshavebeenproducedinside
ferritins,obtainingnanoparticleswithlongitudinalandtransverse
relaxivityfrom10to70timeshigherthancommerciallyavailable
Gd-chelates[81].Mn-coupledferritin-basedMRIcontrastagent,
obtainedbyreductionof-MnOOH,hasbeenreportedbyKalman
andcoworkers.Thisnanoparticlecontainsupto300–400Mn(II)
ionsandanr1relaxivityrangingbetween4000and7000s−1[82].
Aimeetal.[83]exploitedapH-mediatedferritindisassemblyto
loadabout8–10Gd-HPDO3A/nanoparticle,obtainingar1relaxivity
of80mM−1s−1.UponmodificationwithC3d,apeptidethat
specif-icallyrecognizesvesselendothelium,Gd-nanoparticlesshoweda
30%signalincreaseintumorinamousemodel[53].
Ferritin nanoparticles can also be conjugated with dye
molecules and find application as optical imaging probes in
imaging-guidedsurgery for cancer[84].Li etal. [85]employed
a ferritin H-chaingeneticallyfused withepidermal growth
fac-tor(EGF),andsubsequentlylabeledCysresidueswithAlexaFluor
62 M.Truffietal./PharmacologicalResearch107(2016)57–65
Fig.3.Schematicrepresentationofferritindevelopedforcancerimaging.
Fig.4.Schematicrepresentationofinvivodrugdeliveryofferritinnanoparticles.
Besides,Linetal.[22]developedaCy5.5-labelledferritinby
react-ingthe dye withtheprotein’s primary amine.Then, using the
pH-disassemblyprocedure,theCy5.5-labelledferritinmonomers
weremixed withRGD-bearingferritinmonomers.Theresulting
hybridferritin,whichdisplaysonthesurfaceboththeCy5.5dye
andtheRGDpeptide,hasbeeninjectedintoU87MGtumor-bearing
micedemonstratinggoodtumoraccumulation.Inanotherstudy,
Fig.5. Invivoimagingwithferritinnanoparticles.Invivoimagesof(a)positronemissiontomography(PET)and(b)near-infraredfluorescenceimagesafteradministration offerritinnanocages.30minbeforeferritinprobeadministration,micewereinjectedwithablockingdoseofc(RGDyK)todemonstratetargetspecificity.(Reprintedwith permissionfromRef.[22].Copyright2011AmericanChemicalSociety).
Cy5.5-GPLGVRGpeptideorwiththeblackholequencher-3
(BHQ-3),obtainingahybridnanoparticlethatemitsfluorescenceonlyina
metalloproteinaserichenvironment,suchasthatfoundintumors
[43]. This nanoparticle was further implemented through the
encapsulationof64Cu,aradioisotopecommonlyusedinpositron
emissiontomography(PET),thusobtainingaferritinplatformfor
multimodalimaging(Fig.5)[22].Combiningopticaland
nanotar-getedstrategiescouldimproveandrefineintraoperativeimaging,
toproperlyexciseatumorlesionwithadequatemargins,and
pro-videtargeteddiagnostictoolsforcancerfollowup.
5.3. Ferritinnanoparticlesinphotothermaltherapy
Thankstoitshighbiocompatibility, lowimmunogenicityand
good pharmacokinetics profile ferritin is useful in
photother-maltherapy(PTT)[86].PTTemploysphotothermalagents,which
absorbtheirradiation energyof anoptical laser and convertit
intoheatforkillingcancercells.Indeed,mostofthe
photother-malagentsshowhighimmunogenicity,non-biodegradability,long
termtoxicity and poorpharmacokinetics, which stronglyaffect
their clinical application [87,88]. Haung et al. have reported
thedevelopmentofanearinfra-red(NIR)-loadedferritin,which
displayed strongabsorbance in theNIRregion for
photoacous-tic/fluorescence multimodal imaging-guided PTT [89,90]. The
as-designedferritin nanovector exhibited invivo highPTT
effi-cacyandlowsystemictoxicityincomparisontothefreedye[90].
Anotherkindofferritinnanoparticlehasbeendevelopedbythe
Cecigroupas aplatform for hyperthermia.Theyfunctionalized
theferritincagewiththemelanomatargetingpeptideandused
itasamineralizationchamberforthesynthesisofcobalt-doped
ferritenanoparticles.Theas-synthesizednanoparticleswere
uni-forminsize(6–7nm)andmorphology(spherical).Moreover,they
displayedaninvitrohyperthermicefficacyinverselyrelatedtothe
amountofCousedforthedoping[45].Altogether,thereporteddata
suggestthatferritinnanocagescouldbeapromisingvectorfor
pho-tothermaltherapy,althoughfurtherstudieshavetobeperformed
tobetterinvestigateferritin’spotentialinthisfield.
