### Andrea D’Agnolo Pierre Schapira

### Abstract Let X ← −

f

### S − →

g

### Y be a correspondence of complex analytic manifolds, F be a sheaf on X, and M be a coherent D

_{X}

### -module. Consider the associated sheaf theoretical and D-module integral transforms given by Φ

_{S}

### F = Rg

_{!}

### f

^{−1}

### F [d]

### and Φ

_{S}

### M = Dg

_{!}

### Df

^{∗}

### M, where Rg

_{!}

### and f

^{−1}

### (resp. Dg

_{!}

### and Df

^{∗}

### ) denote the direct and inverse image functors for sheaves (resp. for D-modules), and d = d

_{S}

### − d

_{Y}

### is the difference of dimension between S and Y . In this paper, assuming that f is smooth, g is proper, and (f, g) is a closed embedding, we prove some general adjunction formulas for the functors Φ

_{S}

### and Φ

_{S}

### . Moreover, under an additional geometrical hypothesis, we show that the transformation Φ

_{S}

### establishes an equivalence of categories between coherent D

X### -modules, modulo flat connections, and coherent D

_{Y}

### -modules with regular singularities along an involutive manifold V , modulo flat connections (here V is determined by the geometry of the correspondence). Applications are given to the case of Penrose’s twistor correspondence.

### AMS classification: 32L25, 32C38, 58G05

### Appeared in: J. Funct. Anal. 139 (1996), no. 2, 349–382.

### Contents

### 1 Introduction 3

### 2 Adjunction formulas 5

### 2.1 Sheaves . . . . 5

### 2.2 D-modules . . . . 7

### 2.3 Correspondences . . . . 9

### 2.4 Kernels . . . 12

### 3 Vanishing theorems 14 3.1 E-modules . . . 14

### 3.2 Vanishing theorems . . . 17

### 4 A regularity theorem and an equivalence of categories 19 4.1 Modules with regular singularities . . . 19

### 4.2 A regularity theorem . . . 22

### 4.3 An equivalence of categories . . . 23

### 5 Applications 28 5.1 The twistor correspondence (holomorphic solutions) . . . 28

### 5.2 The twistor correspondence (hyperfunction solutions) . . . 30

### 1 Introduction

### The Penrose correspondence is an integral transformation which interchanges global sections of line bundles on some flag manifolds, with holomorphic solutions of partial differential equations on other flag manifolds (see [6], [1]). For example, consider the twistor correspondence:

### F

f

_{g}

### @ @

### @ @

### @ @

### @ @

### P M,

### (1.1)

### where F = F

1,2### (T) is the flag manifold of type (1, 2) associated to a four-dimensional complex vector space T, P = F

1### (T) is a projective three-space, and M = F

2### (T). The projections are given by f (L

1### , L

2### ) = L

1### , g(L

1### , L

2### ) = L

2### , where L

1### ⊂ L

2### ⊂ T are complex subspaces of dimension one and two respectively, defining an element (L

_{1}

### , L

_{2}

### ) of F. Since M is identified with the four-dimensional compactified complex- ified Minkowski space, the family of massless field equations on the Minkowski space gives rise to a family of differential operators acting between sections of holomorphic bundles on M. This is a family, denoted here by

h### , which is parameterized by a half- integer h called helicity, and which includes Maxwell’s wave equation, Dirac-Weyl neutrino equations and Einstein linearized vacuum equations.

### The Penrose transform associated to the correspondence (1.1) allows to represent the holomorphic solutions of the equation

h### φ = 0 on some open subsets U ⊂ M in terms of cohomology classes of line bundles on b U = f (g

^{−1}

### (U )) ⊂ P. More precisely, recall that the line bundles on P are given, for k ∈ Z, by the −k-th tensor powers O

_{P}

### (k) of the tautological bundle. Set h(k) = −(1 + k/2), and for x ∈ P, set x = g(f b

^{−1}

### (x)). We then have the result of Eastwood, Penrose and Wells [6] below.

### Theorem 1.1. Let U ⊂ M be an open subset such that:

### U ∩ x is connected and simply connected for every x ∈ b b U . (1.2) Then, for k < 0, the natural morphism associated to (1.1), which maps a one-form on b U to the integral along the fibers of g of its inverse image by f , induces an isomorphism:

### H

^{1}

### ( b U ; O

_{P}

### (k)) − → ker(U ;

^{∼}

_{h(k)}

### ).

### In this paper we shall formulate the Penrose correspondence in the language of sheaves and D-modules. First of all, we can rephrase the above construction in a more general setting as follows. Consider a correspondence:

### S

f

###

g### ? ?

### ? ?

### ? ?

### ?

### X Y,

### where all manifolds are complex analytic, f is smooth, g is proper, and where (f, g) induces a closed embedding S ,→ X × Y . Set d

_{S}

### = dim

^{C}

### S, d

_{S/Y}

### = d

_{S}

### − d

_{Y}

### .

### Let us define the transform of a sheaf F on X (more generally, of an object of the derived category of sheaves) as Φ

_{S}

### F = Rg

_{!}

### f

^{−1}

### F [d

_{S/Y}

### ], and define the transform of a coherent D

_{X}

### -module M as Φ

_{S}

### M = g

_{∗}

### Df

^{∗}

### M, where g

_{∗}

### and Df

^{∗}

### denote the direct and inverse images in the sense of D-module theory. We also consider Φ

_{S}

_{e}

### G = Rf

_{!}

### g

^{−1}

### G[d

_{S/X}

### ], for a sheaf G on Y . One then proves the formula:

### Φ

S### Rhom

D_{X}

### (M, O

X### ) ' Rhom

D_{Y}

### (Φ

_{S}

### M, O

Y### ), (1.3) from which one deduces the following formula, where G denotes a sheaf on Y :

### RΓ(X; Rhom

DX### (M ⊗ Φ

Se

### G, O

X### ))[d

X### ] ' RΓ(Y ; Rhom

DY### (Φ

_{S}

### M ⊗ G, O

_{Y}

### ))[d

Y### ]. (1.4) Let F be a holomorphic vector bundle on X, denote by F

^{∗}

### its dual, and set DF

^{∗}

### = D

_{X}

### ⊗

_{O}

X

### F

^{∗}

### . When applying (1.4) to the case of M = DF

^{∗}

### and G = C

U### , the constant sheaf on an open subset U ⊂ Y satisfying suitable hypotheses, one gets the formula:

### RΓ( b U ; F ) ' RΓ(U ; Rhom

_{D}

_{Y}

### (Φ

_{S}

### DF

^{∗}

### , O

_{Y}

### ))[−d

_{S/Y}

### ]. (1.5) In other words, the cohomology of F on b U is isomorphic to the holomorphic solutions on U of some complex of coherent D

_{Y}

### -modules, namely the complex Φ

_{S}

### DF

^{∗}

### .

### In the particular case of the twistor correspondence, the above results show that Theorem 1.1 is better understood by saying that the D-module transform of DO

_{P}

### (−k) (for k < 0) is the D

_{M}

### -module associated to the differential operator

_{h(k)}

### . Moreover, formula (1.4) shows that each of the many problems encountered in lit- erature can be split into two different ones:

### (i) to calculate the sheaf theoretical transform Φ

_{S}

_{e}

### G of G, (ii) to calculate the D-module transform Φ

_{S}

### M of M.

### The calculation of Φ

_{S}

_{e}

### G relies on the particular geometry considered (see sec- tion 5.2 for an example, where we easily recover Wells’s result on hyperfunction solutions).

