• Non ci sono risultati.

package Phenopix: for A image-based R vegetation phenology Agricultural and Forest Meteorology

N/A
N/A
Protected

Academic year: 2022

Condividi "package Phenopix: for A image-based R vegetation phenology Agricultural and Forest Meteorology"

Copied!
10
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Agricultural and Forest Meteorology

jo u rn al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / a g r f o r m e t

Phenopix: A R package for image-based vegetation phenology

Gianluca Filippa

a,∗

, Edoardo Cremonese

a

, Mirco Migliavacca

b

, Marta Galvagno

a

, Matthias Forkel

b,1

, Lisa Wingate

c

, Enrico Tomelleri

d

, Umberto Morra di Cella

a

, Andrew D. Richardson

e

aEnvironmentalProtectionAgencyofAostaValley,ARPAValledAosta,ClimateChangeUnit,Italy

bMaxPlanckInstituteforBiogeochemistry,DepartmentBiogeochemicalIntegration,Jena,Germany

cINRA,UMRISPA,Bordeaux,France

dInstituteforAppliedRemoteSensing,EURAC,Bolzano,Italy

eHarvardUniversity,DepartmentofOrganismicandEvolutionaryBiology,Cambridge,MA,USA

a r t i c l e i n f o

Articlehistory:

Received15October2015 Receivedinrevisedform 29December2015 Accepted7January2016

Keywords:

Imageanalysis Communityecology Pixel-basedanalysis Phenology

a b s t r a c t

InthispaperweextensivelydescribenewsoftwareavailableasaRpackagethatallowsfortheextraction ofphenologicalinformationfromtime-lapsedigitalphotographyofvegetationcover.ThephenopixR packageincludesallstepsindataprocessing.Itenablestheuserto:drawaregionofinterest(ROI)onan image;extractredgreenandbluedigitalnumbers(DN)fromaseasonalseriesofimages;depictgreen- nessindextrajectories;fitacurvetotheseasonaltrajectories;extractrelevantphenologicalthresholds (phenophases);extractphenophaseuncertainties.

Thesoftwarecapabilitiesareillustratedbyanalyzingoneyearofdatafromaselectionofsevensites belongingtothePhenoCamnetwork(http://phenocam.sr.unh.edu/),includinganunmanagedsubalpine grassland,atropicalgrassland,adeciduousneedle-leafforest,threedeciduousbroad-leaftemperate forestsandanevergreenneedle-leafforest.Oneofthenoveltiesintroducedbythepackageisthespatially explicit,pixel-basedanalysis,whichpotentiallyallowstoextractwithin-ecosystemorwithin-individual variabilityofphenology.Weexaminetherelationshipbetweenphenophasesextractedbythetraditional ROI-averagedandthenovelpixel-basedapproaches,andfurtherillustratepotentialapplicationsofpixel- basedimageanalysisavailableinthephenopixRpackage.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

Traditional monitoring of plant phenology relies on direct human observations of discrete phenological events, or phenophases, such as bud-burst, flowering, autumn decolour- ing,and leaf-fall(e.g.Lechowicz,1984;Richardsonet al.,2006;

Galvagnoetal.,2013;Migliavaccaetal.,2008;Filippaetal.,2015).

Such observations are typically made on a limited number of individualorganisms,acrossalimitedgeographicarea(i.e.,often ata specific researchsite). On theotherhand, satelliteremote sensingallowsobserving landsurfacephenology onregionalto globalscalesbuthasalimitedrepresentativenessforphenological changesatecosystemorspecies-level(WhiteandNemani,2006;

Delbartetal.,2005;Busettoetal.,2010;Hufkensetal.,2012;Forkel

∗ Correspondingauthor.

E-mailaddress:g.filippa@arpa.vda.it(G.Filippa).

1 Nowat:TechnischeUniversitäenDepartmentofGeodesyandGeoinformation ResearchGroupRemoteSensing,Vienna,Austria.

etal.,2015).Atanintermediatescale,near-surfaceremotesensing of phenologymakes useof radiometricinstruments orimaging sensors.Near-surfaceremotesensingquantifies,athightemporal resolution,and withaflexible degreeofspatialintegration(i.e., the potentialtolook acrossthe canopy asa whole, but at the sametimefocusonindividualorganisms),seasonalchangesinthe opticalpropertiesofvegetatedsurfaces(e.g.Jenkinsetal.,2007;

Richardsonetal.,2007;Soudanietal.,2012).Recentstudieshave demonstratedthesoundnessofdigitalcamerasasmulti-channel imagingsensors(Richardsonetal.,2009;Klostermanetal.,2014;

Wingateetal.,2015;Migliavaccaetal.,2011).

Intherecentliterature,differentapproacheshavebeenusedto processdigitalimagesofthevegetationcanopy.Severalresearchers haveexhaustivelyaddressedtheissuesofdataqualityanddata filtering in order to reduce noise in the seasonal trajectories of greenness (e.g. Sonnentag et al., 2012; Julitta et al., 2014;

Migliavacca et al., 2011). Other authors focused on curve fit- ting/smoothing methodsfor extracting datesfromphenological time-series(i.e.phenophases,seee.g.Zhangetal.,2003;Becketal., 2006;Guetal.,2009;Elmoreetal.,2012;Klostermanetal.,2014 http://dx.doi.org/10.1016/j.agrformet.2016.01.006

0168-1923/©2016ElsevierB.V.Allrightsreserved.

(2)

Table1

MaincharacteristicsoftheselectedPhenoCamsites.

SiteID Coords() Elev(m) PFT Cameratype Dominantspecies

Torgnon-ND 45.8N7.6E 2160 GRA NikonD5000 Nardusstricta

Kamuela 20.0N−155.7E 850 GRA Stardot C3/C4grasses

Bartlett 44.1N−71.3E 268 DBF Axis211 Acerrubrum;Fagusgrandifolia

Harvard 42.5N−72.1E 340 DBF Stardot Quercusrubra;Acerrubrum

Mammothcave 37.2N−86.1E 226 DBF Stardot Quercussp.;Caryasp.