6. Conclusionsandfutureperspectives
Sofar,nanotechnologyhasemerged aspromisingfrontierin
cancertreatment. Super-paramagnetic iron oxide nanoparticles
(SPIONs)are beingtested in clinicaltrialsas magneticcontrast
agents for MRI and for intraoperative sentinel node
identifica-tionduringbreast cancersurgery [91,92].Liposomeshavebeen
alreadyestablishedinclinicalpracticeforimproving
bioavailabil-ityandreducingtoxicityprofileofsomeexcellentcytotoxicdrugs
associatedwithseverecardiotoxicity,suchasanthracyclines[93].
Nanoformulatedalbumin-bound paclitaxelhasbeennotoriously
introducedinclinicalmanagementofvarioustypesofcancerwith
encouraging results in terms of anticancer efficacy [94].
How-ever,thesebasicnanoparticleslacka specificmethodofcancer
targeting, and despite theirbenefit in reducing side effects of
cytotoxicdrugsin clinicaltrials,nosubstantialimprovementin
long-termoutcomeshasbeendocumented[95].Inthiscontext,
ferritinnanocagesappeartobepowerfulandfascinatingtoolsfor
bothimagingandtherapeuticpurposes,inparticularconsidering
thatferritinisaproteinnormallypresentinphysiologicalsystems.
Different strategies ofloading ferritin withdrugs,molecules
andmetalshavebeensuccessfullyexplored;nevertheless,some
aspects particularly regarding their kinetic release from the
nanovector still need to be investigated in detail. Much work
hasalreadybeendonetoincreasethetypesofmolecules
encap-sulated,particularly inthe case of non-metal-containingdrugs,
whichincludethemajorityofchemotherapeutics.However,afew
questionsremain:(1)thefateofferritinanditsderivativesafter
sys-temicinjectionand(2)thepossibilitytosuppressferritinuptakein
off-targetorgansand/orsequestrationbythereticulo-endothelial
system,and thereby(3)thehopetoextenda drug’shalf-lifeby
modifyingtheferritinsurfacewithstealthmoieties.Someresearch
groupshavetakenadvantageoftheabilityofH-ferritinto
specif-icallyrecognizeTfR1[33],areceptorexpressedonthesurfaceof
manytypesofcancercells[41].Othergroupshavechemicallyor
geneticallyinsertedtargetingmotifsontotheferritinsurface,to
improvetumorhoming[42–54].Thisstrategyhasbeen
demon-stratedtobeverypromising,sincetargetedtherapiesareprobably
thekeyforcancertreatment[96].Specifictargetingofcancercell
receptorsenhancesanticanceractivitybyselectiveinhibitionofthe
underlyingcellularpathways,andmediatesaselectivereleaseof
cytotoxicdrugs.However,despitethefactthatsurface
modifica-tionofferritin impartstargetspecificity,it isnotclearwhether
ornotthesemodificationsalterthenanoparticle’s
immunogenic-ity. Anotheraspectwhich shouldnot beunderestimated is the
possibilityofcombinationtherapy.Encapsulationofvariousdrugs
into thesame nanocage would provide contemporary multiple
anticancer activitiestowards various cancer survival pathways.
Finally, theintrinsic capabilityof ferritinnanocages toundergo
nucleartranslocationcanbeexploitedtodesignanovelclassof
smartnanodrugs,whichcouldactas“Trojanhorses”,by
releas-ingchemotherapyintothenucleusofcancercells,thusstrongly
improving theircytotoxic activity.At present, unfunctionalized
DOX-loadedferritinrepresentsthemostextensivelyinvestigated
oftheferritin-basednanoparticles,andseveralinvitroandinvivo
64 M.Truffietal./PharmacologicalResearch107(2016)57–65
nanoparticlesarecurrentlynotusedinclinicalpractice,and
fur-therresearchisrequiredbeforeclinicaltranslation.Ferritinhasalso
foundanintriguingapplicationinthefieldofinvivoimaging.