### The calculation of Φ

_{S}

### M leads to more difficult problems. For instance, notice that in general Φ

_{S}

### M is a complex, not necessarily concentrated in degree zero. This implies many technical difficulties when interpreting the cohomology groups of the right hand side of (1.4). In this paper we give several properties of Φ

_{S}

### M, which hold under geometrical hypotheses that we will formulate later:

### (i) H

^{0}

### (Φ

_{S}

### M) is a coherent D

_{Y}

### -module with regular singularities along an invo-

### lutive manifold V of the cotangent bundle T

^{∗}

### Y given by the geometry,

### (ii) for j 6= 0, H

^{j}

### (Φ

_{S}

### M) is a locally free O

_{Y}

### -module of finite rank endowed with a flat connection,

### (iii) in the case M = DF

^{∗}

### , for a complex vector bundle F , we give several formulas similar to (1.5), and in particular we prove the germ formula (where y = b f (g

^{−1}

### (y))):

### RΓ( b y; F ) ' Rhom

D_{Y}

### (Φ

_{S}

### DF

^{∗}

### , O

_{Y}

### )

_{y}

### [−d

_{S/Y}

### ],

### from which we deduce that H

^{j}

### (Φ

_{S}

### DF

^{∗}

### ) = 0 for j 6= 0 if and only if (Y being connected) there exists y ∈ Y such that H

^{j}

### ( y; F ) = 0 for j < d b

_{S/Y}

### .

### Then, and it is our main result, we prove that (under suitable hypotheses which are satisfied in the twistor case) the transform Φ

_{S}

### induces an equivalence of cat- egories between coherent D-modules on X modulo flat connections, and coherent D-modules on Y with regular singularities along the involutive submanifold V of (i), modulo flat connections. When applied to the twistor case, our results show in particular that any D-module on the Minkowski space with regular singularities along the characteristic variety of the wave equation, may be obtained (up to flat connections) as the image of a coherent D-module on P.

### The results of this paper were announced in [3]. When writing this paper we benefitted from many classical works on the Penrose correspondence. In particular, let us mention the books [19], [1], [27] and the papers [6], [5], [28], [29]. Note that a microlocal approach in the study of correspondences was initiated in the paper [7]

### of Guillemin and Sternberg.

### Finally, we would like to thank Jean-Pierre Schneiders for fruitful discussions.

### 2 Adjunction formulas

### 2.1 Sheaves

### Let X be a real analytic manifold. We denote by D(X) the derived category of the category of complexes of sheaves of C-vector spaces on X, by D

^{b}

### (X) the full triangulated subcategory of D(X) whose objects have bounded cohomology, and we refer to [17] for a detailed exposition on sheaves, in the framework of derived categories.

### If A ⊂ X is a locally closed subset, we denote by C

^{A}

### the sheaf on X which is the

### constant sheaf on A with stalk C, and zero on X \ A. We will consider the classical

### six operations in the derived category of sheaves of C-vector spaces f

^{−1}

### , Rf

_{!}

### , ⊗,

### Rf

_{∗}

### , f

^{!}

### , Rhom. We denote by ω

_{Y /X}

### the relative dualizing complex ω

_{Y /X}

### = f

^{!}

### C

^{X}

### .

### Recall that ω

_{Y /X}

### ' or

_{Y /X}

### [d], where or

_{Y /X}

### is the relative orientation sheaf on Y , and

### d = dim

^{R}

### Y − dim

^{R}

### X, dim

^{R}

### X denoting the dimension of X. We use the notations

### D

^{0}

_{X}

### (·) = Rhom(·, C

X### ) and D

_{X}

### (·) = Rhom(·, ω

_{X}

### ), where ω

_{X}

### = ω

_{X/{pt}}

### . We denote

### by a

_{X}

### : X − → {pt} the map from X to the set consisting of a single element.

### In the rest of this section, all manifolds and morphisms of manifolds will be complex analytic. We denote by d

_{S}

### the complex dimension of a manifold S. Given a morphism f : S − → X of complex manifolds, we set for short d

_{S/X}

### = d

_{S}

### − d

_{X}

### .

### Consider a correspondence of complex analytic manifolds:

### S

f

### ~~ ~~ ~~ ~

_{g}

### @ @

### @ @

### @ @

### @

### X Y.

### (2.1)

### Definition 2.1. For F ∈ D

^{b}

### (X), we set:

### Φ

S### F = Rg

_{!}

### f

^{−1}

### (F )[d

_{S/Y}

### ], Ψ

S### F = Rg

_{∗}

### f

^{!}

### (F )[−d

_{S/X}

### ].

### For G ∈ D

^{b}

### (Y ), we similarly define:

### Φ

_{S}

_{e}

### G = Rf

_{!}

### g

^{−1}

### (G)[d

_{S/X}

### ], Ψ

_{S}

_{e}

### G = Rf

_{∗}

### g

^{!}

### (G)[−d

_{S/Y}

### ].

### In other words, we denote by

### S e

g f

### ? ?

### ? ?

### ? ?

### ? ?

### Y X

### (2.2)

### the correspondence deduced from (2.1) by interchanging X and Y .

### Lemma 2.2. Let F ∈ D

^{b}

### (X) and G ∈ D

^{b}

### (Y ). Then we have the isomorphisms:

### Ra

_{X ∗}

### Rhom(Φ

_{S}

_{e}

### G, F ) ' Ra

_{Y ∗}

### Rhom(G, Ψ

_{S}

### F ), (2.3) Ra

_{X !}

### (Φ

_{S}

_{e}

### G ⊗ F )[d

_{X}

### ] ' Ra

_{Y !}

### (G ⊗ Φ

_{S}

### F )[d

_{Y}

### ], (2.4) Ψ

_{S}

### (D

_{X}

### F )[d

_{Y}

### ] ' D

_{Y}

### (Φ

_{S}

### F )[d

_{X}

### ]. (2.5) Proof. All the above isomorphisms are easy consequences of classical adjunction formulas, such as the Poincar´ e-Verdier duality formula (see e.g. [17, chapters II and III]). For example, in order to prove (2.4) one considers the sequence of isomor- phisms:

### Ra

X !### (Φ

_{S}

_{e}

### G ⊗ F )[d

X### ] = Ra

X !### (Rf

_{!}

### g

^{−1}

### G ⊗ F )[d

S### ] ' Ra

_{X !}

### Rf

_{!}

### (g

^{−1}

### G ⊗ f

^{−1}

### F )[d

_{S}

### ] ' Ra

_{Y !}

### Rg

_{!}

### (g

^{−1}

### G ⊗ f

^{−1}

### F )[d

_{S}

### ] ' Ra

_{Y !}

### (G ⊗ Rg

_{!}

### f

^{−1}

### F )[d

_{S}

### ]

### = Ra

_{Y !}

### (G ⊗ Φ

_{S}

### F )[d

_{Y}

### ].

### 2.2 D-modules

### Let O

_{X}

### denote the sheaf of holomorphic functions on a complex manifold X, Ω

_{X}

### the sheaf of holomorphic forms of maximal degree, and D

_{X}

### the sheaf of rings of holomorphic linear differential operators. We refer to [15], [23] for the theory of D-modules (see [24] for a detailed exposition).

### Denote by Mod(D

_{X}

### ) the category of left D

_{X}

### -modules, and by Mod

_{coh}

### (D

_{X}

### ) the thick abelian subcategory of coherent D

X### -modules. Following [25], we say that a coherent D

_{X}

### -module M is good if, in a neighborhood of any compact subset of X, M admits a finite filtration by coherent D

_{X}

### -submodules M

_{k}

### (k = 1, . . . , l) such that each quotient M

k### /M

k−1### can be endowed with a good filtration. We denote by Mod

_{good}

### (D

_{X}

### ) the full subcategory of Mod

_{coh}

### (D

_{X}

### ) consisting of good D

_{X}

### - modules. This definition ensures that Mod

_{good}

### (D

_{X}

### ) is the smallest thick subcategory of Mod(D

X### ) containing the modules which can be endowed with good filtrations on a neighborhood of any compact subset of X. Note that in the algebraic case, coherent D-modules are good.

### Denote by D

^{b}

### (D

X### ) the derived category of the category of bounded complexes of left D

_{X}

### -modules, and by D

^{b}

_{coh}

### (D

_{X}

### ) (resp. by D

^{b}

_{good}

### (D

_{X}

### )) its full triangulated sub- category whose objects have cohomology groups belonging to Mod

_{coh}

### (D

_{X}

### ) (resp. to Mod

good### (D

X### )).