Torgnon-LD 45.8N7.6E 2091 DNF NikonD5000 Larixdecidua

Harvardhemlock 42.5N−72.2E 345 ENF Stardot Tsugacanadensis

PFT:plantfunctionaltype,GRA:grassland,DBF:deciduousbroadleafforest,DNF:deciduousneedle-leafforest,ENF:evergreenneedle-leafforest.

andthegreenbrownRpackage).Thefullexploitationoftheexisting plethoraofmethodsandapproacheswouldbenefitfromacompre- hensiveframeworkinwhichtocomparethemacrossecosystem typesandclimateconditions.

Phenologicalnetworksbasedontheanalysisofdigitalimages aregrowingworldwide. IntheUS,PhenoCam networkincludes

over200sitesthatuseastandardcameraandfollowastandardpro- tocol(phenocam.sr.unh.edu/webcam/).InEurope,theEUROPHEN networkconsistsofabout60fluxsitesequippedwithdigitalcam- eras(Wingateetal.,2015).Similarnetworksarealsopresentin Australia(www.aceas.org.au,Brownetal.inpreparation)andAsia (NasaharaandNagai,2015).Theincreasinguseofrepeateddigital

Fig.1. AsampleimagefromallPhenoCamsitesincludedinthisstudymaskedonthechosenregionofinterest(ROI),alongwiththeseasonaltrajectoriesoffilteredGCCin year2013.EcosystemtypeabbreviationsareasinTable1.

(3)

photographyforphenologicalresearchhighlightstheneedofeasy- to-use,opensourceandflexiblesoftwaretoolsfortheprocessing oftheimages.Additionally,theexistingnetworksarepoorlycoor- dinatedintermsofcameratypes,settingsandsamplingprotocols, thuspresentingabigchallengetobuildaflexibletoolcapableof facingthelargediversityofecosystems,imagequalityandsetups.

In this paper we present a collection of functions packed in a software available as a R package (R Core Team, 2015), calledphenopix(http://r-forge.r-project.org/projects/phenopix/).

We will first showthe main features of thepackage and then illustrateitsapplicationonaselectionofsitesbelongingtothePhe- noCamdataset.Lastly,asectionfocusedonpixel-basedanalysis will:(1)examinetherelationshipbetweenphenologicalthresh- olds(phenophases)extractedfromtheaverageseasonaltrajectory ofgreennessoveraregionofinterest(ROI-averagedapproach)and fromeachpixelofsuchregion(pixel-basedapproach);(2)illustrate potentialapplicationsofpixel-basedimageanalysistodiscriminate betweensubtlydifferentphenologicalseasonaltrajectorieswithin thesameimagescene.

2. PhenoCamsites

The study sites used to illustrate the functionality of the phenopix package belong to the PhenoCam network (pheno- cam.sr.unh.edu/webcam/)andareillustratedinTable1andFig.1.

3. Mainfunctions

Thetypicalwork-flowofthephenopixpackageissummarised in theflowchartshown in Fig.2. First, one(ormore) region(s) ofinterest(ROI)is(are)chosen,thendigitalcolournumbersare extractedfromtheROIofeachimage,andprocessedtoobtaina seasonaltimeseries.Afterfilteringthetime series,dataarefit- tedwitheitheradoublelogisticequationorasmoothingcurve,

onwhich phenological thresholds (phenophases) areextracted.

Finally,uncertaintyofthefitandofphenophasescanbecomputed.

3.1. Regionsofinterest(ROIs)

Thesceneofthepicturerarelyincludesonlythetargetedvege- tationcanopy,thustheuserwillwanttochooseaparticularregion withinthe scenefor analysis.Even more often,more thanone regionmaybeofinterest,forexampleinamixedforestonemight independentlyanalysedifferentdeciduousspeciesandevergreen trees(e.g.Ahrendsetal.,2008).ThefunctionDrawROI()allowsthe usertodrawoneormoreregionsofintereston-screen,usingthe mousecursoronachosenreferencepicture.

3.2. Extractvegetationindices

Fromthedigitalcolourvaluesofeachimagethegreenchromatic coordinate(GCC)iscomputed.GCCisavegetationindexderived fromphotographicimageandquantifiesthegreennessrelativeto thetotalbrightness.GCCiscomputedasfollows:

GCC= GDN

RDN+GDN+BDN (1)

whereGDN,RDN,BDNarethegreen,redandbluedigitalnumbers, respectively (Gillespieet al.,1987).Similarly, chromaticcoordi- natesof redandblue (RCC andBCC)are alsocomputed.Several indicesbasedonRGBcolourshavebeendevelopedinthelastyears, includingforexamplethegreenexcessindex(GEI)(Woebbecke et al.,1995; Mizunumaet al.,2013).Someauthorsalso useda combinationofGCCandRCCtoextractautumnphenophases(e.g.

Klostermanetal.,2014).Forsimplicity,allsubsequentanalyseswill befocusedonGCCbutphenopixallowstheanalysisofthewhole varietyofcolourindices,includingthecomputationofnewones.

Fig.2.Thework-flowoftheprocessingchaininthephenopixRpackage.Redandblueobjectsdenotespecificfeaturesofpixel-basedandROI-averagedapproaches,respec- tively.Pixel-basedapproachproducesaphenophasemap(left),whereasROI-averagedapproachresultsinaGCCseasonaltrajectoryandacertainnumberofphenophases, dependingonthemethodchosen(right).TheexampleisfromTorgnon-NDgrasslandsiteinyear2013.(Forinterpretationofthereferencestocolourinthisfigurelegend, thereaderisreferredtothewebversionofthisarticle.)

