• Non ci sono risultati.

Realization of Plasmonic Devices

N/A
N/A
Protected

Academic year: 2022

Condividi "Realization of Plasmonic Devices"

Copied!
88
0
0

Testo completo

(1)

R e a l i z a t i o n o f P l a s m o n i c D e v i c e s

Kristján Leósson/Science Institute/University of Iceland ADVANCES ON NANOPHOTONICS IV – Erice Sicily 2012

(2)

BIO

1994 B.Sc. Engineering Physics, Canada

1996 M.Sc. Physics, Iceland/France/Germany 2002 Ph.D. Electrical Engineering, Denmark

2001 Co-founded MMP A/S

2004 Co-founded Lumiscence A/S 2005- Senior Research Scientist

University of Iceland

(3)

1990 1995 2000 2005 2010 0

1000 2000 3000 4000 5000

ISI Web of Knowledge Topic: Surface plasmon*

Annual # of publications

Year

(4)

1990 1995 2000 2005 2010 0

2 4 6 8 10 12 14 16

Surface plasmon papers

% o f p u b lic a tio n s

Year

(5)

1990 1995 2000 2005 2010 0

2 4 6 8 10 12 14 16

Surface plasmon papers Papers by Smith

% o f p u b lic a tio n s

Year

(6)

1990 1995 2000 2005 2010 0

2 4 6 8 10 12 14 16

Surface plasmon papers Papers by Smith

Papers by Yang

% o f p u b lic a tio n s

Year

(7)

1990 1995 2000 2005 2010 0

2 4 6 8 10 12 14 16

Surface plasmon papers Papers by Smith

Papers by Yang Graphene papers

% of publications

Year

http://www.youtube.com/watch?v=9tkDK2mZlOo

(8)

1. Brief plasmonics background 2. SPP waveguide devices

3. Biophotonics 4. Prospects

o u t l i n e

(9)

o u t l i n e 1. Brief plasmonics background

2. SPP waveguide devices 3. Biophotonics

4. Prospects

(10)
(11)

Re(εr2)<0 Im(εr2)>0 Re(εr1)>0

s u r f a c e p l a s m o n p o l a r i t o n s

(12)

D r u d e m o d e l

(13)

g o l d

Maier

(14)

d i s p e r s i o n , D r u d e v s . g o l d

520 nm

Maier

(15)

d i s p e r s i o n , s i l v e r

Maier

(16)

f i e l d c o n f i n e m e n t

520 nm

(17)

d i f f r a c t i o n l i m i t

(18)

f i e l d c o n f i n e m e n t ( S i / S i O

2

)

Biberman et al.

OPTICS EXPRESS 18, 15544 (2010)

λ0=1550 nm

(19)

m o r e c o m p l e x g e o m e t r i e s

Maier

Slots Ridges V-grooves Wedges

Particle chains DLSPPWGs

LRDLSPPWGs

Other hybrids

...etc.

(20)

Optical Loss

Mode Size

o v e r a l l p i c t u r e

(21)

o u t l i n e 1. Brief plasmonics background

2. SPP waveguide devices 3. Biophotonics

4. Prospects

(22)

θ = θsp Au

BiaCore

S P R d e v i c e

(23)

m e t a l r i d g e w a v e g u i d e s

Weeber, Lacroute, Dereux, Optical near-field distributions of surface plasmon waveguide modes, PRB 68, 115401 (2003)

(24)

S P P B G w a v e g u i d e s

Bozhevolnyi, Erland, Leosson, Skovgaard, Hvam Waveguiding in surface plasmon polariton band bap structures, PRL 86, 3008 (2001)

Bozhevolnyi, Volkov, Leosson: Localization and waveguiding of surface plasmon polaritons in random nanostructures, PRL 89, 186801 (2002)

(25)

S P P B G w a v e g u i d e s

300 250 200 00 150 100 50 00

Image size: 3232m2, wavelength 737 nm

min max

300 250 200 00 150 100 50 00

Image size: 3232m2, wavelength 737 nm

min max

Image size: 3221m2, wavelength 737 nm A

B

Image size: 3221m2, wavelength 737 nm A

B

(26)

S P P B G c o m p o n e n t s SPPBG circuits

- High propagation loss >1dB/component - Coupling issues

- Single-polarization

(27)

L R - S P P B G c o m p o n e n t s LR-SPPBG circuits

+ Lower propagation loss + End-fire coupling

- Single-polarization

(28)

t h i n m e t a l f i l m s

1 2 3

d

(29)

T h i n m e t a l f i l m s

1 2 1

(30)

l o n g / s h o r t - r a n g e S P P s

Gold film thickness (nm)

(31)

L R - S P P s Substrate

Dielectric d

Comprehensive review:

Berini, Long Range Surface Plasmon Polaritons, Advances in Optics and Photonics 1, 484 (2009).

