• Non ci sono risultati.

Problematiche astrofisica VHE

N/A
N/A
Protected

Academic year: 2021

Condividi "Problematiche astrofisica VHE"

Copied!
54
0
0

Testo completo

(1)

Problematiche astrofisica VHE

Antonio Stamerra

Università di Siena & INFN Pisa

JC - 10 febbraio 2010

Pisa

Istituto Nazionale di Fisica Nucleare

(2)

IACT detector

IACT Imaging Atmospheric Cherenkov Telescope

Atmosphere is opaque to γ- rays

IACT detector IACT detector

= =

Atmosphere + telescope Atmosphere + telescope

Satellite: direct detection of γ- ray

(3)

Electromagnetic atmospheric shower

pair-production Bremsstrahlung

R~9/7 X0~45g/cm2

(in air, 20oC)

(4)

Active mirror control

high reflective diamond milled aluminum mirrors

Light weight Carbon fiber

structure for fast

repositioning

(5)

Stereoscopic mode:

Improved sensitivity

Better angular and energy resolution

New technologies:

Camera: Photo-detectors with higher QE (HPDs in near future)

Faster Digitalization: 4 GHz

Florian Goebel Telescopes

(6)

QuickTim eï¾ ª e un decom pressore

sono necessari per visualizzare quest'imm agine.

Imaging Air Cherenkov Telescopes

 Direction reconstruction

Shower top

Shower tail

×

γ -ray direction

A telescope placed inside the Cherenkov light A telescope placed inside the Cherenkov light pool can obtain an image of the development pool can obtain an image of the development of the shower above the night sky background of the shower above the night sky background (NSB) fluctuations

(NSB) fluctuations

Distances in camera

= Angular Distances

on sky Shower top

N1 ,θ C1

Shower tail n2>n1 θC2> θC1

(7)

Background

Cosmic-ray background

γ-rays have a definite direction (source position on sky)

CR are isotropically distributed

ON-OFF selection?

CR flux overwhelms γ-ray flux…

Night-Sky background (NSB, LONS)

Field stars

(8)

Gamma/hadron separation

gamma proton

(9)

Modelli emissione adronica

(10)

Cosmic rays

“All-particle” spectrum

Power law spectrum (~E-

2.7)

Particles decrease with energy

Two breaks in the power law

Knee ~3 PeV (3x1015 eV)

Ankle ~1 EeV (1018 eV)

Underlying physical

(11)

Cascade shower Cascade shower

100GeV gamma ray 300GeV Proton

By M. Hayashida

(12)

EAS simulation - uncertainties

Reliability of simulation of hadronic interactions (extrapolation of

accelerator data and/or theoretical assumptions) - partially solved by IACTs using real hadrons…

Forward physics unexplored (LHC? E.g. TOTEM) Physical

Intrinsic shower fluctuations Enviromental

Weather condition (Calima, high clouds,…)

Night sky light (Bright stars, Moon, city, …) Instrumental

Calibration (absolute QE, mirror aging, …)

Background estimation (inhomogeneity, …)

Telescopes condition (dead pixels, misspointing, …)

(13)

Sensitivity in 50h 5σ & 10 evts

For 5σ: Sensitivity 1/sqrt(time) For 10 evt: Sensitivity 1/time

Sensitivity

Depends on the Effective area and CR Background rejection (and background uncertainty)

(14)

MAGIC-II

Overall sensitivity will be Overall sensitivity will be improved by a factor of 2-3 improved by a factor of 2-3

Energy resolutionEnergy resolution

~25% ~25%  15-20% 15-20%

Angular resolutionAngular resolution

Substantial improvementSubstantial improvement

(15)
(16)

Sites of particle acceleration

Hillas plot

Compact sites and high B

Diffuse objects and low B

The acceleration site

environment plays a key role…

A deeper (astrophysical)

knowledge of candidate sites is mandatory

(17)

Exploring extreme accelerators with gamma-rays

VHEγ-astronomy address diversity of topics related to the nonthermal Universe:

acceleration, propagation and radiation of ultrarelativistic protons/nuclei and electrons

generally under extreme physical conditions in environments characterized with

huge gravitational, magnetic and electric fields, highly excited media, shock waves

and very often associated with relativistic bulk motions linked, in particular, to jets in black holes (AGN, Microquasars, GRBs) and cold ultrarelativistic pulsar

winds

(18)

Goal 0: Detection!