(4)

Table2

Doublelogisticmodeloptionsavailableinphenopix,alongwiththeiroptionnamesasimplementedinthepackage.Thefirsttwomethods werefirstimplementedinthegreenbrownRpackageanddescribedinForkeletal.(2015).

Equation Reference Optionname

f(t)=mn+(mx-mn)·



1

1+e(−rsp∗(t−sos))+1+e(rau∗(t−eos))1



Becketal.(2006) ‘beck’

f(t)=m1+(m2m7t)·



1

1+e(m3−t)/m4 1

1+e(m5−t)/m6



Elmoreetal.(2012) ‘elmore’

f(t)=(a1t+b1)+(a2t2+b2t+c)·



1

[1+q1e−h1(t−n1)]v1 1

[1+q2e−h2(t−n2)]v2



Klostermanetal.(2014) ‘klosterman’

f(t)=y0+ a1

[1+e−(t−t01)/b1]c1

a2

[1+e−(t−t02)/b2]c2

Guetal.(2009) ‘gu’

Table3

Methodsforphenophaseextractionavailableinphenopix.

Name Phenophases Description

trs sos,eos,los,pop,mgs,peak,msp,mau Basedonauser-definedthresholdofseasonaldevelopmentofGCC

derivatives asTRSplusrspandrau Basedonlocalextremesinthefirstderivative

klosterman Greenup,Maturity,Senescence,Dormancy Basedonlocalextremesintherateofchangeofcurvaturek(Kline,1998) gu UD,SD,DD,RD,prr,psr Basedonacombinationoflocalmaximainthefirstderivative(Guetal.,2009) sos:startofseason,eos:endofseason,los:lengthofseason,pop:peakofseasonposition,peak:maximumseasonalGCC,mgs:meangrowingseasonGCC,msp:meanspring GCC,mau:meanautumnGCC,rsp:rateofspringgreenup,rau:rateofautumnsenescence,UD:upturndate,SD:stabilisationdate,DD:downturndate,RD:recessiondate, prr:peakrecoveryrate,psr:peaksenescencerate.

ThefunctionextractVIs()extractsrawred,greenandblue digitalnumbersfromeachpixelintheROI,andcomputescolour chromaticcoordinatesasinEq.(1).Vegetationindicescanbecom- putedonROIswith2approaches (Fig.2):(1) theROI-averaged approach:colour chromatic coordinatesare computed foreach pixeland thenaveragedover thewholeROI, and(2) thepixel- basedapproach,whereeachpixelbelongingtotheROIisanalysed separately(Section 5).Theprocedureisrepeatedforeachimage inthearchive.Atime-stampisretrievedfromthefilenameofthe imageandatimeseriesofthecomputedindicesisreturned.Specific rulesmustbefollowedinnamingtheimagefiles,andthereaderis referredtothepackagehelppagesformoredetails.

3.3. Datafiltering

Dataretrievedfromimagesoftenneedrobustmethodsforfilter- ingthetimeseries.Badweatherconditions,lowilluminationand dirtylensesareamongthemostcommonissuesthatdetermine noiseinthetimeseriesofvegetationindices.Previousstudies(e.g.

Sonnentagetal.,2012;Julittaetal.,2014;Migliavaccaetal.,2011;

Papaleetal.,2006)providethebackgrounduponwhichthefiltering techniquesimplementedinphenopixwerechosen.Wedesigned afunctionautoFilter()basedon5differentapproaches.

(1)AfiltercallednightwhichremovesGCCrecordslowerthana certainthreshold,bydefault0.2.Thisfiltersremovesnightdataor imageswithveryscarceillumination(e.g.earlymorningorsunset images,cloudydays,etc.).

(2)Afiltercalledblue,basedonbluechromaticcoordinate(BCC) (Julittaetal.,2014).First,hourlyBCCdataisaggregatedatadaily resolutionanddailymeansandstandarddeviationsarecomputed.

Aquantile (bydefault the5th percentile)is then calculatedon standarddeviations.Thisthresholdisthenaddedandsubtracted fromthedaily meanBCC togeneratea seasonal envelope.Raw datafallingoutsidethisenvelopearediscarded.Thebluefilterwas designedtoremoveimageswithdominantcloudsand/orsnowon thecanopy,becausethebluechromaticcoordinatewasfoundtobe verysensitivetosuchconditions.

(3)Afiltercalledmad,followingthemethodofPapaleetal.

(2006),anoutlierdetectionbasedonthedouble-differencedtime series,usingthemedianofabsolutedeviationaboutthemedian (MAD)thatisarobustoutlierestimator.

Fig. 3.Illustration of the methods used to extract phenological thresholds (phenophases)inaseasonalGCCtrajectory(f(t)).(a)trsmethod:Phenophasesare definedasthedayofyear(DOY)whenthe50%GCCisreachedeitherduringgreenup (sos)andautumn(eos),theDOYofmaximumGCCiscalledpop;(b)derivatives method:PhenophasesaredefinedastheDOYwhenf(t)showstheabsolutemax- imumandminimum;(c)Klostermanmethod:Phenophasesaredefinedasthetwo localmaxima(greenup)andtwolocalminima(autumn)intherateofchangein curvaturek(Kline,1998;Klostermanetal.,2014)andarenamedafterZhangetal.

(2003);(d)Gumethod:Maximumandminimumoff(t)areusedtodefineslopes ofrecoveryandsenescencelinestangenttothecurves(greenandbrownlines).

Theintersectionbetweentheselinesandbaselineandmaxlinedefinethefour phenophasesintheoriginalformulation(Guetal.,2009).Toaccountforthemid seasondecreaseinGCCwehavefurtherdefinedaplateaulineasalinearfittoGCC

valuesbetweenSDandDD,inordertoadjustthedefinitionofphenophaseDD.For phenophaseabbreviationsanddetailsseeTable3.(Forinterpretationoftherefer- encestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthis article.)