(32)

J. J. Burke, et. al., Phys. Rev. B 33, 5186 (1986) R. Charbonneau, et. al., Optics Letters 25, 844 (2000) T. Nikolajsen, et.al. Appl. Phys. Lett. 82, 668 (2003) P.G. Hermannsson, et al., Proc. SPIE 6988-0A (2008)

-15 -10 -5 0 5 10 15

0,0 0,2 0,4 0,6 0,8

1,0 t = 10 nm t = 20 nm t = 40 nm

Intensity (arb. untis)

Vertical coordinate (µm)

To SMF28

(33)

Boltasseva, et al. Propagation of long-range surface plasmon polaritons in photonic band gap structures, JOSA B 22, 2027 (2005)

(34)

Boltasseva, et al. Compact Bragg gratings for long-range surface plasmon polaritons, JLT 24, 912 (2006)

Boltasseva, et al. Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons, Opt. Express 13, 4237 (2005)

(35)

Boltasseva, et al. Integrated Optical

Components Utilizing Long-Range Surface Plasmon Polaritons, JLT 23, 413 (2005)

(36)

Boltasseva, et al. Integrated Optical

Components Utilizing Long-Range Surface Plasmon Polaritons, JLT 23, 413 (2005)

(37)

Nikolajsen, et al: In-line extinction modulator based on long-range surface plasmon polaritons Optics Communications 244, 455 (2005)

0 1 2 3 4 5 6

-30 -25 -20 -15 -10 -5 0

Relative transmission (dB)

Voltage (V) Attenuation: 0-30 dB (continuous)

Drive power @ 30 dB: 50 mW Response time: 0.5 ms

Insertion loss: 1.5 dB Footprint: 1.5 x 1 mm2

(38)

Bozhevolnyi, Nikolajsen, Leosson: Integrated power monitor for long-range surface plasmon polaritons, Optics Communications 255, 51 (2005)

0 1 2 3 4 5

3.5 3.6 3.7 3.8 3.9 4.0 4.1

4.2 Bias voltage 2V

Responsivity 150mV/W

@1550nm

Monitor output [mV]

Optical input power [mW]

VOA MON

VVOA GND + VMON -

GND VBIAS

VOA Chip Schematic

(39)

w h y L R S P P w a v e g u i d e s ?

LRSPP waveguides are compatible with standard fiber-optics

Efficient thermo-optic devices; heat delivered directly to waveguide core

Properties of two closely spaced waveguides can be controlled independently Only one dielectric material is needed, no refractive index engineering

Simple fabrication, accurate patterning, low-temperature processing

(40)

L R S P P d e v i c e s

Already demonstrated:

Waveguides, bends, splitters

Directional couplers (passive/active)

Multimode interferometers (passive/active) Mach-Zehnder interferometers

Bragg gratings (passive/tunable) Wavelength add-drop filters

In-line power monitors

In-line extinction modulators

BUT ... all have high insertion loss (several dB) and 100% PDL

(41)

p o l a r i z a t i o n d e p e n d e n c e

Jung, Søndergaard, Bozhevolnyi PRB 76, 035434 (2007)

(42)

n a n o w i r e w a v e g u i d e s

P. Berini, US Patent 6,741,782 (2004)

K. Leosson, et al., Opt. Express 14, 314 (2006)

(43)

n a n o w i r e V O A

K. Leosson, T. Rosenzveig, A. Boltasseva Optics Express 16, 15546 (2008)

>30 dB extinction ratio

PDL < ± 2.5 dB across attenuation range Off-state insertion loss 5-15 dB

Very strict fabrication tolerance (<5nm)

(44)

n a n o w i r e o p t i m i z a t i o n

Rosenzveig, Hermansson, Leosson,

Modelling of Polarization-Dependent Loss in Plasmonic Nanowire Waveguides, Plasmonics 5, 75 (2010)

(45)

t r a n s i e n t r e s p o n s e

FE simulation Experiment

(46)

Dielectric Dielectric

Gain material Metal layer

MDMO-PPV

l o s s c o m p e n s a t i o n

Gather, Meerholz, Danz, Leosson,

Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,

Nature Photonics, 4, 457 (2010)

(47)

Dielectric Dielectric

Gain material Metal layer

l o s s c o m p e n s a t i o n

Non-matched

Index-matched No gain

layer

Theory

(48)

ground state

E

excited state

I

Energy

• Localization of exciton allows for strong coupling with phonons

• Vibronic relaxation <1ps

=> all emission from lowest vibronic state

• Excited state conformation is distorted =>

probability of transitions changes (Franck- Condon Principle)

spatial coordinate

1-10 ns

00 01

02

(49)

ground state

E

I

Energy

Example:

• Pump 01

• Vibronic relaxation 10

• Radiative relaxation 01

• Ground state relaxation 10

spatial coordinate

excited state

pump lasing

1-10 ns

(50)

• Is the optical energy excited in the conjugated polymer layer transferred to an LRSPP mode?

• Where should the gain material be located?