### Let f : Y − → X be a morphism of complex manifolds. We denote by Df

^{∗}

### and f

∗

### the inverse and direct images in the sense of D-modules. Hence, for M ∈ D

^{b}

### (D

_{X}

### ) and N ∈ D

^{b}

### (D

_{Y}

### ):

### Df

^{∗}

### M = D

_{Y}

### − →

X### ⊗

^{L}

f^{−1}D_{X}

### f

^{−1}

### M, f

_{∗}

### N = Rf

_{∗}

### (D

_{X}

### ← −

Y### ⊗

^{L}

_{D}

Y

### N ),

### where D

_{Y}

### − →

X### and D

_{X}

### ← −

Y### are the transfer bimodules. We denote by the exterior

^{D}

### tensor product, and we also use the notation:

### M

^{∨}

### = Rhom

DX### (M, K

X### ),

### where K

_{X}

### is the dualizing complex for left D

_{X}

### -modules, K

_{X}

### = D

_{X}

### ⊗

_{O}

X

### Ω

^{⊗−1}

_{X}

### [d

_{X}

### ].

### Proposition 2.3. Let M ∈ D

^{b}

_{good}

### (D

_{X}

### ), N ∈ D

^{b}

### (D

_{Y}

### ), and G ∈ D

^{b}

### (Y ). Assume that f is non-characteristic for M. Then Df

^{∗}

### M is good, and we have the isomor- phisms:

### (Df

^{∗}

### M)

^{∨}

### ' Df

^{∗}

### M

^{∨}

### , (2.6)

### Rf

_{∗}

### Rhom

D_{Y}

### (Df

^{∗}

### M, N [d

_{Y /X}

### ]) ' Rhom

D_{X}

### (M, f

_{∗}

### N ), (2.7)

### f

^{−1}

### Rhom

D_{X}

### (M, O

_{X}

### ) ' Rhom

D_{Y}

### (Df

^{∗}

### M, O

_{Y}

### ), (2.8)

### Rhom

D_{X}

### (M, Rf

_{!}

### G ⊗ O

_{X}

### ) ' Rf

_{!}

### Rhom

D_{Y}

### (Df

^{∗}

### M, G ⊗ O

_{Y}

### ), (2.9)

### Rhom

D_{X}

### (M, Rhom(Rf

_{!}

### G, O

_{X}

### )) (2.10) ' Rf

_{∗}

### Rhom

D_{Y}

### (Df

^{∗}

### M, Rhom(G, O

_{Y}

### ))[2d

_{Y /X}

### ].

### Proof. The fact that Df

^{∗}

### M is good and the first isomorphism are results of [23]. The second isomorphism is easily deduced from the first one, and the third isomorphism is the Cauchy-Kowalevski-Kashiwara theorem. Let us prove (2.9). Let us set for short Sol(M) = Rhom

D_{X}

### (M, O

_{X}

### ). Then we have the chain of isomorphisms:

### Rhom

D_{X}

### (M, Rf

_{!}

### G ⊗ O

_{X}

### ) ' Rf

_{!}

### G ⊗ Sol(M) ' Rf

_{!}

### (G ⊗ f

^{−1}

### Sol(M)) ' Rf

_{!}

### (G ⊗ Sol(Df

^{∗}

### M)),

### where the last isomorphism follows from (2.8). To prove (2.10), consider the chain of isomorphisms:

### Rhom

D_{X}

### (M, Rhom(Rf

_{!}

### G, O

_{X}

### )) ' Rhom(Rf

_{!}

### G, Sol(M)) ' Rf

_{∗}

### Rhom(G, f

^{!}

### Sol(M))

### ' Rf

_{∗}

### Rhom(G, f

^{−1}

### Sol(M))[2d

_{Y /X}

### ] ' Rf

_{∗}

### Rhom(G, Sol(Df

^{∗}

### M))[2d

_{Y /X}

### ], where, in order to prove the third isomorphism, we have used Proposition 5.4.13 and Theorem 11.3.3 of [17].

### Proposition 2.4. Let N ∈ D

^{b}

_{good}

### (D

_{Y}

### ), M ∈ D

^{b}

### (D

_{X}

### ), and F ∈ D

^{b}

### (X). Assume f is proper on supp N . Then f

∗

### N is good, and:

### (f

_{∗}

### N )

^{∨}

### ' f

_{∗}

### N

^{∨}

### , (2.11) Rf

_{∗}

### Rhom

D_{Y}

### (N , Df

^{∗}

### M[d

_{Y /X}

### ]) ' Rhom

D_{X}

### (f

_{∗}

### N , M), (2.12) Rf

_{∗}

### Rhom

D_{Y}

### (N , O

_{Y}

### )[d

_{Y /X}

### ] ' Rhom

D_{X}

### (f

_{∗}

### N , O

_{X}

### ), (2.13) Rf

_{!}

### Rhom

D_{Y}

### (N , f

^{−1}

### F ⊗ O

_{Y}

### )[d

_{Y /X}

### ] ' Rhom

D_{X}

### (f

_{∗}

### N , F ⊗ O

_{X}

### ), (2.14) Rf

_{∗}

### Rhom

D_{Y}

### (N , Rhom(f

^{−1}

### F, O

_{Y}

### ))[d

_{Y /X}

### ] (2.15)

### ' Rhom

D_{X}

### (f

∗

### N , Rhom(F, O

_{X}

### )).

### Proof. The fact that f

_{∗}

### N is good, and the first isomorphism are results of [14], [12], [26], and [25]. The second and third isomorphisms follow from the first one. To prove (2.14), consider the chain of isomorphisms:

### Rf

_{!}

### (f

^{−1}

### F ⊗ Sol(N ))[d

_{Y /X}

### ] ' F ⊗ Rf

_{!}

### Sol(N )[d

_{Y /X}

### ] ' F ⊗ Sol(f

_{∗}

### N ).

### To prove (2.14), consider the chain of isomorphisms:

### Rf

_{∗}

### Rhom(f

^{−1}

### F, Sol(N ))[d

_{Y /X}

### ] ' Rhom(F, Rf

_{∗}

### Sol(N ))[d

_{Y /X}

### ]

### ' Rhom(F, Sol(f

_{∗}

### N )).

### 2.3 Correspondences

### Instead of considering morphisms, we shall now consider correspondences of complex analytic manifolds:

### S

f

### ~~ ~~ ~~ ~

_{g}

### @ @

### @ @

### @ @

### @

### X Y.

### (2.16)

### Definition 2.5. For M ∈ D

^{b}

### (D

_{X}

### ), we set:

### Φ

_{S}

### M = g

_{∗}

### Df

^{∗}

### M, Ψ

_{S}

### M = Φ

_{S}

### M[d

_{Y}

### − d

_{X}

### ].

### For N ∈ D

^{b}

### (D

_{Y}

### ) we similarly define:

### Φ

Se### N = f

∗

### Dg

^{∗}

### N , Ψ

Se

### N = Φ

Se

### N [d

_{X}

### − d

_{Y}

### ].

### As an immediate consequence of Propositions 2.3 and 2.4, we get

### Proposition 2.6. Let M ∈ D

^{b}

_{good}

### (D

X### ), N ∈ D

^{b}

### (D

Y### ), and G ∈ D

^{b}

### (Y ). Assume that f is non-characteristic for M, and that g is proper on f

^{−1}

### supp M. Then Φ

_{S}

### M ∈ D

^{b}

_{good}

### (D

_{Y}

### ), and:

### Φ

_{S}

### (M

^{∨}

### ) ' (Φ

_{S}

### M)

^{∨}

### , (2.17)

### Ra

_{X ∗}

### Rhom

D_{X}

### (M, Ψ

_{S}

_{e}

### N ) ' Ra

_{Y ∗}

### Rhom

D_{Y}

### (Φ

_{S}

### M, N ), (2.18) Φ

_{S}

### Rhom

D_{X}

### (M, O

_{X}

### ) ' Rhom

D_{Y}

### (Φ

_{S}

### M, O

_{Y}

### ), (2.19)

### Ra

_{X !}

### Rhom

_{D}

_{X}

### (M, Φ

Se

### G ⊗ O

_{X}

### )[d

_{X}

### ] (2.20)

### ' Ra

Y !### Rhom

D_{Y}

### (Φ

_{S}

### M, G ⊗ O

Y### )[d

Y### ],

### Ra

_{X ∗}

### Rhom

D_{X}

### (M ⊗ Φ

_{S}

_{e}

### G, O

_{X}

### )[d

_{X}

### ] (2.21) ' Ra

_{Y ∗}

### Rhom

D_{Y}

### (Φ

_{S}

### M ⊗ G, O

_{Y}

### )[d

_{Y}

### ].

### As already mentioned in the introduction, this result allows us to distinguish between two kind of problems arising in the Penrose transform:

### (i) to compute the sheaf theoretical transform of G, (ii) to compute the D-module transform of M.

### The first problem is of a topological nature, and under reasonable hypotheses

### is not very difficult (a first example appears in Corollary 2.9 below). The study of

### Φ

_{S}

### M is, in general, a more difficult problem. For instance, Φ

_{S}

### M is a complex of

### D-modules, and is not necessarily concentrated in degree zero. This does not affect

### the formulas as long as we use derived categories, but things may become rather complicated when computing explicitly cohomology groups.