(5)

Fig.4. AllfittingandphenophasemethodsappliedtoHarvarddeciduousforestGCCseasonaltrajectoryinyear2013.ThisplotistheoutputfromthefunctionsgreenExplore() andplotExplore().Plotsinthesamerowsharethesamefittingmethod,whereasthoseinthesamecolumnsharethesamephenophaseextractionmethod.TheRMSEfor eachfittingisalsoannotatedinthefirstcolumn.

(4)Afiltercalledspline,followingthemethodofMigliavacca etal. (2011),based onrecursivesplinesmoothingand residual computationfollowedbyremovalofoutliersfallingoutsideagiven residualenvelope.

(5)Afiltercalledmax,followingthemethodofSonnentagetal.

(2012),basedontheidentificationofthe90thpercentilevaluesin three-daysmovingwindows.

Filterscanbeappliedaloneorinsequencesothattheusercan choosethebestcombinationoffiltersthatsuitstheimagearchive tobeprocessed.Additionally,each filterhasitsown discarding criteriathatmaybetunedbytheuseraccordingtothequalityof theinputGCC timeseries.Thedefault behaviourof thefiltering functionistousea sequenceofnight, splineand maxfilters. In general,thissequencewillbeeffectiveenoughtoproperlyfilter theGCCtimeseries.Theuserisadvisedtoapplythemaxfilterto effectivelyminimisetheimpactofchangesinsceneillumination (Sonnentagetal.,2012).

3.4. FitacurvetotheGCCseasonalcourseandextract phenophases

Theextractionofphenophasesis donein twosteps(follow- ingtheapproachofForkeletal.,2015;Klostermanetal.,2014).

First, a curve is fitted tothe GCC seasonalcurve to reducethe influenceofsingleobservationandtobettercapturetheseasonal behaviour.Ina secondstepdifferentextractionmethodscanbe usedtoretrievephenophasemetricsfromthefittedseasonalcurve.

Weselectedfourdifferentdoublelogisticequationstobeincluded inthepackage (Table2).Theequationsdifferin thenumberof parameterstobeoptimisedandhenceintheflexibilityofthefitting curves.For athoroughexaminationofthefittingsandexplana- tionofcurveparameters,seethecorrespondentpublications.In

additiontothedoublelogisticequations,anapproachbasedona smoothedcubicsplineisalsoavailable.Therearecases,e.g.with verynoisytimeseriesorweaksignal(lowseasonalamplitudein greenness)where thedoublelogisticfitsfail. Insuchcases,the splinemethodistheonlypossibilitytoextractaseasonaltrajectory.

Aftercurvefitting,asuiteofdifferentapproachesisavailable toextractphenophases,assummarisedinTable3,andillustrated inFig.3.Thephenophaseextractionmethodsleadtothedefini- tionofdatesthatmayhavemarkedlydifferentecologicalmeanings andbeusefulforseveralapplicationsinthefieldofenvironmental

Fig.5. Phenophasesasdeterminedbythebreakpointanalysis(PhenoBP()func- tion)applied toKamuela grasslandGCC seasonal trajectoryinyear2013. The thicknessoftheverticaldashedlinesisproportionaltotheuncertaintyofthe extractedbreakpoints(samescaleasthex-axis).Uncertaintyisestimatedusing thefunctionconfint()asthe95%confidenceinterval.

(6)

Fig.6. TheuncertaintyanalysisappliedtoHarvarddeciduousforestGCCseasonaltrajectoryinyear2013.Thegreylinesrepresentthe500simulatedcurvesonwhich phenophasesareextracted.Shadedareasonphenophasesrepresent10thand90thpercentilesofthe500replications.DataarefittedusingtheKlostermanmethod.

Phenophasesareextractedwith(a)thetrsmethod;(b)thederivativesmethod,(c)Klostermanmethod,(d)Gumethod.

sciences.Howeverthediscussionofsuchmeaningsisbeyondthe objectivesofthispresentationpaper,andthereaderisreferredto thepublicationslistedinTable2forfurtherinformation.Hereitis importanttopointoutthattheavailabilityofverysimplemeth- ods(e.g.trs)andmoresophisticatedones(e.g.Klostermanmethod) allowtheusertochoosetheextractionmethodbettersuitedtothe phenologicaltrajectoryoftheinvestigatedecosystemand/orbased onthequalityoftheinputdata.

Thecombinationoffourfittingmethodsplusthecubicspline smoothingwiththefourphenophaseextractionmethodsproduces 20differentavailablecombinationsinoutputfromasingleyearly GCCtimeseries.Aspecificfunction(greenExplore())isdesigned togiveanoverviewofallfittingsandphasesforagivendataset (Fig.4).TheRMSEforeachfitisalsoshown,sothattheusercanuse itasacriterionforfitselection.Oncethefitischosen,byexamin- ingtheplotalongarowtheusercanevaluatewhichphenophase methodismoresuitabletotheGCCtimeseries.Thepossibilityto combinedifferentfittingandphenophasemethodstoaGCCtime seriesprovidesa framework inwhich tocompare indetail the differentmethodscurrentlyinuse.Thisneedwashighlightedby Keenanetal.(2014)inarecentattempttolinkforestphenologyas describedbytime-lapsephotographyandphysiologyasdescribed bytraditionalplanttraitmeasurements.

In addition tothe above described methods, phenopix also implements a phenophase extraction method (function Phe- noBP())basedonlinearpiecewiseregressionandcorrespondent breakpointsinthetimeseries(Wingateetal.,2015).Thismethod wasdesignedtoaccommodatemultiplegreeningpeaksduringthe sameseason,whichistypical,forexample,ofwaterlimitedecosys- temssuchasKamuela(Fig5)ormanagedgrasslandsandcroplands.

