• Non ci sono risultati.

We will use the determinant identity det  1 ai+ bj  n×n

N/A
N/A
Protected

Academic year: 2021

Condividi "We will use the determinant identity det  1 ai+ bj  n×n"

Copied!
1
0
0

Testo completo

(1)

Problem 11969

(American Mathematical Monthly, Vol.124, March 2017) Proposed by A. Dzhumadil’daev (Kazakhstan).

Letx1, . . . , xn be indeterminates, and letA be the n-by-n matrix with (i, j) entry 1/ cos(xi− xj).

Prove

det(A) = (−1)(n2) Y

1≤i<j≤n

tan2(xi− xj).

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. We will use the determinant identity

det

 1 ai+ bj



n×n

!

= Q

1≤i<j≤n(ai− aj)(bi− bj) Q

1≤i,j≤n(ai+ bj)

which appears in T. Muir’s book A Treatise on the Theory of Determinants, par. 353, p. 348 (see also Monthly problem 10387). The identity can be proved by induction by noting that if we subtract to the i-th row the n-th row multiplied by (an+ bn)/(ai+ bn) for i = 1, . . . , n, we get

det

 1 ai+ bj



n×n

!

= 1

an+ bn

det

 (ai− an)(bj− bn) (ai+ bj)(ai+ bn)(an+ bj)



n−1×n−1

!

=

Q

1≤i≤n−1(ai− an)(bi− bn) (an+ bn)Q

1≤i≤n−1(ai+ bn)(an+ bi)det

 1 ai+ bj



n−1×n−1

! .

Let ai= bi= e2ixi then

cos(xi− xj) =ei(xi−xj)+ e−i(xi−xj)

2 = ai+ aj

2eixieixj and

tan(xi− xj) = sin(xi− xj)

cos(xi− xj)= ei(xi−xj)− e−i(xi−xj)

i(ei(xi−xj)+ e−i(xi−xj))= ai− aj i(ai+ aj). Hence, by Muir’s identity,

det(A) = det 2eixieixj ai+ aj



= 2n

n

Y

i=1

eixi

n

Y

j=1

eixj · det

 1 ai+ aj



=

n

Y

i=1

(2ai) · Q

1≤i<j≤n(ai− aj)2 Q

1≤i,j≤n(ai+ aj) = Q

1≤i<j≤n(ai− aj)2 Q

1≤i<j≤n(ai+ aj)2

= Y

1≤i<j≤n

 ai− aj ai+ aj

2

= Y

1≤i<j≤n

(i tan(xi− xj))2

= (−1)(n2) Y

1≤i<j≤n

tan2(xi− xj).



Riferimenti

Documenti correlati

In Section 4 we prove Theorem 1.1 by combining the Pohozaev type identity with the results of our local blow-up analysis.. Section 5 is devoted to the computation of the

Due to more complex SE spectra, the accuracy of the model describing the optical properties of silver nanoparticle arrays did not allow us to identify the surface premelting;

Let S(n, k) be the Stirling number of the second kind, i.e., the number of ways to partition a set of n objects into k

[r]

Useremo induzione rispetto alla dimensione n.. Dimostrazione usando

[r]

[r]

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Firenze, viale Morgagni 67/A, 50134 Firenze, Italy.. We denote by σ(n) the sum of the divisors of