### In the next sections we will study the transform Φ

_{S}

### . We begin here with some easy corollaries of Proposition 2.6.

### For x ∈ X, y ∈ Y , A ⊂ X and B ⊂ Y , we set for short:

### b x = g(f

^{−1}

### (x)), A = g(f b

^{−1}

### (A)), b y = f (g

^{−1}

### (y)), B = f (g b

^{−1}

### (B)).

### Definition 2.7. (i) We say that a topological space A is globally cohomologically trivial (g.c.t. for short) if the natural morphism:

### C − → RΓ(A; C

A### ) is an isomorphism.

### (ii) We say that a locally closed subset A ⊂ X is S-trivial if A ∩ y is g.c.t. for b every y ∈ b A.

### Notice that contractible spaces are g.c.t. Moreover, a C

^{0}

### -manifold A is g.c.t. if and only if the natural morphism

### RΓ

_{c}

### (A; ω

_{A}

### ) − → C (2.22)

### is an isomorphism (see [17, Remark 3.3.10]).

### Recall that one says that a morphism f : S − → X of real analytic manifolds is smooth at s ∈ S if the tangent map f

^{0}

### (s) is surjective, that f is an immersion if f

^{0}

### (s) is injective, and that f is an embedding if it is both injective and an immersion.

### In the following, we will make some of the hypotheses:

### f is smooth and g is proper, (2.23)

### (f, g) : S − → X × Y is a closed embedding. (2.24) Lemma 2.8. Assume (2.23) and (2.24).

### (i) Let U ⊂ Y be a e S-trivial open subset. Then, there is a natural isomorphism:

### Φ

_{S}

_{e}

### (C

U### ) ' C

Ub### [−d

_{S/X}

### ].

### (ii) Let K ⊂ Y be a e S-trivial compact subset. Then, there is a natural isomor- phism:

### Φ

Se### (C

K### ) ' C

Kb### [d

_{S/X}

### ]

### Proof. (i) One has Φ

_{S}

_{e}

### (C

U### ) ' Rf

_{!}

### C

g^{−1}(U )

### [d

_{S/X}

### ]. Setting f

_{U}

### = f |

_{g}

^{−1}

_{(U )}

### , it remains to check that Rf

_{U !}

### C

g^{−1}(U )

### ' C

Ub### [−2d

_{S/X}

### ]. Since f

_{U}

### is smooth, one has

### Rf

_{U !}

### C

g^{−1}(U )

### ' Rf

_{U !}

### f

_{U}

^{−1}

### C

Ub### ' Rf

_{U !}

### f

_{U}

^{!}

### C

Ub### [−2d

_{S/X}

### ].

### By hypothesis (2.24), g induces an isomorphism from g

^{−1}

### (U ) ∩ f

^{−1}

### (x) to U ∩ x. b Hence, e S-triviality of U implies that the fibers of f

_{U}

### are g.c.t. Then, the natural morphism

### Rf

_{U !}

### f

_{U}

^{!}

### C

Ub### − → C

Ub### is an isomorphism by (2.22).

### (ii) One has Φ

_{S}

_{e}

### (C

K### ) ' Rf

_{!}

### C

g^{−1}(K)

### [d

_{S/X}

### ]. Setting f

_{K}

### = f |

_{g}

^{−1}

_{(K)}

### , it remains to check that Rf

_{K !}

### C

g^{−1}(K)

### ' C

Kb### . One has

### Rf

_{K !}

### C

g^{−1}(K)

### ' Rf

_{K ∗}

### f

_{K}

^{−1}

### C

Kb### .

### Moreover, the natural morphism C

Kb### − → Rf

_{K ∗}

### f

_{K}

^{−1}

### C

Kb### is an isomorphism by the hypothesis that K is e S-trivial.

### By Proposition 2.6 and Lemma 2.8, we get the corollary below.

### Corollary 2.9. Assume (2.23) and (2.24). Let M ∈ D

^{b}

_{good}

### (D

_{X}

### ).

### (i) Let U ⊂ Y be a e S-trivial open subset. Then, there are natural isomorphisms:

### RΓ

c### ( b U ; Rhom

DX### (M, O

X### )) ' RΓ

_{c}

### (U ; Rhom

DY### (Φ

_{S}

### M, O

_{Y}

### ))[−d

_{S/Y}

### + 2d

_{S/X}

### ], RΓ( b U ; Rhom

D_{X}

### (M, O

_{X}

### )) ' RΓ(U ; Rhom

_{D}

_{Y}

### (Φ

_{S}

### M, O

_{Y}

### ))[−d

_{S/Y}

### ].

### (ii) Let K ⊂ Y be a e S-trivial compact subset. Then, there are natural isomor- phisms:

### RΓ( b K; Rhom

DX### (M, O

X### )) ' RΓ(K; Rhom

_{D}

_{Y}

### (Φ

_{S}

### M, O

_{Y}

### ))[−d

_{S/Y}

### ],

### RΓ

_{K}

_{b}

### (X; Rhom

DX### (M, O

X### )) ' RΓ

_{K}

### (Y ; Rhom

DY### (Φ

_{S}

### M, O

_{Y}

### ))[2d

_{S/X}

### − d

_{S/Y}

### ].

### (iii) For y ∈ Y we have the germ formula:

### RΓ( y; Rhom b

D_{X}

### (M, O

_{X}

### )) ' Rhom

D_{Y}

### (Φ

_{S}

### M, O

_{Y}

### )

_{y}

### [−d

_{S/Y}

### ].

### Notation 2.10. Let F be a locally free O

_{X}

### -module of finite rank (a complex vector bundle). We set:

### F

^{∗}

### = hom

O_{X}

### (F , O

_{X}

### ), DF

^{∗}

### = D

_{X}

### ⊗

_{O}

X

### F

^{∗}

### .

### Notice that DF

^{∗}

### is a locally free D

_{X}

### -module whose holomorphic solutions are given by:

### Rhom

_{D}

_{X}

### (DF

^{∗}

### , O

_{X}

### ) ' F , where the last isomorphism is C-linear, but not O-linear.

### Replacing M by DF

^{∗}

### in Corollary 2.9, and with the notations and hypotheses of this corollary, we get in particular the isomorphisms:

### RΓ( b U ; F ) ' RΓ(U ; Rhom

D_{Y}

### (Φ

_{S}

### (DF

^{∗}

### ), O

_{Y}

### ))[−d

_{S/Y}

### ], (2.25) RΓ( b y; F ) ' Rhom

_{D}

_{Y}

### (Φ

_{S}

### (DF

^{∗}

### ), O

_{Y}

### )

_{y}

### [−d

_{S/Y}

### ]. (2.26) Remark 2.11. There are many other interesting applications of the results in this section that we will not develop here. Among others, let us mention the following:

### (i) Several authors have considered the formal completion of a locally free sheaf F along y, or more generally along a complex submanifold of X (see [21], [13], b [8], [9]). One could also incorporate this point of view in our formalism, and, for example, prove the formula below, similar to (2.26):

### RΓ( y; Fˆ| b b y) ' Rhom

D_{Y}

### (Φ

_{S}

### (DF

^{∗}

### ), b O

_{Y,y}

### )[−d

_{S/Y}

### ],

### where Fˆ| y is the formal completion of F along the submanifold b y of X, and b O b

_{Y,y}

### the formal completion of O

_{Y}

### at y.

### (ii) In (2.17) we have given a duality formula that we shall not develop here. We refer to [6], in which the duality is used to treat the positive helicity case as potentials modulo gauges.