Gammas are not for free…

Signal reconstruction

Background rejection

Sensitivity

Minimum flux detectable

Shortest time variation

Observation time

In the following we assume we are lucky and we always get

S s »Rate g

Rate B T

(19)

Standard candle:

Crab Nebula

Crab broad-band spectrum

(20)

UV UV

Optical Optical

Radio Radio

X-Ray X-Ray

MW MW

γγ-ray-ray

VHEVHE

Flux Flux

sincrotrone

100Mev-10GeV

>100GeV

e-

γ

e-

e- γ

(21)
(22)

Goals summary

Spectrum

#ph in ∆E

Energy

reconstruction

E’ energy resolution

Skymap

#ph in ∆Ω

Angular

resolution - PSF

F.o.V.

Lightcurve

#ph in t

Time

resolution

Pulsar ⇒ ms

AGN min.

(23)

Perugia, 22 ottobre 2009 MAPS school a.Stamerra 23

Gamma/Neutrino astronomy

Fermi acceleration

processes create secondary particles, among them

neutral particles

γ and ν bring direct information on the acceleration site

But….

Their emission, and

propagation depends on the environment and source details

A deep (astrophysical)

knowledge of the source is

Charged particles

Accelerated particles

B pp

HeHe IonsIons

ππ nn µµ

ee

γγ νν

(24)

γ-ray production

Synchrotron radiation

Bremstrahlung

Inverse Compton

Annihiliation

p/nuclei interaction with ISM (proton induced

ISM

e-

γ

BB e-

γ

e-

e- γ

γ e+ γ

γ e-

π + γ

nic sses Leptonic processes

(25)

Hadronic or leptonic?

Emissione γ ray emission from π0 decay and

interaction with molecular clouds

Signature: π0 decay spectrum

(26)

Hadronic or leptonic?

modelli leptonici modelli leptonici

(IC)(IC) modelli

adronici Yet no “smoking gun” evidence of γ-rays stemmed from

hadronic acceleration and π0 decay!

But many hints….

(27)

WHAT DO WE LEARN FROM GAMMA RAYS?

(28)

WHY IS IT INTERESTING:

II. Large B observed?

TYPICAL THICKNESS OF FILAMENTS: 10-2 pc The synchrotron limited thickness is:

Dx 4 D E tsyn E »4 pc  B­3/2m

(29)
(30)

EFFICIENT ACCELERATION – LARGE B FIELDS

(31)

PROBLEMS: 1. VERY HIGH PHOTON DENSITY FOR ICS

2. LOW B FIELDS (IGNORES X-RAY OBSERVATIONS)

(32)
(33)

Kep~0.01 Kep~0.1

(34)

AGN - blazars

Intense and variable emission up to

~10 TeV

Observed structures:

accretion disk; obscuring thorus

Relativistic Jet

Broad/Narrow line regions (NLR, BLR)

TeV emitting zone: jet with high relativistic bulk motion

Particle acceleration at shock

boundaries bundled in a magnetic field (Fermi acceleration processes)

Gamma-ray emission from

accelerated electrons (synchrotron and inverse-Compton scattering) or hadronic interactions

FR-I, FR-II Radio

quasars

BL-Lac

(35)

γ-ray emission from AGN: SSC a (minimal)

standard model

Blazar: collimated emission from jet (relativistic amplification)

Environment: B, δ, R

Observed emission (SED) well described by leptonic models, such as SSC and EC.