Partic-ularly,ferritin-basedcontrastagentsforMRIhavebeendeveloped,
providinganimagingplatformwithincreasedtumor
accumula-tionincomparisontothecontrastagentscurrentlyusedinclinical
practice.However,toxicity,biodistributionandclearanceofthese
nanocompoundsneedstobemoreclearlyunderstoodbeforetheir
clinicaltranslation.Overall,ferritinnanocagesarepromising
nano-platformsforimagingandtherapyofcancer.Someissuesstillneed
tobethoroughlyinvestigated,butmanysignificantresultshave
alreadybeenobtained.Physiologicalfeaturesandthe
bioengineer-ingversatilityofferritin-basednanocagesmaketheirtranslation
from bench to bedside a reasonable possibility. Moreover, the
combinationofimagingandtherapeuticfunctionalityintoferritin
nanocagesseemstobethemostpromisingandfascinatingfrontier
incancertheranostics.
Conflictofinterest
Theauthorsdeclarethatthereisnoconflictofinterest.
Acknowledgements
Theresearchwassupportedby FondazioneRegionaleper la
RicercaBiomedica(NANODRUGplatformproject).FRRBsupported
S.M,L.F.andM.T.WethankChiaraSRLandE.Fezzuoglioforfigures
andgraphicalabstract.
References
[1]B.W.Stewart,C.P.Wild,WorldCancerReport2014,in:W.BernardStewart,P. ChristopherWild(Eds.),InternationalAgencyforResearchonCancer,Lyon, 2014.
[2]M.Colombo,F.Corsi,E.Mazzantini,S.Mazzucchelli,C.Marasso,E.Occhipinti, L.Polito,D.Prosperi,S.Ronchi,P.Verderio,HER2targetingasatwo-sided strategyforbreastcancerdiagnosisandtreatment:outlookandrecent implicationsinnanomedicalapproaches,Pharm.Res.62(2010)150–165.
[3]A.Maham,Z.Tang,H.Wu,J.Wang,Y.Lin,Protein-basednanomedicine platformsfordrugdelivery,Small5(2009)1706–1721.
[4]D.Peer,J.M.Karp,S.Hong,O.C.Farokhzad,R.Margalit,R.Langer,Nanocarriers asanemergingplatformforcancertherapy,Nat.Nanotechnol.2(2007) 751–760.
[5]H.Mok,M.Zhang,Superparamagneticironoxidenanoparticle-baseddelivery systemsforbiotherapeutics,ExpertOpin.DrugDeliv.10(2013)73–87.
[6]S.Stanley,Biologicalnanoparticlesandtheirinfluenceonorganisms,Curr. Opin.Biotechnol.28(2014)69–74.
[7]W.H.DeWong,P.J.Borm,Drugdeliveryandnanoparticles:applicationsand hazards,Int.J.Nanomed.3(2008)133–149.
[8]C.T.Lefevre,D.A.Bazylinski,Ecology,diversityandevolutionofmagnetotactic bacteria,Microbiol.Mol.Biol.Rev.77(2013)497–526.
[9]A.Arakaki,H.Nakazawa,M.Nemoto,T.Mori,T.Matsunaga,Formationof magnetitebybacteriaanditsapplication,J.R.Soc.Interface5(2008)977–999.
[10]C.Lang,D.Schuler,D.Faivre,Synthesisofmagnetitenanoparticlesfor bio-andnanotechnology:geneticengineeringandbiomimeticsofbacterial magnetosomes,Macromol.Biosci.7(2007)144–151.
[11]A.Jonas,M.C.Phillips,Lipoproteinstructure,in:D.E.Vance,J.E.Vance(Eds.), BiochemistryofLipids,LipoproteinsandMembranes,ElsevierScience, Amsterdam,2008,pp.485–506.
[12]R.O.Ryan,Nanobiotechnologyapplicationsofreconstitutedhighdensity lipoprotein,J.Nanobiotechnol.8(2010)28.
[13]A.V.Vlassov,S.Magdaleno,R.Setterquist,R.Conrad,Exosomes:current knowledgeoftheircomposition,biologicalfunctions,anddiagnosticand therapeuticpotentials,Biochim.Biophys.Acta1820(2012)940–948.
[14]Z.Suntres,M.Smith,F.Momen-Heravi,J.Hu,X.Zhang,Y.Wu,H.Zhu,J.Wang, J.Zhou,W.Kuo,Therapeuticusesofexosomes,ExosomesMicrovesicles (2013),http://dx.doi.org/10.5772/56522.
[15]L.Varez-Erviti,Y.Seow,H.Yin,C.Betts,S.Lakhal,M.J.Wood,Deliveryof siRNAtothemousebrainbysystemicinjectionoftargetedexosomes,Nat. Biotechnol.29(2011)341–345.