4. Estimationoftheuncertainty

Traditionally,theanalysisofdigitalimagesforphenologyhas rarely included the estimation of uncertainty on phenophase

extraction,despiteitsparamountimportance(e.g.fortheevalu- ationofmethodrobustnessandasinputdatafortheoptimisation ofprocess-basedorlandsurfacemodels,wherephenologyiscur- rentlypoorlyrepresented(Richardsonetal.,2013)).

Thephenopixpackageprovidestwoapproachesfortheesti- mationofuncertainty,oneforthefitteddoublelogisticequations and onefor the smoothingsplinemethod. For thefittedequa- tionstheresidualsbetweenthemodelfitandtheobserveddata areusedtogeneraterandomnoise andfitting isappliedrecur- sivelytorandomly-noisedoriginaldata.Thisprocedureresultsin anensembleofcurvesandcurveparametersonwhichphenophase extractionisperformed,thusprovidinganuncertaintyestimateof phenophases.Forthesplinesmoothingmethod,theuncertaintyis estimatedbycombiningarandomnoiseasforthefittedequations withmultiplechangesinthespline’sdegreesoffreedom,toaccount forthearbitrarinessintheirchoice.Inparticular,splinedegreesof freedomaresetat5%ofthetimeserieslengthandthenletvary recursivelybetween1%and5%ofthetimeserieslengthtogener- atetheensembleofsmoothingcurvesonwhichtheuncertaintyis estimated.Inadditiontotheresidualsmethod,forthefittedequa- tionsonly,wearealsodevelopingamethodbasedontheHessian matrixofthecurveparameters.

Table4

Estimatedcomputationtime(hours)requiredtocompletedifferentstepsofthe pixel-basedanalysisprocessing10,000pixelsfromaseasonaltimeseriesof5000 imagesusingonesingleprocessoronthreedifferentcomputers.

Step 3.07GHz 2.60GHz 2.13GHz

Filtering 28 49 52

Spline 0.02 0.02 0.04

Beck 36 63 69

Elmore 0.7 0.8 1.5

Klosterman 10 16 19

Gu 22 37 42

(7)

Fig.6 shows theuncertainty analysisfor Harvard deciduous 2013 GCC seasonal trajectory, with 500 replicates. The fitting methodappliedinthiscasewasKlosterman.Bydefault,thecon- fidenceintervalisrepresentedbythe10thand90thpercentileof thedistributionofallextractedphenophases,butotheroptionsare available.Inanycase,theusercanaccesstheuncertaintydatatables of(1)curveequationparametersand(2)extractedphenophasesto customisethecomputationoftheuncertaintyenvelope.

5. Phenopixapplication:spatialanalysis

Basedonananalysisrunonallsitesincludedinthispaperexcept forKamuela(i.e.sixyear-sites),wepresentinthisparagraphthe applicationofthepixelbasedanalysistoinvestigatethespatial variabilityofphenologywithinaROI(pixel-basedapproach).

Todate,fewstudieshaveexploredthepossibilityofanalyzing asetofimagespixelbypixelratherthanaveragingcolourvalues ontheoverallregionofinterest(Julittaetal.,2014;IdeandOguma, 2013).Therefore,anemergentquestionishowtheROI-averaged analysisisrepresentativeofallROIpixelsin termsofextracted phenophases?And, is this relationship consistent acrossfitting methodsandecosystemtypes?Thephenopixpackageallowsthe usertoperformpixelbasedimageanalysisandprovidesanumber offunctionstodisplayandanalysetheresults.Itmustbenoted thatpixel-by-pixelanalysisiscomputationallyintense.Wereport

inTable4thecomputationtimesrequiredtoanalyseaROIcontain- ing10,000pixelsonaseasonaltimeseriesof5000imageswithall fitsavailableinphenopixfor3differentcomputers,usingonesingle processor.Computationtimemaybeashighas70h,withverylow valuesforsplinesmoothingandhigherfordatafilteringandfitted equations.However,parallelcomputationavailableinthespatial functionsofphenopixenableconsiderablyreducedcomputation timescomparedtothosereportedinTable4.

We evaluatethe relationship between approaches (i.e. ROI- averagevs pixel-based) andfitting/phenophase methods across sitesinFig.7.Twodifferentfittingmethods(namelyKlosterman andspline)appliedtoeachpixeloftheROIsandthenaveraged areingoodagreementwitheachother(Fig.7,firstabovediagonal panel),withaslightlyhighercorrelationforspringthanforautumn phases.Theerrorbarsforthisrelationshipsuggestahighervariabil- ityforautumnthanforspringphenophases(firstbelowdiagonal panel). WhencomparingtheROI-averaged and thepixel-based approach,thebestrelationshipisfoundwiththeKlostermanfitting methodappliedtobothapproaches,withcorrelationcoefficientsof 0.97and0.75forspringandautumnphenology,respectively.How- ever,therelationshipbetweensplinefitappliedpixel-by-pixeland KlostermanfitappliedtotheaverageROIalsoshowsverygood agreement.Incontrast,thesplinemethodappliedtotheaverage ROI(lastcolumninFig.7)hasaconsistentlyweakerrelationship withallothermethods,resultinginearlierautumnphasesanda muchhighervariability.

Fig.7. Scatterplotmatrixshowing:(a)abovethediagonal,therelationshipbetweenphenophasesextractedwithtwodifferentapproaches(pixel-basedandROI-averaged) andtwodifferentfittingmethods(splinesmoothingandKlostermanfit),and(b)belowthediagonal,errorsassociated.Errorbarsforpixelapproachrepresentthemean absolutedeviationofallpixels,whereaserrorbarsforROI-averagedapproachrepresenttheuncertaintyasdescribedinSection4.Notethatthescaleforerrorbarsis providedinthefirstbelow-diagonalpanel.Differentsymbolsdenotedifferentphenophaseextractionmethods.Closesymbolsareforspringphenologyandopensymbols forautumnphenology.DifferentcoloursrepresentdifferentPFTs(abbreviationsforPFTsareasinTable1).DatafromallsitesexceptforKamuelawereusedinthisanalysis.