### (iii) The results of [10] concerning the group SO(8) could be reformulated in our language.

### (iv) In our paper [4], we treat along these lines the classical projective duality, in which Y = P

^{n}

### , X = (P

^{n}

### )

^{∗}

### and S ⊂ X × Y is given by the incidence relation S = {(x, ξ) ∈ P

^{n}

### × (P

^{n}

### )

^{∗}

### ; hx, ξi = 0}.

### 2.4 Kernels

### In this section, we shall describe an equivalent construction of the transforms Φ

_{S}

### , Φ

_{S}

### and their generalizations.

### On a product space X × Y , we denote by q

_{1}

### and q

_{2}

### the projections on X and Y respectively, and by r : X × Y − → Y × X the map r(x, y) = (y, x).

### Consider the correspondence (2.16). Assuming (2.24), we identify S to a closed submanifold of X × Y , and we set e S = r(S) ⊂ Y × X. We denote by B

_{S|X×Y}

### the holonomic D

X×Y### -module associated to S:

### B

_{S|X×Y}

### = H

_{[S]}

^{d}

^{X}

^{+d}

^{Y}

^{−d}

^{S}

### (O

_{X×Y}

### ),

### and we also consider the associated (D

_{Y}

### , D

_{X}

### )-bimodule:

### B

^{(n,0)}

_{S|X×Y}

### = q

_{1}

^{−1}

### Ω

_{X}

### ⊗

_{q}

^{−1}

1 OX

### B

_{S|X×Y}

### . Proposition 2.12. Assume (2.24). Then:

### (i) There is a natural isomorphism of (D

_{Y}

### , D

_{X}

### )-bimodules on S:

### D

_{Y}

### ← −

S### ⊗

^{L}

DS

### D

_{S}

### − →

X### − → B

∼_{S|X×Y}

^{(n,0)}

### . (2.27) In particular D

_{Y}

### ← −

S### ⊗

^{L}

D_{S}

### D

_{S}

### − →

X### is concentrated in degree zero.

### (ii) For M ∈ D

^{b}

### (D

_{X}

### ), the following isomorphism holds:

### Φ

_{S}

### M ' Rq

_{2!}

### (B

^{(n,0)}

_{S|X×Y}

### ⊗

^{L}

q^{−1}_{1} DX

### q

_{1}

^{−1}

### M). (2.28) Proof. (i) Denote by ∆

_{f}

### the graph of f in S × X, and set f ∆

_{f}

### = r(∆

_{f}

### ) ⊂ X × S.

### Then D

_{S}

### − →

X### ' B

^{(d}

^{X}

^{,0)}

∆ff|X×S

### . Consider the diagram, where e g = id × g X × S

^{e}

^{g}

^{//} X × Y

### ∆ f

_{f}

^{∼}

^{//}

i

### OO

### S

### OO (2.29)

### Then

### D

_{Y}

### ← −

S### ⊗

^{L}

_{D}

S

### D

_{S}

### − →

X### ⊗

_{O}

X

### Ω

^{⊗−1}

_{X}

### ' D

_{X×Y}

### ← −

X×S### ⊗

^{L}

_{D}

X×S

### B

∆ff|X×S

### ' e g

_{∗}

### B

∆ff|X×S

### − → B

∼_{S|X×Y}

### ,

### where the last isomorphism comes from the fact that e g induces an isomorphism

### ∆ f

_{f}

### ' S, and that B

∆ff|X×S

### = i

_{∗}

### O

∆ff

### . (ii) is an immediate consequence of (i).

### According to Proposition 2.12, a natural generalization of the transform Φ

_{S}

### is obtained if one replaces B

^{(n,0)}

_{S|X×Y}

### by K

^{(d}

^{X}

^{,0)}

### in formula (2.28), where K is a holonomic module on X × Y . Set:

### K = Rhom

D_{X×Y}

### (K, O

_{X×Y}

### ).

### Definition 2.13. For G ∈ D

^{b}

### (Y ) and M ∈ D

^{b}

### (D

_{X}

### ), set:

### Φ

K### G = Rq

_{1!}

### (K ⊗ q

_{2}

^{−1}

### G)[d

Y### ], Φ

_{K}

### M = Rq

_{2!}

### (K

^{(d}

^{X}

^{,0)}

### ⊗

^{L}

q^{−1}_{1} DX

### q

^{−1}

_{1}

### M).

### Let Λ = char(K) be the characteristic variety of K. In order to deal with these generalized transforms, one has to replace the assumptions (2.23) and (2.24) by the following:

### the projection q

2### : π(Λ) − → Y is proper, (2.30) and Λ ∩ (T

^{∗}

### X × T

_{Y}

^{∗}

### Y ) ⊂ T

_{X×Y}

^{∗}

### (X × Y ).

### It is possible to state our results in this more general framework, but we will not develop this approach here.

### 3 Vanishing theorems

### 3.1 E-modules

### Let X be a complex manifold. We denote by π : T

^{∗}

### X − → X its cotangent bundle, by T

_{X}

^{∗}

### X the zero section of T

^{∗}

### X, and we set:

### T ˙

^{∗}

### X = T

^{∗}

### X \ T

_{X}

^{∗}

### X.

### If M ⊂ X is a closed submanifold, we denote by T

_{M}

^{∗}

### X its conormal bundle.

### We refer to [23], [15] (see [24] for a detailed exposition) for the theory of modules over the ring E

_{X}

### of finite order microdifferential operators on T

^{∗}

### X.

### If M is a D

X### -module, we set:

### EM = E

_{X}

### ⊗

_{π}−1D

_{X}

### π

^{−1}

### M.

### Recall that M ' E M|

_{T}

^{∗}

XX

### , and that if M is coherent, its characteristic variety, denoted char(M), is the support of E M.

### Let U be a subset of T

^{∗}

### X. We denote by Mod

_{coh}

### (E

_{X}

### |

_{U}

### ) the category of coherent E

_{X}

### -modules on U , by D

^{b}

### (E

_{X}

### |

_{U}

### ) the full triangulated subcategory of the derived cat- egory of E

_{X}

### |

_{U}

### -modules whose objects have bounded cohomology, by D

^{b}

_{coh}

### (E

_{X}

### |

_{U}

### ) the full triangulated subcategory of D

^{b}

### (E

_{X}

### |

_{U}

### ) whose objects have coherent cohomology.

### To f : S − → X one associates the maps T

^{∗}

### S ←−

tf^{0}

### S ×

_{X}

### T

^{∗}

### X − →

fπ

### T

^{∗}

### X.

### We will denote by f

^{−1}

_{E}

### and f

^{E}

_{∗}

### the inverse and direct images in the sense of E -modules.

### Hence, for M ∈ D

^{b}

### (E

_{X}

### ) and P ∈ D

^{b}

### (E

_{S}

### ):

### f

^{−1}

E

### M = R

^{t}

### f

^{0}

_{∗}

### (E

_{S}

### − →

X### ⊗

^{L}

fπ^{−1}EX

### f

_{π}

^{−1}

### M), f

^{E}

∗

### P = Rf

_{π ∗}

### (E

_{X}

### ← −

S### ⊗

^{L}

_{t}

f^{0−1}ES

t

### f

^{0−1}

### P),

### where E

_{S}

### − →

X### and E

_{X}

### ← −

S### are the transfer bimodules.

### Recall the correspondence (2.16), and assume (2.23), (2.24). Setting Λ = T

_{S}

^{∗}

### (X × Y ) ∩ ( ˙ T

^{∗}

### X × ˙ T

^{∗}

### Y ),

### we consider the associated “microlocal correspondences”:

### T

_{S}

^{∗}

### (X × Y )

p1|_{T ∗}

S(X×Y )

### xxrrr rrr rrr rr

^{p}

^{a}

^{2}

^{|}

^{T ∗}

_{S}

^{(X×Y )}

### &&L L L L L L L L L L

### T

^{∗}

### X T

^{∗}

### Y,

### Λ

p1|_{Λ}

### }}{{ {{{ {{{

^{p}

^{a}2|Λ

### C !!C C C C C C C

### T ˙

^{∗}

### X T ˙

^{∗}

### Y,

### (3.1)

### where p

_{1}

### and p

_{2}

### denote the projections on T

^{∗}

### (X × Y ) ' T

^{∗}

### X × T

^{∗}

### Y , and p

^{a}

_{2}

### = a ◦ p

_{2}

### , where a denotes the antipodal map. Note that Λ = ˙ T

_{S}

^{∗}

### (X × Y ) if and only if f and g are smooth.

### If A is a conic subset of T

^{∗}

### X, we set

### Φ

^{µ}

_{S}

### (A) = p

^{a}

_{2}

### (T

_{S}

^{∗}

### (X × Y ) ∩ p

^{−1}

_{1}

### (A)). (3.2) We denote by C

_{S|X×Y}

### the holonomic E

_{X×Y}

### -module associated to S:

### C

_{S|X×Y}

### = E B

_{S|X×Y}

### , and we consider the associated (E

_{Y}

### , E

_{X}

### )-bimodule:

### C

_{S|X×Y}

^{(n,0)}

### = π

^{−1}

### q

^{−1}

_{1}

### Ω

_{X}

### ⊗

_{π}−1q

_{1}

^{−1}OX

### C

_{S|X×Y}

### . (3.3) Definition 3.1. We define the functors from D

^{b}

### (E

X### ) to D

^{b}

### (E

Y### ):