Expected X-ray / Tev time correlation

Synchrotron peak: IR to x-ray

IC peak: UV to γ-rays

LBL, IBL, HBL

Outbursts of e.m. radiation

Synchrotron IC

Emitted power

BB e-

γ

e-

e- γ

γ min γbr γmax γ γbr γmaxKN

Relativistic electrons

injection/acceleration/cooling

(36)

Blazar Multiwavelength campaigns

Extreme

Extreme (~>1 order of magnitude in flux) and (~>1 order of magnitude in flux) and fast fast (~hours, minutes) (~hours, minutes) vvaarriiaabbiililittyy

Simultaneous Multifreq. Observations covering 15 decades in photon energy:

VHE: H.E.S.S., MAGIC, VERITAS HE: Agile, Fermi

X-ray: Suzaku, Swift, Chandra, Integral Optical: KVA

Radio: Metsahövi, VLBI…

Methods:

Monitoring (optical, x-ray, radio)

Intensive planned campaigns

Target of Opportunity (ToO): react to alerts (internal/external)

(37)

Mrk 421 2008 activity

MWL campaigns on Mrk421 in flaring state optical to TeV energies

Simultaneous data

strong SSC model constraints

time evolution of the SEDs

New 2009 campaign on Mrk421 and Mrk501

Bonnoli G. et al. (MAGIC Coll.) arXiV:0907.0831 Bonnoli G. et al. (MAGIC Coll.) arXiV:0907.0831 Publication in preparation

Publication in preparation

preliminary

(38)

Mrk421 - 2009 campaign

4.5 months

Jan 20th - June 1st

~20 instruments 2-day sampling

Complete coverage 0.1 GeV-10 TeV

preliminary

Fermi

MAGIC Swift/XRT

(39)

S5 0716+714

IBL z=0.31(?)

Bright in optical trigger

MWL campaign (opt-X-γ)

Clear signal in 2.6 h: 6.9σ

1st VHE detection

F(>400 GeV) =7.5x10-12 ph/cm²/s (≈9% Crab)

Significance 6.8 σ

ApJ - accepted arXiv:0907.2386 MAGIC collab. 2008, Atel #1500

SSC model predicts an unplausible IC γ -ray flux

Spine-layer model Ghisellini et al. 2005, A&A, 432, 401

High redshift Nilsson,A&A 487(2008)L29 reports the detection of the host galaxy:

z=0.31±0.08

(40)

S5 0716+714

IBL z=0.31

Rotation of positional angle of polarization (EVPA) during maximum (60deg/day) Larionov et al.,ATel #1502

propagation of a polarized knot spiraling down the jet, following helical magnetic field

(e.g. BLLac, Marscher et al., 2008, Nature, 452, 966)

Similar behavior (degree of polarization) during Fermi campaign on 3C279: polarization degree a good precursor of γ-flares?

X-ray spectrum shows synchrotron component:

transition between LBL-HBL states?

QuickTimeᆰ e un decompressore H.264

sono necessari per visualizzare quest'immagine.

(41)

BL Lacertae

MAGIC detection in 2005-2006

flare end October 2005 ~MJD 53670

MAGIC Coll., ApJL 666 (2007) L17 MAGIC Coll., ApJL 666 (2007) L17

A. Marscher et al., Nature 452 (2008) 966 A. Marscher et al., Nature 452 (2008) 966

(42)

RG z=0.0043, 16.7 Mpc

Radio

VLBA 8 GHz HST-1

knot D knot A

Harris+07

“misaligned blazar” (15-25o); 17 Mpc

HEGRA hint; HESS/VERITAS detection

Candidate nearby CR site (hadronic emission?)

Variability?

Site for TeV emission (core/HST-1)?

(43)

M87

MWL campaign jan-feb 2008

(triggered by MAGIC detection on 1st February flare)

9.9σ detection; 8.0σ single night 1st-feb

First spectrum at E>100 GeV

Marginal hint of spectral hardening

Clear <~daily variability at E>350GeV

Chandra observations ⇒ core/HST-1 contribution (core active / HST1 dim)

Science, 325 (2009) 444

Joint paper MAGIC-VERITAS-HESS-VLBI-Chandra MAGIC coll.

