• Non ci sono risultati.

Arnošt D., Schneider P., “Dynamic transport of multicomponent mixtures of gases in porous solids”, Chem. Eng. J., 57, pp. 91-99; 1995.

N/A
N/A
Protected

Academic year: 2021

Condividi "Arnošt D., Schneider P., “Dynamic transport of multicomponent mixtures of gases in porous solids”, Chem. Eng. J., 57, pp. 91-99; 1995. "

Copied!
3
0
0

Testo completo

(1)

A. Bertei REFERENCES

188

REFERENCES

Arnošt D., Schneider P., “Dynamic transport of multicomponent mixtures of gases in porous solids”, Chem. Eng. J., 57, pp. 91-99; 1995.

Bard A.J., Faulkner L.R., “Electrochemical Methods: Fundamentals and Applicationsm 2

nd

ed.”, John Wiley & Sons, pp. 60-62, pp. 87-132, p. 138, New York; 2001.

Bessler W.G., “A new computational approach for SOFC impedance from detailed electrochemical reaction-diffusion models”, Solid State Ionics, 176, pp. 997-1011;

2005.

Bieberle A., Gauckler L.J., “State-space modeling of the anodic SOFC system Ni, H

2

- H

2

O|YSZ”, Solid State Ionics, 146, pp. 23-41; 2002.

Bird R.B., Steward W.E., Lightfoot E.N., “Transport phenomena”, John Wiley & Sons, p. 16, p. 197, p. 499, p. 744, New York; 1960.

Bouvard D., Lange F.F., “Relation between percolation and particle coordination in binary powder mixtures”, Acta Metall. Mater., 39, pp. 3083-3090; 1991.

Campanari S., “Le Celle a Combustibile ad Ossidi Solidi e i Cicli Ibridi”, Corso di Tecnologie Avanzate per la Cogenerazione Diffusa, Milano, April 26-27 2001.

Chen X.J., Khor K.A, Chan S.H., Yu L. G. “Influence of microstructure on the ionic conductivity of yttria-stabilized zirconia electrolyte”, Mat. Sc. Eng., A335, pp. 246- 252; 2001.

Chen X.J., Chan S.H., Khor K.A., “Simulation of a composite cathode in solid oxide fuel cells”, Electrochim. Acta, 49, pp. 1851-1861; 2004.

Chen D., Lin Z., Zhu H., Kee R.J., “Percolation theory to predict effective properties of solid oxide fuel-cell composite electrodes”, J. Power Sources, 191, pp. 240-252; 2009.

Choi H.W., Berson A., Kenney B., Pharoah J.G., Beale S., Karan K., “Effective Transport Coefficients for Porous Microstructures in Solid Oxide Fuel Cells”, SOFC- XI ECS Transactions, 25, pp. 1341-1350; 2009.

Coors W.G., “Protonic ceramic steam-permeable membranes”, Solid State Ionics, 178, pp. 481-485; 2007.

Costamagna P., Costa P., Antonucci V., “Micro-modelling of solid oxide fuel cell electrodes”, Electrochim. Acta, 43, pp. 375-394; 1998.

Douvartzides S., Coutelieris F., Tsiakaras P., “Energy and Exergy Analysis of a Solid

Oxide Fuel Cell Plant Fueled by Ethanol and Methane”, Ionics, 9, pp. 293-296; 2003.

(2)

A. Bertei REFERENCES

189 Franks, F., “Water: a matrix of life 2

nd

ed.”, Royal Society of Chemistry, p. 11,

Cambridge; 2000.

Hussain M.M., Li X., Dincer I., “Mathematical modeling of transport phenomena in porous SOFC anodes”, Intern. J. of Thermal Science, 46, pp. 48-56; 2007.

Janardhanan V.M., Heuveline V., Deutschmann O., “Three-phase boundary length in solid-oxide fuel cells: A mathematical model”, J. Power Sources, 178, pp. 368-372;

2008.

Kast W., Hohenthanner C.R., “Mass transfer within the gas-phase of porous media”, Int. J. Heat and Mass Transfer”, 43, pp. 807-823; 2000.

Katahira K., Kohchi Y., Shimura T., Iwahara H., “Protonic conduction in Zr- substituited BaCeO

3

”, Solid State Ionics, 138, pp. 91-98; 2000.

Kenney B., Valdmanis M., Baker C., Pharoah J.G., Karan K., “Computation of TPB length, surface area and pore size from numerical reconstruction of composite solid oxide fuel cell electrodes”, J. Power Sources, 189, pp. 1051-1059; 2009.

Kreuer K.D., “Proton-conducting oxides”, Annu. Rev. Mater. Res., 33, pp. 333-359;

2003.