(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

(8)

Acrossphenophasemethods(differentsymbolsinFig.7),there isnoevidenceofasystematicbiasbetweenthetwoapproachesfor anyparticularphaseextractionmethod.Acrossecosystemtypes, needle-leafforest(ENF,i.e.harvardhemlocksite)showsaconsis- tentdeparturefromthe1:1lineeveninthebestrelationships(third panelfromleftinthefirstrowofFig.7),probablyduetothelower signaltonoiseratiointheseasonaltrajectoryofevergreentrees.

However,themoststrikingdifferenceistheconsistentlylowercor- relationforautumnthanforspringphases,suggestingthatinthe sameecosystemandpossiblyalsowithinasinglespeciesautumn phasesaremorevariablethanspringphases.

Insummary,thefastersplinesmoothingappliedpixel-by-pixel leadstotheidentificationofphenophasesinsubstantialagreement withthemorecomputationally-intenseKlostermanfit.Addition- ally,beingmoreflexible,thesplinefittingleadstoamuchlower numberofunfittedpixelscomparedtotheKlostermanfit.Hence, fromthisanalysis,splinesmoothing ispreferredover curvefit- tingforpixel-by-pixelanalysis.FortheROI-averagedapproach,itis stronglypreferabletoperformcurvefittingoversplinesmoothing, providedthattheGCCseasonaltrajectorydoesnotshowmultiple peaks,relatedtoe.g.waterstressormanagementpractices.

Oneinteresting applicationof thepixel-basedanalysisstems from theexamination of the frequency distribution of a given phenophaseacrossallpixels.Whenaphenophaseshowsabi-(or multi-)modalityandaconsistentspatialdistribution,pixelsmay begroupedaccordingtothevaluesofone(ormore)phenophase(s)

Fig.8. ResultsofthespatialanalysisconductedonTorgnon-NDgrasslandsite.(a) Mapofthespatialdistributionofmaturity(Klostermanfittingmethod,Kloster- manphenophasesmethod),withdarkercoloursindicatingearlieroccurrenceofthe phase(inDOYs).(b)Averageseasonaltrajectoryofpixelsclusteredaccordingtothe bimodaldistributionofmaturity.Patcheswithforbsdominatingshowanearlier maturitycomparedtograsses(dashedlines).Intheinset,densitydistributionof Maturityphaseacrossallpixels.Shadedareasdenotethematurityintervalsused tosubsetROIpixels.Theresultingsubsetswereinturnusedtoextracttheseasonal trajectoriesofforbs-andgrass-dominatedportionsoftheROI.(Forinterpretation ofthereferencestocolourinthisfigurelegend,thereaderisreferredtotheweb versionofthisarticle.)

andseparateseasonaltrajectoriescanbeobtained(Fig.8).Byapply- ingthisproceduretotheTorgnon-NDgrasslandsitewewereable toidentifyabimodaldistributioninmaturityphase(i.e.theendof springgrowth),asextractedafterKlostermancurvefitting.Wethen selectedpixelswithmaturityonsetdatesfallingaroundthetwo modes(i.e.DOY180±3andDOY205±3)andcomputedanaverage trajectoryforthesetwogroups.Thiswaspossiblebecauseinthe pixel-basedapproacheachpixelhasassociatedcurveparameters toreconstructtheseasonaltrajectory.Theresultingaveragetrajec- toriesaremarkedlydistinctaroundtheseasonalpeak,andreflect thedifferentecologyofforbsandgrassesoccurringoververyshort distances(<20cm)atthisgrasslandsite(Julittaetal.,2014).Fur- therinterpretationofthisbehaviourisbeyondtheobjectiveofthis

Fig.9.ResultsoftheclusteranalysisrunonBartlettpixel-basedphenophases.(a) SampleimagefromDOY275,(b)distributionofclustersintheROI,(c)density distributionofGreenupandDormancyphasesacrossallpixels,and(d)averagedsea- sonaltrajectoriesforthetwoclusters.Allextractedphases(fromthefourmethods presentedinSection3)wereusedininputtoclustering.

(9)

paper,butthispreliminaryanalysishighlightsthepotentialuseof spatiallyexplicitimageprocessingtoidentifydifferentphenology relatedtodifferentplantfunctionaltypes.

Moresophisticatedclusteringmethodscanbeappliedtopixel values in order to distinguish different phenological patterns.

For example,attheBartlett site (amixeddeciduousforest)we might expect a different phenology in early or late flushing species (Fig. 9a). With a cluster analysis (Hartigan and Wong, 1979)using phenophases extracted withall available methods asaninputmatrix,wewereabletoclearlydistinguishtwopor- tionsofthecanopy(Fig.9b).Inthisexampletheclusteranalysis wasusedtodefinetwosub-ROIs,thatreenteredtheprocessing chain(ROI-averaged approach,Fig.2)andledtotheidentifica- tionoftwomarkedlydifferentseasonaltrajectories(Fig.9cand d).Beech-dominated portions ofthecanopy (cluster2)show a lateryellowing/browningcomparedtomaple,prevailingincluster 1(Richardsonetal.,2009).

6. Summaryandoutlook

WepresentedanewRpackagecalledphenopixthatcollects themost up-to-date processing techniquesfor repeated digital photography of vegetationcanopy in thecontext of phenolog- ical and ecological research. Together with the basic and well establishedprocessingsteps,thepackageimplementsseveralnew features, including the possibility to combine different fitting andphenophasemethods,tocomputeuncertaintyonextracted phenophases,andtoconductpixel-by-pixelanalysis.Phenophase maps obtained by the pixel-based approach may represent a promisingtoolfor avarietyofecologicalanalyses,includingfor example:(1)thestudyofspecies-specificphenology;(2)theexami- nationofspatialvariabilityofapparentlyhomogeneousecosystems suchasgrasslands;(3)thepotentialtodiscriminatebetweenover- storyand understory or age-relateddifferences in phenological patternsofopencanopyforests.