[16]S.C.Jang,O.Y.Kim,C.M.Yoon,D.S.Choi,T.Y.Roh,J.Park,J.Nilsson,J.Lotvall, Y.K.Kim,Y.S.Gho,Bioinspiredexosome-mimeticnanovesiclesfortargeted deliveryofchemotherapeuticstomalignanttumors,ACSNano7(9)(2013) 7698–7710.
[17]A.Zeltins,Constructionandcharacterizationofvirus-likeparticles:areview, Mol.Biotechnol.53(2013)92–107.
[18]H.N.Munro,M.C.Linder,Ferritin:structure,biosynthesis,androleiniron metabolism,Physiol.Rev.58(1978)317–396.
[19]Z.Zhen,W.Tang,C.Guo,H.Chen,X.Lin,G.Liu,B.Fei,X.Chen,B.Xu,J.Xie, Ferritinnanocagestoencapsulateanddeliverphotosensitizersforefficient photodynamictherapyagainstcancer,ACSNano7(2013)6988–6996.
[20]C.Sun,H.Yang,Y.Yuan,X.Tian,L.Wang,Y.Guo,L.Xu,J.Lei,N.Gao,G.J. Anderson,X.J.Liang,C.Chen,Y.Zhao,G.Nie,Controllingassemblyofpaired goldclusterswithinapoferritinnanoreactorforinvivokidneytargetingand biomedicalimaging,J.Am.Chem.Soc.133(2011)8617–8624.
[21]J.F.Hainfeld,Uranium-loadedapoferritinwithantibodies
attached—moleculardesignforuraniumneutron-capturetherapy,Proc.Natl. Acad.Sci.U.S.A.89(1992)11064–11068.
[22]X.Lin,J.Xie,G.Niu,F.Zhang,H.Gao,M.Yang,Q.Quan,M.A.Aronova,G. Zhang,S.Lee,R.Leapman,X.Chen,Chimericferritinnanocagesformultiple functionloadingandmultimodalimaging,NanoLett.11(2011)814–819.
[23]Z.Zhen,W.Tang,H.Chen,X.Lin,T.Todd,G.Wang,T.Cowger,X.Chen,J.Xie, RGD-modifiedapoferritinnanoparticlesforefficientdrugdeliverytotumors, ACSNano7(2013)4830–4837.
[24]V.Laufberger,Surlacristallisationdelaferritine,Bull.Soc.Chim.Biol.19 (1937)1575–1582.
[25]P.Arosio,R.Ingrassia,P.Cavdini,Ferritins:afamilyofmoleculesforiron storage,antioxidationandmore,Biochim.Biophys.Acta1790(2009) 589–599.
[26]N.D.Charsteen,Ferritin.Uptake,storageandreleaseofiron,Met.IonsBiol. Syst.35(1998)479–514.
[27]M.Bellini,S.Mazzucchelli,E.Galbiati,S.Sommaruga,L.Fiandra,M.Truffi, M.A.Rizzuto,M.Colombo,P.Tortora,F.Corsi,D.Prosperi,Proteinnanocages forself-triggerednucleardeliveryofDNA-targetedchemotherapeuticsin CancerCells,J.ControlledRelease196(2014)184–196.
[28]K.J.Thompson,M.G.Fried,Z.Ye,P.Boyer,J.R.Connor,Regulation,mechanisms andproposedfunctionofferritintranslocationtocellnuclei,J.CellSci.115 (2002)2165–2177.
[29]T.Douglas,D.R.Ripoll,Calculatedelectrostaticgradientsinrecombinant humanH-chainferritin,ProteinSci.7(1998)1083–1091.
[30]L.Zhang,L.Li,A.DiPenta,U.Carmona,F.Yang,R.Schops,M.Brandsch,J.L. Zugaza,M.Knez,H-ChainFerritin,Anaturalnucleitargetingandbioactive deliverynanovector,Adv.HealthcareMater.4(2015)1305–1310.
[31]N.Surguladze,S.Patton,A.Cozzi,M.G.Fried,J.R.Connor,Characterizationof nuclearferritinandmechanismoftranslocation,Biochem.J.388(2005) 731–740.
[32]M.Kim,Y.Rho,K.Z.Jin,B.Ahn,S.Jung,H.Kim,ReeM.pH-dependent structuresofferritinandapoferritininsolution:disassemblyandreassembly, Biomacromolecules12(2011)1629–1640.
[33]L.Li,C.J.Fang,J.C.Ryan,E.C.Niemil,J.A.Lebrón,P.J.Björkman,H.Arase,F.M. Torti,S.V.Torti,M.C.Nakamura,W.E.Seaman,Bindinganduptakeof H-ferritinaremediatedbyhumantransferringreceptor-1,Proc.Natl.Acad. Sci.U.S.A.107(2010)3505–3510.