### Φ

^{µ}

_{S}

### (M) = g

^{E}

∗

### f

^{−1}

E

### M, Ψ

^{µ}

_{S}

### (M) = Φ

^{µ}

_{S}

### (M)[d

_{Y}

### − d

_{X}

### ].

### Hence, we get the functors from D

^{b}

### (E

_{Y}

### ) to D

^{b}

### (E

_{X}

### ):

### Φ

^{µ}

Se

### (N ) = f

^{E}

_{∗}

### g

^{−1}

_{E}

### N , Ψ

^{µ}

Se

### (N ) = Φ

^{µ}

Se

### (N )[d

_{X}

### − d

_{Y}

### ].

### We identify S ×

_{X}

### T

^{∗}

### X to T

^{∗}

∆e_{f}

### (X × S) and S ×

_{Y}

### T

^{∗}

### Y to T

_{∆}

^{∗}

_{g}

### (S × Y ), and we consider the diagram

### T

^{∗}

### (X × S × Y )

^{p}

^{13}

^{//} T

^{∗}

### (X × Y )

### T

^{∗}

∆ef

### (X × S) ×

_{T}

^{∗}

_{S}

### T

_{∆}

^{∗}

_{g}

### (S × Y )

^{∼}

### //

### OO

### T

_{S}

^{∗}

### (X × Y ),

### OO

### where p

_{13}

### denotes as usual the natural projection defined on a product of three factors.

### In the next proposition we shall write for example E

_{Y}

### ← −

S### instead of p

^{−1}

_{23}

### E

_{Y}

### ← −

S### ,

### for short.

### Proposition 3.2. Assume (2.24). Then:

### (i) There is a natural isomorphism of (E

Y### , E

X### )-bimodules on T

_{S}

^{∗}

### (X × Y ):

### E

_{Y}

### ← −

S### ⊗

^{L}

_{E}

S

### E

_{S}

### − →

X### − → C

∼_{S|X×Y}

^{(n,0)}

### .

### (ii) For M ∈ D

^{b}

### (E

_{X}

### ), the following isomorphism holds:

### Φ

^{µ}

_{S}

### (M) ' Rp

^{a}

_{2 ∗}

### (C

_{S|X×Y}

^{(n,0)}

### ⊗

^{L}

p^{−1}_{1} EX

### p

^{−1}

_{1}

### M).

### Proof. (i) We shall follow the notations of diagram (2.29). We have the chain of isomorphisms:

### E

_{Y}

### ← −

S### ⊗

^{L}

_{E}

S

### E

_{S}

### − →

X### ⊗

_{π}−1O

_{X}

### π

^{−1}

### Ω

^{⊗−1}

_{X}

### ' E

_{X×Y}

### ← −

X×S### ⊗

^{L}

_{E}

X×S

### C

∆ff|X×S

### = e g

^{E}

_{∗}

### C

_{∆}

_{f}

f|X×S

### − → C

∼_{S|X×Y}

### , where we have used the isomorphism E

_{S}

### − →

X### ' C

^{(d}

^{X}

^{,0)}

∆ff|X×S

### , and where the last iso- morphism follows from the fact that g induces an isomorphism between f e ∆

_{f}

### and S (see [23]).

### (ii) follows from (i).

### The next result will play a crucial role in the rest of the paper.

### Proposition 3.3. (i) Let f : S − → X, and let M ∈ D

^{b}

_{coh}

### (D

_{X}

### ). Assume that f is non-characteristic for M. Then

### EDf

^{∗}

### M ' f

^{−1}

E

### EM.

### (ii) Let g : S − → Y , and let P ∈ D

^{b}

_{good}

### (D

_{S}

### ). Assume that g is proper on supp P.

### Then

### Eg

∗### P ' g

^{E}

∗

### EP.

### Proof. (i) is proved in [23].

### (ii) was obtained in [14] in the projective case, then extended to the general case in [12], [25].

### Corollary 3.4. Assume (2.23), (2.24), and let M ∈ D

^{b}

_{good}

### (D

_{X}

### ). Then

### E(Φ

_{S}

### M) ' Φ

^{µ}

_{S}

### (E M).

### 3.2 Vanishing theorems

### In this section, we shall state some vanishing theorems for the cohomology of Φ

_{S}

### (M), M being a good D

_{X}

### -module, making the following hypothesis:

### the map p

^{a}

_{2}

### |

Λ### : Λ − → ˙ T

^{∗}

### Y is finite. (3.4) Note that hypotheses (2.23), (2.24), and (3.4) imply that g is open.

### Proposition 3.5. Assume (2.23), (2.24), and (3.4).

### (i) Let M ∈ D

^{b}

_{good}

### (D

_{X}

### ). Then char(Φ

_{S}

### (M)) ⊂ Φ

^{µ}

_{S}

### (char(M)).

### (ii) Assume (3.4), and M ∈ Mod

_{good}

### (D

_{X}

### ) (i.e. M is in degree 0). Then for j 6= 0, H

^{j}

### (Φ

_{S}

### M) is a holomorphic vector bundle endowed with a flat connection.

### Proof. (i) is an obvious consequence of classical results on the operations on D- modules (see [15], [24]).

### (ii) It is well known that a D

Y### -module whose characteristic variety is contained in the zero section is a locally free O

_{Y}

### -module of finite rank endowed with a flat connection. Hence, by Corollary 3.4 it is enough to prove that:

### H

^{j}

### (Φ

^{µ}

_{S}

### EM)|

T˙^{∗}Y

### = 0 for j 6= 0.

### This is clear since f being smooth f

^{−1}

_{E}

### is exact, and p

^{a}

_{2}

### |

_{Λ}

### being finite g

^{E}

_{∗}

### is exact (see [23] or [24, Ch. II, Theorem 3.4.4]).

### Proposition 3.6. Assume (2.23), (2.24), (3.4), and that Y is connected. Let F be a holomorphic vector bundle on X, and recall that we set DF = D

_{X}

### ⊗

_{O}

X

### F . Then:

### (i) H

^{j}

### (Φ

_{S}

### DF ) = 0 for j < 0,

### (ii) Φ

_{S}

### DF is concentrated in degree zero if and only if there exists y ∈ Y such that H

^{j}

### ( y; F b

^{∗}

### ) = 0 for every j < d

_{S/Y}

### ,

### (iii) we have the isomorphism:

### H

^{j}

### (Rhom

D_{Y}

### (Φ

_{S}

### DF , O

_{Y}

### )) ' hom

D_{Y}

### (H

^{−j}

### (Φ

_{S}

### DF ), O

_{Y}

### ) for j ≤ 0, (iv) if g is smooth, we have:

### H

^{j}

### (Rhom

DY### (Φ

_{S}

### DF , O

Y### )) = 0 for j > 0.