Onemajorfuture stepintheevolutionofphenopix package includesthecomputationofthesocalledcamera-NDVI,inthefor- mulationproposedbyPetachetal.(2014).

The phenopix R package offers a suite of standardised and reproducibleprocessingcodethatmaybeadopted,deployedand furtherdevelopedbytheexistingphenocamerasnetworksworld- wide.

Acknowledgments

ADRacknowledgessupportfromthe NationalScienceFoun- dation, through the Macrosystems Biology program (grant EF-1065029).

ThepackagewasdevelopedintheframeworkoftheALCOTRA InterregProjectn227e-PHENORetifenologichenelleAlpi.

WethankMorganFurze,HarvardUniversity,forassistancewith editingthemanuscriptandtwoanonymousreviewersforvaluable commentsonapreviousversionofthemanuscript.

References

Ahrends,H.E.,Brügger,R.,Stöckli,R.,Schenk,J.,Michna,P.,Jeanneret,F.,Wanner, H.,Eugster,W.,2008.Quantitativephenologicalobservationsofamixedbeech forestinnorthernSwitzerlandwithdigitalphotography.J.Geophys.Res.113, G04004,http://dx.doi.org/10.1029/2007JG000650.

Beck,P.S.A.,Atzberger,C.,Høgda,K.A.,Johansen,B.,Skidmore,A.K.,2006.Improved monitoringofvegetationdynamicsatveryhighlatitudes:anewmethodusing {MODIS}{NDVI}.RemoteSens.Environ.100,321–334,http://dx.doi.org/10.

1016/j.rse.2005.10.021,http://www.sciencedirect.com/science/article/pii/

S0034425705003640.

Busetto,L.,Colombo,R.,Migliavacca,M.,Cremonese,E.,Meroni,M.,Galvagno,M., Rossini,M.,Siniscalco,C.,MorraDiCella,U.,Pari,E.,2010.Remotesensingof larchphenologicalcycleandanalysisofrelationshipswithclimateinthe Alpineregion.Glob.ChangeBiol.,10.1111/J.1365-2486.2010.02189.X.

Delbart,N.,Kergoat,L.,Toan,T.L.,Lhermitte,J.,Picard,G.,2005.Determinationof phenologicaldatesinborealregionsusingnormalizeddifferencewaterindex.

RemoteSens.Environ.97,26–38,http://dx.doi.org/10.1016/j.rse.2005.03.011, http://www.sciencedirect.com/science/article/pii/S0034425705001288.

Elmore,A.J.,Guinn,S.M.,Minsley,B.J.,Richardson,A.D.,2012.Landscapecontrols onthetimingofspring,autumn,andgrowingseasonlengthinmid-Atlantic forests.Glob.ChangeBiol.18,656–674,http://dx.doi.org/10.1111/j.1365-2486.

2011.02521.x.

Filippa,G.,Cremonese,E.,Galvagno,M.,Migliavacca,M.,MorradiCella,U.,Petey, M.,Siniscalco,C.,2015.Fiveyearsofphenologicalmonitoringinamountain grassland:inter-annualpatternsandevaluationofthesamplingprotocol.Int.J.

Biometeorol.,http://dx.doi.org/10.1007/s00484-015-0999-5.

Forkel,M.,Migliavacca,M.,Thonicke,K.,Reichstein,M.,Schaphoff,S.,Weber,U., Carvalhais,N.,2015.Codominantwatercontrolonglobalinterannual variabilityandtrendsinlandsurfacephenologyandgreenness.Glob.Change Biol.21,3414–3435,http://dx.doi.org/10.1111/gcb.12950.

Galvagno,M.,Wohlfahrt,G.,Cremonese,E.,Rossini,M.,Colombo,R.,Filippa,G., Julitta,T.,Manca,G.,Siniscalco,C.,MorradiCella,U.,Migliavacca,M.,2013.

Phenologyandcarbondioxidesource/sinkstrengthofasubalpinegrasslandin responsetoanexceptionallyshortsnowseason.Environ.Res.Lett.8,025008.

Gillespie,A.R.,Kahle,A.B.,Walker,R.E.,1987.Colorenhancementofhighly correlatedimages.II.Channelratioandchromaticitytransformation techniques.RemoteSens.Environ.22,343–365.

Gu,L.,Post,W.,Baldocchi,D.,Black,T.,Suyker,A.,Verma,S.,Vesala,T.,Wofsy,S., 2009.Characterizingtheseasonaldynamicsofplantcommunity

photosynthesisacrossarangeofvegetationtypes.In:Noormets,A.(Ed.), PhenologyofEcosystemProcesses.Springer,NewYork,pp.35–58, 10.1007/978-1-4419-0026-52.

Hartigan,J.A.,Wong,M.A.,1979.Algorithmas136:ak-meansclusteringalgorithm.

J.R.Stat.Soc.Ser.C(Appl.Stat.)28,100–108,http://www.jstor.org/stable/

2346830.

Hufkens,K.,Friedl,M.,Sonnentag,O.,Braswell,B.H.,Milliman,T.,Richardson,A.D., 2012.Linkingnear-surfaceandsatelliteremotesensingmeasurementsof deciduousbroadleafforestphenology.RemoteSens.Environ.117,307–321, http://dx.doi.org/10.1016/j.rse.2011.10.006,http://linkinghub.elsevier.com/

retrieve/pii/S0034425711003543.