[34]K.Fan,L.Gao,X.Yan,Humanferritinfortumordetectionandtherapy,WIREs Nanomed.Nanobiotechnol.5(2013)287–298.
[35]T.T.Chen,D.H.Chung,C.D.Allen,S.V.Torti,F.M.Torti,J.G.Cyster,TIM-2is expressedonBcellsandinliverandkidneyandisareceptorforH-ferritin endocytosis,J.Exp.Med.202(2005)955–965.
[36]J.Han,W.E.Seaman,X.Di,W.Wang,M.Willingham,F.M.Torti,S.V.Torti,Iron uptakemediatedbybindingofH-ferritintotheTIM-2receptorinmouse cells,PLoSOne6(8)(2011)e23800.
[37]B.Todorich,X.Zhang,B.Slagle-Webb,W.E.Seaman,J.R.Connor,Tim-2isthe receptorforH-ferritinonoligodendrocytes,J.Neurochem.107(2008) 1495–1505.
[38]T.T.Chen,L.Li,D.-H.Chung,C.D.C.Allen,S.V.Torti,F.M.Torti,J.G.Cyster,C.-Y. Chen,F.M.Brodsky,E.C.Niemi,M.C.Nakamura,W.E.Seaman,M.R.Daws, TIM-2isexpressedonBcellsandinliverandkidneyandisareceptorfor H-ferritinendocytosis,J.Exp.Med.202(2005)955–965.
[39]T.T.Chen,L.Li,D.-H.Chung,C.D.C.Allen,S.V.Torti,F.M.Torti,J.G.Cyster,C.-Y. Chen,F.M.Brodsky,E.C.Niemi,M.C.Nakamura,W.E.Seaman,M.R.Daws,JEM 202(2005)655–965.
[40]J.Y.Li,N.Paragas,R.M.Ned,A.Qiu,M.Viltard,T.Leete,I.R.Drexler,X.Chen,S. Sanna-Cherchi,F.Mohammed,D.Williams,C.S.Lin,K.M.Schmidt-Ott,N.C. Andrews,J.Barasch,Scara5isaferritinreceptormediatingnon-transferrin irondelivery,Dev.Cell16(2009)35–46.
[41]K.Fan,C.Cao,Y.Pan,D.Lu,D.Yang,J.Feng,L.Song,M.Liang,X.Yan, Magnetoferritinnanoparticlesfortargetingandvisualizingtumourtissues, Nat.Nanotechnol.7(2012)459–464.
[42]E.Falvo,E.Tremante,R.Fraioli,C.Leonetti,C.Zamparelli,A.Boffi,V.Morea,P. Ceci,P.Giacomini,Antibody-drugconjugates:targetingmelanomawith cisplatinencapsulatedinprotein-cagenanoparticlesbasedonhumanferritin, Nanoscale5(2013)12278–12285.
[43]X.Lin,J.Xie,L.Zhu,S.Lee,G.Niu,Y.Ma,K.Kim,X.Chen,Hybridferritin nanoparticlesasactivatableprobesfortumorimaging,Angew.Chem.Int.Ed. 50(2011)1569–1572.
[44]Y.J.Kang,H.J.Yang,S.Jeon,Y.do,S.Y.Hong,S.Kang,Polyvalentdisplayof monosaccharidesonferritinproteincagenanoparticlesfortherecognition andbindingofceel-surfacelectins,Macromol.Biosci.14(2014)619–625.
treatment:cobalt-dopedferritenanoparticlesmineralizedinhumanferritin cages,ACSNano8(2014)4705–4719.
[46]M.Uchida,D.A.Willits,K.Muller,A.F.Wills,L.Jackiw,M.Jutila,M.J.Young, A.E.Porter,T.Douglas,Intracellulardistributionofmacrophagetargeting ferritin-ironoxidenanocomposite,Adv.Mater.21(2009)458–462.
[47]Z.Zheng,W.Tang,H.Chen,X.Lin,T.Todd,G.Wang,T.Cowger,X.Chen,J.Xie, RGD-modifiednanoparticlesforefficientdrugdeliverytotumors,ACSNano7 (2013)4830–4837.
[48]L.Vannucci,E.Falvo,M.Fornara,P.DiMicco,O.Benada,J.Krizan,J.Svoboda, K.Hulikova-Capkova,V.Morea,A.Boffi,P.Ceci,Selectivetargetingof melanomabyPEG-maskedprotein-basedmultifunctionalnanoparticles,Int.J. Nanomed.7(2012)1489–1509.