ApJL, 685 (2008)

VHE

HST-1 nucleus

X-ray

radio

jet

Nucleus ~100Rs

Nucleus radio brightening

(44)

Goal 2: lightcurve

AGN, µQSO days, minutes

Pulsar ms

#ph / T

Time resolution

X-ray

TeV

Crab pulsar

26 days

LS I+61 303

0.15-0.25 TeV

0.25-0.6 TeV

0.6-1.2 TeV

1.2-10 TeV 4 min lag

Mrk 501

(45)

Crab pulsar

Cutoff depends on the acceleration and radiation process (outer

gap/polar cap)

Absorption in magnetosphere

(magnetic/photon pair production)

Maximum acceleration energy

First hint at E~>60 GeV

(46)

Crab pulsar

Lower trigger threshold:

new trigger system (sum- trigger)

M. Teshima et al. 2008, Atel #1421 MAGIC coll., Science 322 (2008) 1221

(47)

LS I +61 303

o High Mass X-ray Binary (2kpc) o Be star orbiting unknown object

(NS-BH)

o P=26.5d; e=0.72

o X-ray emission at o Φ~0.5

o GeV-emitter (3EG 0241+6103) Candidate for TeV emission

Mirabel 2006

Relativistic electrons from accretion powered jet

Relativistic electrons from rotational energy of pulsar

Relativistic Jet radio structures: µ-QSO

nature? (Massi et al. 2004)

Cometarylike radio

structure: interaction of

pulsar/jet wind Massi et al 2004

10 mas 100 mas

(48)

LS I +61 303

MAGIC observations 2005-2006 (54 hrs, 6 orbits)

8.7 sigma; point-like; max at Φ~0.6-0.7

MAGIC Coll. 2006, Science, 312, 1771

(49)

F (E > 400 GeV)

LS I +61 303

2nd campaign - sep-dec 2006;

112 hrs

Hint of X-ray/TeV emission correlation

No time correlation with radio

Highest emission at Φ=0.65

Periodicity: 26.8±0.2 days

No significant spectral changes with phase

Swift/XRT

0.3-10 keV

P.Esposito et al 2007

MAGIC

E>400GeV

1stcampaign

Phase 0.6 - 0.7 Phase 0.5 - 0.6 Phase 0.4 - 0.7 (1st campaign)

MAGIC coll. 2009, ApJ, 693, 303

(50)

LS I+61 303

Simultaneous MWL campaign, single period

XMM, Swift, MAGIC - sep 2007;

Clear X-ray/TeV emission correlation

No radio-TeV(X-ray) correlation

Highest emission at Φ=0.65

No significant spectral changes

with phase X-ray

TeV

(51)

Interaction with Extragalactic Background Interaction with Extragalactic Background Light (EBL)

Light (EBL)

energy dependent energy dependent γγ -ray absorption -ray absorption

modification of original spectrummodification of original spectrum

Î ¦ Î ³o b s e r v e dE Î ¦ u n a b s o r b e dÎ ³ E eÏ„ EÎ ³ ,z

ττ (E,z): Optical Depth(E,z): Optical Depth Gamma Ray Horizon (GRH):

Gamma Ray Horizon (GRH):

ττ=1=1

EBL EBL

EHEε EBL=3.6(mec2)2 Emitted

spectrum

observed spect.

High absorpti on

Low Energy

Energy

Energy

λ 1.2 4m mEg

1T e V1 z2

(52)

Cosmic backgrounds

(53)

CIB: modelli

Primack (2005)

(54)

Riferimenti

Documenti correlati

transformation of the original implementation, which was originally conceived for CPUs only, into a CPU/GPU parallel execution requires a control on the communication between

10 The frequency-adjusted use of health care services is then regressed on a set of controls, including the potential accessibility indicator, defined in section 3.1 as the travel

Effect of Harvest Time and Frequency on Biomass Quality and Biomethane Potential of Common Reed (Phragmites australis).. Under

Così indicati i profili di garanzia che il nuovo Senato è chiamato ad assolvere nella sua composizio- ne, nel rapporto tra Stato e le comunità territoriali (o, se si vuole, tra lo

In particolare si è posta la questione circa il ruolo svolto dal mondo degli Stati rispetto alla costituzionalizzazione delle istituzioni della società globale:

L’appello consiste in ciò: che l’AIC si ponga  l’obiettivo di creare una sorta di  peer  review  non  solo  per  accertare  la  “qualità”  delle 

El cambio de canal que plantea Labbé en el plano estructural –es decir, un texto híbrido que se compone de una suma de fragmentos textuales independientes y a su vez dotados, cada

Le considerazioni sul ruolo della figura femminile sono applicabili anche ad altri progetti, come quello della fondazione Una mano para Oaxaca, ideato da quattro donne