### Proof. (i) follows from Proposition 2.12 (ii), since DF is flat over D

_{X}

### .

### (ii) Recall that Y is connected, and let y ∈ Y . Set N = Φ

_{S}

### DF for short, and consider the distinguished triangle

### H

^{0}

### (N ) − → N − → τ

^{>0}

### N −→

+1

### , which gives rise to the distinguished triangle

### Sol(τ

^{>0}

### N ) − → Sol(N ) − → Sol(H

^{0}

### (N )) −→

+1

### (3.5)

### (where, as usual, Sol(N ) = Rhom

D_{Y}

### (N , O

_{Y}

### )). Notice that since char(τ

^{>0}

### N ) ⊂ T

_{Y}

^{∗}

### Y , one has

### H

^{j}

### Sol(τ

^{>0}

### N ) = 0 ∀j ≥ 0, (3.6) and

### τ

^{>0}

### N = 0 ⇔ Sol(τ

^{>0}

### N ) = 0

### ⇔ H

^{j}

### Sol(τ

^{>0}

### N ) = 0 ∀j < 0

### ⇔ H

^{j}

### Sol(τ

^{>0}

### N )

_{y}

### = 0 ∀j < 0

### ⇔ H

^{j}

### Sol(N )

_{y}

### = 0 ∀j < 0,

### where the last equivalence comes from the distinguished triangle (3.5), and the fact that, for j < 0, one has H

^{j}

### Sol(H

^{0}

### (N )) = 0. To conclude, it remains to apply the germ formula

### H

^{j}

### Sol(N )

_{y}

### ' H

^{d}

^{S/Y}

^{+j}

### ( y; F b

^{∗}

### ).

### (iii) For j < 0 we have the sequence of isomorphisms:

### H

^{j}

### Sol(N ) ' H

^{j}

### Sol(τ

^{>0}

### N ) ' Sol(H

^{−j}

### (τ

^{>0}

### N )) ' Sol(H

^{−j}

### (N )).

### For j = 0 the result follows from (3.5), (3.6).

### (iv) One has H

^{j}

### (Rhom

D_{Y}

### (N , O

Y### ))

y### ' H

^{d}

^{S/Y}

^{+j}

### ( b y; F

^{∗}

### ) and this group is zero since b y ' g

^{−1}

### (y) is a compact smooth submanifold of X of dimension d

_{S/Y}

### . In fact, if Z is a compact smooth submanifold of dimension d of the complex manifold X, and F is a locally free O

X### -module of finite rank on X, the vanishing of H

^{d+j}

### (Z; F ) for j > 0 follows by duality from the fact that H

_{Z}

^{k}

### (X; F

^{∗}

### ⊗

_{O}

Y

### Ω

_{Y}

### ) is zero for k < d

_{X}

### − d, and for k = d

_{X}

### − d this space is isomorphic to Γ(X; H

_{Z}

^{d}

^{X}

^{−d}

### (F

^{∗}

### ⊗

_{O}

Y

### Ω

_{Y}

### )), hence has

### a natural topology of a (separated) Fr´ echet space.

### 4 A regularity theorem and an equivalence of categories

### 4.1 Modules with regular singularities

### We review some notions and results from Kashiwara and Oshima’s work [16].

### The ring E

_{X}

### is naturally endowed with a Z-filtration by the degree, and we denote by E

_{X}

### (k) the sheaf of operators of degree at most k. Denote by O

_{T}

^{∗}

_{X}

### (k) the sheaf of holomorphic functions on T

^{∗}

### X, homogeneous of degree k.

### Let V ⊂ ˙ T

^{∗}

### X be a conic regular involutive submanifold of codimension c

_{V}

### . Recall that one says that a smooth conic involutive manifold V is regular if the canonical one-form on T

^{∗}

### X does not vanish on V . Denote by I

_{V}

### (k) the sheaf ideal of sections of O

_{T}

^{∗}

_{X}

### (k) vanishing on V . Let E

_{V}

### be the subalgebra of E

_{X}

### generated over E

_{X}

### (0) by the sections P of E

_{X}

### (1) such that σ

_{1}

### (P ) belongs to I

_{V}

### (1) (here σ

_{1}

### (·) denotes the symbol of order 1).

### Example 4.1. Let X = W × Z, V = U

_{W}

### × T

_{Z}

^{∗}

### Z for an open subset U

_{W}

### ⊂ ˙ T

^{∗}

### W . Then E

_{V}

### is the subalgebra D

_{Z}

### E

_{X}

### (0) of E

_{X}

### generated over E

_{X}

### (0) by the differential operators of Z.

### Definition 4.2. (cf [16]). Let M be a coherent E

_{X}

### -module. One says that M has regular singularities along V if locally there exists a coherent sub-E

_{X}

### (0)-module M

_{0}

### of M which generates it over E

X### , and such that E

V### M

0### ⊂ M

0### . One says that M is simple along V if locally there exists an E

_{X}

### (0)-module M

_{0}

### as above such that M

_{0}

### /E

_{X}

### (−1)M

_{0}

### is a locally free O

_{V}

### (0)-module of rank one.

### Notice that the above definitions are invariant by quantized contact transfor- mations, and that a system with regular singularities along V is supported by V (cf. [16, Lemma 1.13]).

### We will denote by Mod

_{RS(V )}

### (E

X### ) the thick abelian subcategory of Mod

coh### (E

X### ) whose objects have regular singularities along V . We denote by D

^{b}

_{RS(V )}

### (E

_{X}

### ) the full triangulated subcategory of D

^{b}

_{coh}

### (E

_{X}

### ) whose objects M have cohomology groups with regular singularities along V . This category is invariant by quantized contact transformations.

### Example 4.3. Let V ⊂ ˙ T

^{∗}

### X be a regular involutive submanifold, and let S

_{V}

### be simple along V . We may locally assume, after a quantized contact transformation, that X = W × Z, V = U

_{W}

### × T

_{Z}

^{∗}

### Z. In this case S

_{V}

### is isomorphic to the partial de Rham system E

_{W}

### O

^{D}Z

### (cf. [16, Theorem 1.9]). Denoting by ρ : V − → U

_{W}

### the natural projection, we notice that E nd

_{E}

X

### (S

_{V}

### ) ' ρ

^{−1}

### E

_{W}

### , which shows in particular that the ring E nd

_{E}

X

### (S

V### ) of E

X### -linear endomorphisms of S

V### is coherent.

### There are useful criterion to ensure that an E

_{X}

### -module M has regular singular-

### ities on V .

### Proposition 4.4. Let V ⊂ ˙ T

^{∗}

### X be a regular involutive submanifold, let M be a coherent E

_{X}

### -module, and let S

_{V}

### be simple along V . Then M has regular singularities along V if and only if for any d > 0 there locally exists an exact sequence of E

_{X}

### - modules:

### S

_{V}

^{N}

^{d}

### − → · · · − → S

_{V}

^{N}

^{0}

### − → M − → 0. (4.1) Proof. We may assume that X = W ×Z, with dim Z = d

_{Z}

### = c

_{V}

### , and V = U

_{W}

### ×T

_{Z}

^{∗}

### Z, U

_{W}

### being open in ˙ T

^{∗}

### W .

### Assume that M has regular singularities. Let M

0### be a coherent E

X### (0)-module which generates M, such that E

_{V}

### M

_{0}

### ⊂ M

_{0}

### , and let u

_{1}

### , . . . , u

_{r}

### be a system of generators of M

_{0}

### . Let (y

_{1}

### , . . . , y

_{d}

_{Z}

### ) be a local coordinate system on Z. Then there exist r × r matrices A

j### , j = 1, . . . , c

V### , with entries in E

X### (0), such that:

### D

_{y}

_{j}

###

###

### u

_{1}

### .. . u

_{r}

###

###

### = A

_{j}

###

###

### u

_{1}

### .. . u

_{r}

###

###

### (4.2)

### Denote by M

^{0}

### the E

_{X}

### -module with generators v

_{1}

### , . . . , v

_{r}

### , and relations (4.2). Then the map v

_{j}

### 7→ u

_{j}

### defines the E

_{X}

### -linear exact sequence:

### M

^{0}

### − →

ψ

### M − → 0.

### Set M

^{0}

_{0}

### = E

_{X}

### (0)v

_{1}

### + · · · + E

_{X}

### (0)v

_{r}

### . By the above relations, M

^{0}

_{0}

### /E

_{X}

### (−1)M

^{0}

_{0}

### is locally free over O

V### (0). Hence M

^{0}

### is locally isomorphic to S

_{V}

^{N}

^{0}

### for some N

0### (see [16, Theorem 1.9]). Let M

_{1}

### be the kernel of ψ. Then M

_{1}

### has regular singularities on V , and the induction proceeds.

### Conversely, assume (4.1). Then the fact that M has regular singularities is a consequence of the fact that Mod

_{RS(V )}

### (E

_{X}

### ) is a thick subcategory of Mod

_{coh}

### (E

_{X}

### ).

### Remark 4.5. Let us denote by Car

^{1}

_{V}

### (M) the 1-micro-characteristic variety of a coherent E

_{X}

### -module, introduced by Y. Laurent [18] and T. Monteiro-Fernandes [20]

### (see also [24, p. 123]). Then one can show that M has regular singularities along V if and only if Car

^{1}

_{V}

### (M) ⊂ V , the zero section of T

_{V}

### T

^{∗}

### X.

### Proposition 4.6. Let V ⊂ ˙ T

^{∗}

### X be a regular involutive submanifold, and let S

_{V}

### be simple along V . Set A

_{V}

### = E nd

_{E}

X

### (S

_{V}

### ). Then the two functors:

### Mod

_{RS(V )}

### (E

_{X}

### )

^{α}

^{//} Mod

_{coh}

### (A

_{V}

### )

### oo

β### given by:

### α(M) = hom

E_{X}

### (S

_{V}

### , M), β(R) = S

_{V}

### ⊗

_{A}

V

### R,

### are well-defined and quasi-inverse to each other. Moreover, M ∈ Mod

_{RS(V )}

### (E

_{X}

### ) is

### simple along V if and only if α(M) is a locally free A

_{V}

### -module of rank one.

### Proof. (i) Let us show that α is well-defined. First, notice that for any coherent E

_{X}

### -module M:

### Ext

^{j}

E_{X}

### (S

_{V}

### , M) = 0, for j > c

_{V}

### . For M in Mod

_{RS(V )}

### (E

_{X}

### ), consider an E

_{X}

### -linear exact sequence:

### 0 − → Z

^{d}

### − → S

_{V}

^{N}

^{d}

### − → · · · − → S

_{V}

^{N}

^{0}

### − → M − → 0. (4.3) Arguing by induction, we find that Z

^{d}

### has regular singularities on V . Moreover, by standard arguments, we get that

### Ext

^{j}

_{E}

X

### (S

V### , M) = 0, for j > 0.

### Hence hom

_{E}

_{X}

### (S

_{V}

### , ·) is exact on Mod

_{RS(V )}

### (E

_{X}

### ). Applying hom

_{E}

_{X}

### (S

_{V}

### , ·) to (4.3), we thus get an A

_{V}

### -linear resolution:

### A

^{N}

_{V}

^{1}

### − → A

^{N}

_{V}

^{0}

### − → α(M) − → 0.

### (ii) β is well defined. In fact, it is enough to check it for R = A

_{V}

### , that is, to check that S

_{V}

### has regular singularities along V , which is clear.

### (iii) id − → α ◦ β. In fact, let R ∈ Mod

^{∼}

_{coh}

### (A

_{V}

### ). Then:

### R − → hom

^{∼}

_{E}

_{X}

### (S

_{V}

### , S

_{V}

### ) ⊗

_{A}

V

### R

### − → hom

∼ E_{X}

### (S

_{V}

### , S

_{V}

### ⊗

_{A}

V

### R)

### = α ◦ β(R).

### (iv) β ◦ α − → id. In fact, let M ∈ Mod

^{∼}

_{RS(V )}

### (E

_{X}

### ). To check that the natural morphism:

### S

_{V}

### ⊗

_{A}

V

### hom

E_{X}

### (S

_{V}

### , M) − → M (4.4) is an isomorphism, we may proceed locally and use Proposition 4.4. Consider a resolution:

### S

_{V}

^{N}

^{1}

### − → S

_{V}

^{N}

^{0}

### − → M − → 0. (4.5) We have already noticed that the sequence:

### α(S

_{V}

^{N}

^{1}

### ) − → α(S

_{V}

^{N}

^{0}

### ) − → α(M) − → 0 remains exact. The functor β being right exact, the sequence:

### β(α(S

_{V}

^{N}

^{1}

### )) − → β(α(S

_{V}

^{N}

^{0}

### )) − → β(α(M)) − → 0

### is exact. Since β(α(S

V### )) − → S

^{∼}V

### this last sequence is but the exact sequence of E

_{X}

### -modules:

### S

_{V}

^{N}

^{1}

### − → S

_{V}

^{N}

^{0}

### − → β(α(M)) − → 0. (4.6)

### Comparing (4.5) and (4.6) we get (4.4) by the five lemma.

### 4.2 A regularity theorem

### Let V ⊂ ˙ T

^{∗}

### X be a conic regular involutive submanifold. We say that a coher- ent D

_{X}

### -module M has regular singularities on V , if so has E M. We denote by Mod

_{RS(V )}

### (D

X### ) the thick subcategory of Mod

good### (D

X### ) whose objects have regu- lar singularities on V , and by D

^{b}

_{RS(V )}

### (D

_{X}

### ) the full triangulated subcategory of D

^{b}

_{good}

### (D

_{X}

### ) whose objects have cohomology groups belonging to Mod

_{RS(V )}

### (D

_{X}

### ).

### Recall the correspondence (2.16), and the associated microlocal correspondence (3.1):

### Λ

p1|_{Λ}

### }}{{{ {{{ {{

p^{a}

_{2}|

_{Λ}

### D !!D D D D D D D

### T ˙

^{∗}

### X T ˙

^{∗}

### Y.

### The manifold Λ being Lagrangian, it is well known that p

_{1}

### |

_{Λ}

### is smooth if and only if p

^{a}

_{2}

### |

_{Λ}

### is an immersion. We will assume:

###

###

###

### p

^{a}

_{2}

### |

_{Λ}

### is a closed embedding identifying Λ to a closed regular involutive submanifold V ⊂ ˙ T

^{∗}

### Y, and p

_{1}

### |

_{Λ}

### is smooth and surjective on ˙ T

^{∗}

### X.

### (4.7)

### Let us denote by c

V### the complex codimension of V in T

^{∗}

### Y . We have the following local model for the correspondence (3.1).

### Lemma 4.7. Assume (2.24), (4.7). Then, for every (p, q

^{a}

### ) ∈ Λ there exist open subsets U

_{X}

### , U

_{X}

^{0}

### ⊂ ˙ T

^{∗}

### X, U

_{Y}

### ⊂ ˙ T

^{∗}

### Y , with p ∈ U

_{X}

### and q ∈ U

_{Y}

### , a complex manifold Z of dimension c

_{V}

### , and a contact transformation ψ : U

_{Y}

### − → U

^{∼}

_{X}

^{0}

### × T

^{∗}

### Z, such that id

_{U}

_{X}

### × ψ induces an isomorphism of correspondences:

### Λ ∩ (U

_{X}

### × U

_{Y}

^{a}

### )

p1

### xxppp ppp ppp pp

p^{a}

_{2}

### P ''P P P P P P P P P P P

### U

_{X}

### V ∩ U

_{Y}

### − →

∼### Λ

_{χ}

### × T

_{Z}

^{∗}

### Z

p1

### yyttt ttt ttt t

_{p}

^{a}

23

### O ''O O O O O O O O O O

### U

_{X}

### U

_{X}

^{0}

### × T

_{Z}

^{∗}

### Z,

### where Λ

_{χ}

### ⊂ U

_{X}

### × U

^{0a}

_{X}

### is the graph of a contact transformation χ : U

_{X}

### − → U

^{∼}

_{X}

^{0}

### , and p

^{a}

_{23}

### denotes the projection U

_{X}

### × U

^{0a}

_{X}

### × T

^{∗}

### Z − → U

_{X}

^{0}

### × T

^{∗}

### Z.

### Proof. Since V is regular involutive, there exist complex manifolds X

^{0}

### and Z of dimension d

_{Y}

### − c

_{V}

### and c

_{V}

### respectively, open subsets U

_{X}

^{0}

### ⊂ ˙ T

^{∗}

### X

^{0}

### , U

_{Y}

### ⊂ ˙ T

^{∗}

### Y with p ∈ U

_{Y}

### , and a contact transformation ψ : U

_{Y}

### − → U

^{∼}

_{X}

^{0}

### × T

^{∗}

### Z such that

### ψ(V ∩ U

_{Y}

### ) = U

_{X}

^{0}

### × T

_{Z}

^{∗}

### Z.

### By hypothesis (4.7), one has Λ ⊂ ˙ T

^{∗}

### X × V . In particular, Λ is invariant by the

### bicharacteristic flow of ˙ T

^{∗}

### X × V , and hence id

T˙^{∗}X

### × ψ interchanges Λ ∩ ( ˙ T

^{∗}

### X × U

_{Y}