[49]J.-H.Lee,H.S.Seo,J.A.Song,K.C.Kwon,E.J.Lee,H.J.Kim,E.B.Lee,Y.J.Cha,J. Lee,Proteinticleengineeringforaccurate3Ddiagnosis,ACSNano7(2013) 10879–10886.
[50]E.J.Lee,S.J.Lee,Y.-S.Kang,J.H.Ryu,K.C.Kwon,E.Jo,J.Y.Yhee,I.C.Kwon,K. Kim,J.Lee,EngineeredproteinticlesfortargeteddeliveryofsiRNAtocancer cells,Adv.Funct.Mater.25(2015)1279–1286.
[51]M.Kanekiyo,C.-J.Wei,H.M.Yassine,P.M.McTamney,J.C.Boyington,J.R.R. Whittle,S.S.Rao,W.-P.Kong,L.Wang,G.J.Nabel,Self-assemblinginfluenza nanoparticlesvaccineselicitbroadlyneutralizingH1N1antibodies,Nature 499(2013)102–106.
[52]J.-A.Han,Y.J.Kang,C.Shin,J.-S.Ra,H.-H.Shin,S.Y.Hong,Y.Do,S.Kang, Ferritinproteincagenanoparticlesasversatileantigendelivery
nanoplatformsfordendriticcell(DC)-basedvaccinedevelopment,Nanomed.: Nanotechnol.Biol.Med.10(2014)561–569.
[53]S.GeninattiCrich,B.Bussolati,L.Tei,C.Grange,G.Esposito,S.Lanzardo,G. Camussi,S.Aime,Magneticresonancevisualizationoftumorangiogenesisby targetingneuralcelladhesionmoleculeswiththehighlysensitive
gadolinium-loadedapoferritinprobe,CancerRes.66(2006)9196–9201.
[54]M.Hwang,J.-W.Lee,K.E.Lee,K.H.Lee,Thinkmodular:asimple apoferritin-basedplatformforthemultifaceteddetectionofpancreatic cancer,ACSNano9(2013)8167–8174.
[55]D.He,J.Marles-Wright,Ferritinfamilyproteinsandtheirusein bionanotechnology,NewBiotechnol.32(2015)651–657.
[56]I.Yamashita,K.Iwahori,S.Kumagai,Ferritininthefieldofnanodevices, Biochim.Biophys.Acta1800(2010)846–857.
[57]F.C.Meldrum,B.R.Heywood,S.Mann,Magnetoferritin:invitrosynthesisofa novelmagneticprotein,Science257(1992)522–523.
[58]F.C.Meldrum,T.Douglas,S.Lesi,P.Arosio,S.Mann,Reconstitutionof manganeseoxidecoresinhorsespleenandrecombinantferritins,J.Inorg. Chem.58(1995)59–68.
[59]T.Douglas,V.T.Stark,Nanophasecobaltoxihydroxidemineralsynthesis withintheproteincageofferritin,Inorg.Chem.39(2000)1828–1830.
[60]M.Okuda,K.Iwahori,I.Yamashita,H.Yoshimura,FabricationofNickeland chromiumnanoparticlesusingtheproteincageofapoferritin,Biotech. Bioeng.84(2003)187–193.
[61]R.Xing,X.Wang,L.Yan,C.Zhang,Z.Tang,X.Wang,Z.Guo,Fabricationof watersolubleandbiocompatibleCdSenanoparticlesinapoferritinwiththe aidofEDTA,DaltonTrans.(2009)1710–1713.
[62]I.Yamashita,J.Hayashi,M.Hara,Bio-templatesynthesisofuniformCdSe nanoparticlesusingcage-shapedproteinapoferritin,Chem.Lett.33(2004) 1158–1159.
[63]K.Iwahori,K.Yoshizawa,M.Muraoka,I.Yamashita,FabricationofZnSe nanoparticlesintheapoferritincavitybydesigningaslowchemicalreaction system,Inorg.Chem.44(2005)6393–6400.
[64]K.Iwahori,I.Yamashita,FabricationofCdSnanoparticlesinthebio-template, apoferritincavitybyaslowchemicalreactionsystem,J.Phys.CS61(2007) 492–496.
[65]K.Iwahori,I.Yamashita,Size-controlledone-potsynthesisoffluorescent cadmiumsulfidesemiconductornanoparticlesinanapoferritincavity, Nanotechnology19(2008)495601.