Kuo C.H., Gupta P.K., “Rigidity and conductivity percolation thresholds in particulate composites”, Acta Metall. Mater., 43, pp. 397-403; 1995.

Mauri R., “Elementi di fenomeni di trasporto”, Ed. Plus – Pisa University Press, p. 67, p.68, Pisa; 2005.

Nam J.H., Jeon D.H., “A comprehensive micro-scale model for transport and reaction in intermediate temperature solid oxide fuel cells”, Electrochim. Acta, 51, pp. 3446- 3460; 2006.

Ou T., Delloro F., Nicolella C., Bessler W.G., Thorel A.S., “Mathematical Modelling of Mass and Charge Transport and Reaction in the Central Membrane of the IDEAL- Cell”, SOFC-XI ECS Transactions 25, pp. 1295-1304; 2009.

Perry R.H., Green D.W. “Perry’s Chemical Engineers’ Handbook – 7

th

ed.”, McGraw- Hill, p. 2-370, New York; 1997.

Presto S., personal communication of an internal measurement, 2009.

Presto S., Barbucci A., Viviani M., Ihlan Z., Ansar A., Soysal D., Thorel A.S., Abreu J., Chesnaud A., Politova T., Przybylski K., Prazuch J., Brylewski T., Zhao Z., Vladikova D.E., Stoynov Z., “IDEAL-Cell, Innovative Dual mEmbrAnE fueL-Cell: Fabrication and Electrochemical Testing of First Prototypes”, SOFC-XI ECS Transactions, 25, pp.

773-782; 2009.

(3)

A. Bertei REFERENCES

190 Presto S., internal report, 2010.

Schneider P., “Multicomponent isothermal diffusion and forced flow of gases in capillaries”, Chem. Eng. Sc., 33, pp. 1311-1319; 1978.

Shan Z., Jacobsen R.T., Penoncello S.G., “Viscosity Prediction for Natural Gas Mixtures”, Inter. J. Thermophysics, 22, pp.73-87; 2001.

Shi Y., Cai N., Li C., “Numerical modeling of an anode-supported SOFC button cell considering anodic surface diffusion”, J. of Power Sources, 164, pp. 639-648; 2007.

Suksamai W., Metcalfe I.S., “Measurement of proton and oxide ion fluxes in a working Y-doped BaCeO

3

SOFC”, Solid State Ionics, 178, pp. 627-634; 2007.

Suzuki M., Makino K., Yamada M., Iinoya K., “Study on the coordination number in a system of randomly packed, uniform-sized spherical particles”, Int. Chem. Eng., 21, pp. 482-488; 1981.

Suzuki M., Oshima T., “Estimation of the Co-ordination Number in a Multi-Component Mixture of Spheres”, Powder Technol., 35, pp. 159-166; 1983.

Thorel A.S., Chesnaud A., Viviani M., Barbucci A., Presto S., Piccardo P., Ilhan Z., Vladikova D., Stoynov Z., “IDEAL-Cell, a High Temperature Innovative Dual mEmbrAne fueL-Cell”, SOFC-XI ECS Transactions, 25, pp. 753-762; 2009.

Todd B., Young J.B., “Thermodynamic and transport properties of gases for use in solid oxide fuel cell modelling”, J. Power Sources, 110, pp. 186-200; 2002.

Van herle J., Horita T., Kawada T., Sakai N., Yokokawa H., Dokiya M., “Sintering Behaviour and Ionic Conductivity of Yttria-Doped Ceria”, J. European Ceramic Soc., 16, pp. 961-973; 1996.

Viviani M., personal communication, 2009.

Vladikova D., internal report, 2009.

Vladikova D., internal report, 2010.

Zhu H., Kee R.J., “Modelling Distributed Charge-Transfer Processes in SOFC

Membrane Electrode Assemblies”, J. Electroch. Soc., 155, pp. B715-B729; 2008.

Riferimenti

Documenti correlati

I programmi disponibili in commercio solitamente sono in grado di risolvere solo alcuni dei problemi tipici dell’ingegneria e il loro costo pu`o essere elevato; inoltre,

[r]

4 Parti reale ed immaginaria della funzione dielettrica e dell’indice di rifrazione di un fonone ottico trasverso a ω ph, j ottenute da una misura di riflettività di un solido,

[r]

[r]

[r]

La teoria delle perturbazioni dipendenti dal tempo, ci fornisce la probabilità di transizione dal primo al secondo stato, quando sul sistema agisca la perturbazione, cioè

In this work, a one dimensional dynamic model of the cell was applied to rationalize the polarization behavior and the EIS results of SDC-electrolyte supported IT-SOFCs, tested