Ide,R.,Oguma,H.,2013.Acost-effectivemonitoringmethodusingdigital time-lapsecamerasfordetectingtemporalandspatialvariationsofsnowmelt andvegetationphenologyinalpineecosystems.Ecol.Inform.16,25–34,http://

dx.doi.org/10.1016/j.ecoinf.2013.04.003,http://www.sciencedirect.com/

science/article/pii/S1574954113000290.

Jenkins,J.P.,Richardson,A.D.,Braswell,B.H.,Ollinger,S.V.,Hollinger,D.Y.,Smith, M.L.,2007.Refininglight-useefficiencycalculationsforadeciduousforest canopyusingsimultaneoustower-basedcarbonfluxandradiometric measurements.Agric.ForestMeteorol.143,64–79,http://dx.doi.org/10.1016/j.

agrformet.2006.11.008,http://www.sciencedirect.com/science/article/pii/

S0168192306003613.

Julitta,T.,Cremonese,E.,Migliavacca,M.,Colombo,R.,Galvagno,M.,Siniscalco,C., Rossini,M.,Fava,F.,Cogliati,S.,diCella,U.M.,Menzel,A.,2014.Usingdigital cameraimagestoanalysesnowmeltandphenologyofasubalpinegrassland.

Agric.ForestMeteorol.198–199,116–125,http://dx.doi.org/10.1016/j.

agrformet.2014.08.007,http://www.sciencedirect.com/science/article/pii/

S0168192314001981.

Keenan,T.F.,Darby,B.,Felts,E.,Sonnentag,O.,Friedl,M.,Hufkens,K.,O’Keefe,J.F., Klosterman,S.,Munger,J.W.,Toomey,M.,Richardson,A.D.,2014.Tracking forestphenologyandseasonalphysiologyusingdigitalrepeatphotography:a criticalassessment.Ecol.Appl.,http://dx.doi.org/10.1890/13-0652.1, 140206175103002.http://www.esajournals.org/doi/abs/10.1890/13-0652.1.

Kline,M.,1998.Calculus:AnIntuitiveandPhysicalApproach(SecondEdition) (GoogleeBook).DoverPublications,http://books.google.com/

books?id=tZy8AQAAQBAJ&pgis=1.

Klosterman,S.T.,Hufkens,K.,Gray,J.M.,Melaas,E.,Sonnentag,O.,Lavine,I., Mitchell,L.,Norman,R.,Friedl,M.A.,Richardson,A.D.,2014.Evaluatingremote sensingofdeciduousforestphenologyatmultiplespatialscalesusing PhenoCamimagery.Biogeosciences11,4305–4320.

Lechowicz,M.J.,1984.Whydotemperatedeciduoustreesleafoutatdifferent times?Adaptationandecologyofforestcommunities.Am.Nat.124,821–842, http://www.jstor.org/stable/2461303.

Migliavacca,M.,Cremonese,E.,Colombo,R.,Busetto,L.,Galvagno,M.,Ganis,L., Meroni,M.,Pari,E.,Rossini,M.,Siniscalco,C.,MorradiCella,U.,2008.European larchphenologyintheAlps:canwegrasptheroleofecologicalfactorsby combiningfieldobservationsandinversemodelling?Int.J.Biometeorol.52, 587–605,http://dx.doi.org/10.1007/s00484-008-0152-9,http://www.ncbi.

nlm.nih.gov/pubmed/18437430.

Migliavacca,M.,Galvagno,M.,Cremonese,E.,Rossini,M.,Meroni,M.,Sonnentag, O.,Cogliati,S.,Manca,G.,Diotri,F.,Busetto,L.,Cescatti,A.,Colombo,R.,Fava,F., MorradiCella,U.,Pari,E.,Siniscalco,C.,Richardson,A.D.,2011.Usingdigital repeatphotographyandeddycovariancedatatomodelgrasslandphenology andphotosyntheticCO2uptake.Agric.ForestMeteorol.151,1325–1337.

Mizunuma,T.,Wilkinson,M.,Eaton,L.,Mencuccini,E.M.,Morison,I.L.,Grace,J.J., 2013.Therelationshipbetweencarbondioxideuptakeandcanopycolourfrom twocamerasystemsinadeciduousforestinsouthernEngland.Funct.Ecol.27, 196–207,http://dx.doi.org/10.1111/1365-2435.12026,http://doi.wiley.com/

10.1111/1365-2435.12026.

Nasahara,K.,Nagai,S.,2015.Review:Developmentofanin-situobservation networkforterrestrialecologicalremotesensingthephenologicaleyes

Riferimenti

Documenti correlati

Abbiamo così provato a progettare una scheda che ponesse al terapeuta di gruppo i quesiti fondamentali per aiutarlo a riflettere e organizzare in qual- che modo quegli elementi

Giornata internazionale sulle droghe, tre richieste alle istituzioni Cnca, Fict, Federserd, Intercear e Sitd: “Conferenza nazionale sulle droghe, Livelli essenziali e revisione

Dunque anche gli scambi culturali tra dotti ed ecclesiastici veneziani ed orientali, dimostrano il fascino che Bisanzio esercitò sul mondo lagunare. Tale attrazione deve però

The ‘functional’ network is cre- ated considering a set of main pathways of interest (first level pathways - 1 L), chosen by the user since known to be involved in the phenomenon

exercise; (ii) in the heavy intensity domain, the emergence of a VO 2 slow component is ascribable to a “metabolic shift” be- tween aerobic and anaerobic metabolisms that protracted

- Il quadrato di un numero negativo non è

A novel ACP-based approach for cavity-up millimeter-wave packages simultaneously featuring small size, electrical and mechanical interconnection as well as heat transfer

2 MODELS FOR ANALYSES OF SLOPES INSTABILITY IN UNSATURATED SOILS In the case of granular shallow deposits, rainfall slope response is a complex hydro-geological and