[66]A.Jaaskelainen,T.Soukka,T.Lamminmaki,T.Korpimaki,M.Virta, Nanotechnology-basedapproachesforthedevelopmentofdiagnostics, therapeutics,andvaccines,Biotechnol.Bioeng.102(2009)1012–1024.
[67]J.M.Dominguez-Vera,Iron(III)complexationofDesferoxamineB encapsulatedinapoferritin,J.Inorg.Biochem.75(2004)3145–3157.
[68]Z.Yang,X.Wang,H.Diao,J.Zhang,H.Li,H.Sun,Z.Guo,Encapsulationof platinumanticancerdrugsbyapoferritin,Chem.Commun.33(2007) 3453–3455.
[69]R.Xing,X.Wang,C.Zhang,Y.Zhang,Q.Wang,Z.Yang,Z.Guo, Characterizationandcellularuptakeofplatinumanticancerdrugs encapsulatedinapoferritin,J.Inorg.Biochem.103(2009)1039–1044.
[70]H.-T.Ji,L.Huang,H.-Q.Huang,Constructionofnanometercisplatin core-ferritin(NCC-F)andproteomicanalysisofgastriccancercellapoptosis inducedwithcisplatinreleasedfromtheNCC-F,J.Proteomics75(2012) 3145–3157.
[71]A.Maham,H.Wu,J.Wang,X.Kang,Y.Zhang,Y.Lin,Apoferritin-based nanomedicineplatformfordrugdelivery:equilibriumbindingstudyof daunomycinwithDNA,J.Mater.Chem.21(2011)8700–8708.
[72]M.Liang,K.Fan,M.Zhou,D.Duan,J.Zheng,D.Yang,J.Feng,X.Yan, H-ferritin-nanocageddoxorubicinnanoparticlesspecificallytargetandkill tumorswithasingle-doseinjection,Proc.Natl.Acad.Sci.U.S.A.111(2014) 14900–14905.
[73]M.A.Kilic,E.Ozlu,S.Calis,Anovelprotein-basedanticancerdrug encapsulatingnanosphere:apoferritin-doxorubicincomplex,J.Biomed. Nanotechnol.8(2012)508–514.
[74]L.Chen,G.Bai,S.Yang,R.Yang,G.Zhao,C.Xu,W.Leung,Encapsulationof curcumininrecombinanthumanH-chainferritinincreasesits
water-solubilityandstability,FoodRes.Int.62(2014)1147–1153.
[75]J.F.Hainfeld,Uranium-loadedapoferritinwithantibodiesattached-molecular designforuraniumneutron-capturetherapy,Proc.Natl.Acad.Sci.U.S.A.89 (1992)11064–11068.
[76]M.N.Plana,C.Carreira,A.Muriel,M.Chiva,V.Abraira,J.I.Emparanza,X. Bonfill,J.Zamora,Magneticresonanceimaginginthepreoperative assessmentofpatientswithprimarybreastcancer:systematicreviewof diagnosticaccuracyandmeta-analysis,Eur.Radiol.22(1)(2012)26–38.
[77]I.Millet,E.Pages,D.Hoa,S.Merigeaud,F.CurrosDoyon,X.Prat,P.Taourel, PearlsandpitfallsinbreastMRI,Br.J.Radiol.85(1011)(2012)197–207.
[78]C.Cao,X.Wang,Y.Cai,L.Sun,L.Tian,H.Wu,X.He,H.Lei,W.Liu,G.Chen,R. Zhu,Y.Pan,TargetedInvivoimagingofmicroscopictumorswith ferritin-Basednanoprobesacrossbiologicalbarriers,Adv.Mater.26(2014) 2566–2571.
[79]M.Uchida,M.L.Flenniken,M.Allen,D.A.Willits,B.E.Crowley,S.Brumfield, A.F.Willis,L.Jackiw,M.Jutila,M.J.Young,T.Douglas,Targetingofcancercells withferrimagneticferritincagenanoparticles,J.Am.Chem.Soc.128(2006) 16626–16633.
[80]Y.Cai,C.Cao,X.He,C.Yang,L.Tian,R.Zhu,Y.Pan,Enhancedmagnetic resonanceimagingandstainingofcancercellsusingferromagneticH-ferritin nanoparticleswithincreasingcoresize,Int.J.Nanomed.10(2015)2619–2634.
[81]P.Sanchez,E.Valero,N.Galvez,J.M.Domínguez-Vera,M.Marinone,G.Poletti, M.Corti,A.Lascialfari,MRIrelaxationpropertiesofwater-soluble
apoferritin-encapsulatedgadoliniumoxide-hydroxidenanoparticles,Dalton Trans.5(2009)800–804.