Ormoclear

Ormoclear

Gain material Metal layer

Excited Dipole

S i m u l a t i o n

(51)

Measured net gain of g = 8 ± 2 cm

-1

(12.5 mJ/cm

2

/pulse, 4-5 nm gold film) Room temperature, 600nm wavelength

) 1

( 

P

e

gl

g

I AE

L R S P P g a i n

(52)

For highly confined SPPs, losses are generally too high to allow for full loss compensation with currently available gain materials and reasonable pump power

see K.Leosson, Optical amplification of surface plasmon

polaritons: a review, J. Nanophotonics (in press)

(53)

1. Brief plasmonics background 2. SPP waveguide devices

3. Biophotonics 4. Prospects

o u t l i n e

(54)

Light is coupled from an optical fiber to an embedded waveguide

Light is distributed to the sensing areas

Light couples to the surface plasmon waveguide

Fluorescence emission is collected

50-300nm high index contrast polymer waveguides

n=1.34

(55)
(56)

n1 n2

θ > θc

Nikon

© Nikon

T I R F m i c r o s c o p e

(57)

d i e l e c t r i c - p l a s m o n c o u p l i n g

Water

Gold Cytop

Cytop PMMA

0 500 1000 1500

1.36 1.38 1.40

1.42 =633 nm

Effective refractive index

Spacer layer thickness (nm)

5-layer structure (cf. directional coupler)

(58)

Fluorescent beads in solution

Penetration depth into liquid approximately 1.5µm

x20 NA 0.4 0.5mm

(59)

Scattered light

FDTD

d i e l e c t r i c - p l a s m o n c o u p l i n g

(60)

Metal, Au Dielectric, n = 1.55

Dielectric, n = 1.55

800 nm

25 nm d

Symmetric / long-range

Anti-symmetric / short-range

E

 = 610nm

S P P m o d e s , t h i n f i l m

Im(n) = 10

-4

 a = 10 cm

-1

 L = 1 mm

(61)
(62)

f a b r i c a t i o n

(63)

CCD EM-CCD

Sía

e x p e r i m e n t a l s e t - u p

(64)

z

|E|

2

(a) (b) (c) (d)

n=1.33

n=1.34

100 µm

c o l l o i d a l g o l d s o l u t i o n

(65)

b u r i e d c h a n n e l w a v e g u i d e s

(66)

b e n d l o s s

(67)

f i l t e r s

Q≈1000

(68)

10 µm

(69)
(70)
(71)
(72)

Blood diagnostics platform (Lumiscence/IMI Inc.)

x z

y

p-polarized (TM) s-polarized (TE)

yz plane xz plane

(73)
(74)

1. Brief plasmonics background 2. SPP waveguide devices

3. Biophotonics 4. Prospects

o u t l i n e

(75)

S P R d e v i c e

BiaCore

(76)
(77)
(78)
(79)
(80)

p l a s m o n - a s s i s t e d m a g n e t i c r e c o r d i n g

Mike Seigler Seagate

(81)

S E R S , p a r t i c l e g r o w t h

Virginia Joseph: Nanopartikel auf Oberflächen – Charakterisierung und Anwendung in der

oberflächenverstärkten Raman-Streuung, PhD Thesis, Humboldt Universität Berlin (2012)

(82)

S h e e t r e s i s t a n c e

(83)

S P P q u a n t u m o p t i c s

EOS2012

(84)

Benisty, H., et al., Implementation of PT symmetric devices using plasmonics: principle and applications.

Optics Express, 2011. 19(19): p. 18004-18019.

a p p l i c a t i o n s o f S P P w a v e g u i d e s

(85)

Babicheva, V.E., et al., Plasmonic modulator based on gain-assisted metal-semiconductor-metal waveguide.

arXiv:1203.3374v1, 2012.

a p p l i c a t i o n s o f S P P w a v e g u i d e s

(86)

Ranjbaran, M. and X. Li, Optimized Dipole-Surface Plasmon Waveguide Coupling for Enhancement of SLD Performance.

IEEE Photonics Journal, 2010. 2(5): p. 848 - 857

a p p l i c a t i o n s o f S P P w a v e g u i d e s

(87)
(88)

t h a n k y o u

“In searching for potential uses of (LR)SPP waveguides, it is

advisable to focus on applications that turn their limitations

(loss, dispersion, polarization dependence) into strengths”

Riferimenti

Documenti correlati

Wild type (WT) and Heparanase-silenced (HPSE-sil) HK2 cells exposed to hypoxia and reoxygenation (H/R); WT HK-2 cells were also treated or not with 200 μg/ml SST0001. Gene

coagulans GBI-30, 6086 obtained in the present study will contribute to a wider and deeper insight into the safety features of this strain, and the comparative genomic analysis

(2013) Occurrence of the alien crab Percnon gibbesi (H. Milne Edwards, 1853) (Decapoda) and sea hare Aplysia dactylomela Rang, 1828 (Opistobranchia) in shallow marine waters north

Here, through the complete quantum control of exciton qubits, we demonstrate that nitrogen isoelectronic centres in GaAs combine both the uniformity and predictability of atomic

More in detail, we identified nine critical situations, either solution or instrumental, 1-6 as a potential source of metal-protein bond impairment when using FASP operative