[82]F.K.Kalman,S.Geninatti-Crich,S.Aime,Reduction/dissolutionofa beta-MnOOHnanophaseintheferritincavitytoyieldahighlysensitive, biologicallycompatiblemagneticresonanceimagingagent,Angew.Chem.Int. Ed.Engl.49(2010)612–615.
[83]S.Aime,L.Frullano,S.Geninatti-Crich,Compartimentalizationofa
gadoliniumcomplexintheapoferritincavity:aroutetoobtainhighrelaxivity contrastagentsformagneticresonanceimaging,Angew.Chem.Int.Ed.Engl. 114(2002)1059–1061.
[84]C.Chi,Y.Du,J.Ye,D.Kou,J.Qiu,J.Wang,J.Tian,X.Chen,Intraoperative imaging-guidedcancersurgery:fromcurrentfluorescencemolecularimaging methodstofuturemulti-modalityimagingtechnology,Theranostics4(11) (2014)1072–1084.
[85]X.Li,L.Qui,P.Zhu,X.Tao,T.Imanaka,J.Zhao,Y.Huang,Y.Tu,X.Cao, Epidermalgrowthfactor-ferritinH-chainproteinnanoparticlesfortumor activetargeting,Small8(2012)2505–2514.
[86]W.S.Kuo,C.N.Chang,Y.T.Chang,M.H.Yang,Y.H.Chien,S.J.Chen,C.S.Yeh, Goldnanorodsinphotodynamictherapy,ashyperthermiaagents,andin near-Infraredopticalimaging,Angew.Chem.Int.Ed.122(2010)2771–2775.
[87]Z.Zha,Z.Deng,Y.Li,C.Li,J.Wang,S.Wang,E.Qu,Z.Dai,Biocompatible polypyrrolenanoparticlesasanovelorganicphotoacousticcontrastagentfor deeptissueimaging,Nanoscale5(2013)4462–4467.
[88]A.Fernandez-Fernandez,R.Manchanda,T.Lei,D.A.Carvajal,Y.Tang,S.Z. Kazmi,A.J.McGoron,Comparativestudyoftheopticalandheatgeneration propertiesofIR820andindocyaninegreen,Mol.Imaging11(2012)99–113.
[89]F.P.Gao,Y.X.Lin,L.L.Li,Y.Liu,U.Mayerhöffer,P.Spenst,J.G.Su,J.Y.Li,F. Würthner,H.Wang,Supramolecularadductsofsquaraineandproteinfor noninvasivetumorimagingandphotothermaltherapyinvivo,Biomaterials 35(2014)1004–1014.
[90]P.Huang,P.Rong,A.Jia,X.Yan,M.G.Zhang,J.Lin,H.Hu,Z.Wang,X.Yue,W. Li,G.Niu,W.Zeng,W.Wang,K.Zhou,X.Chen,Dye-loadedferritinnanocages formultimodalimagingandphotothermaltherapy,Adv.Mater.26(2014) 6401–6408.
[91]Z.Bakhtiary,A.A.Saei,M.J.Hajipour,M.Raoufi,O.Vermesh,M.Mahmoudi, Targetedsuperparamagneticironoxidenanoparticlesforearlydetectionof cancer:possibilitiesandchallenges,Nanomedicine(2015),http://dx.doi.org/ 10.1016/j.nano.2015.10.019.
[92]M.Ahmed,B.Anninga,S.Goyal,P.Young,Q.A.Pankhurst,M.Douek, MagSNOLLTrialistsGroup:magneticsentinelnodeandoccultlesion localizationinbreastcancer(MagSNOLLTrial),Br.J.Surg.102(6)(2015) 646–652.
[93]E.Tahover,Y.P.Patil,A.A.Gabizon,Emergingdeliverysystemstoreduce doxorubicincardiotoxicityandimprovetherapeuticindex:focuson liposomes,AnticancerDrugs.26(3)(2015)241–258.
[94]X.Yu,C.Jin,Applicationofalbumin-basednanoparticlesinthemanagement ofcancer,J.Mater.Sci.Mater.Med.27(1)(2016)4,http://dx.doi.org/10.1007/ s10856-015-5618-9.
[95]M.Xing,F.Yan,S.Yu,P.Shen,Efficacyandcardiotoxicityofliposomal doxorubicin-basedchemotherapyinadvancedBreastcancer:ameta-analysis oftenrandomizedcontrolledtrials,PLoSOne10(7)(2015)e0133569.