• Non ci sono risultati.

The  Electron  Spectrum  and  Positron  Spectrum  from  AMS

N/A
N/A
Protected

Academic year: 2021

Condividi "The  Electron  Spectrum  and  Positron  Spectrum  from  AMS"

Copied!
34
0
0

Testo completo

(1)

S.  Schael,  RWTH  Aachen  University     on  behalf  of  the  AMS  Collabora<on  

The  Electron  Spectrum  and  Positron  Spectrum  from  AMS    

(2)

2  

7.  The  charge  symmetry  of  1-­‐6  

2  

(3)

The  measurements  are  based  on  41  ×  109  events  collected  between     May  19,  2011,  and  November  26,  2013      

(4)

4  

EcalBDT  

protons   electrons  

Analysis  Flow  

ISS  data:  83-­‐100  GeV   E/p   ISS  data:  83-­‐100  GeV  

Frac<on  of  events  Frac<on  of  events   Frac<on  of  events  

electrons  

protons   electrons  

protons  

(5)

N

1 10 102

/NDF = 1.02 χ2

Positive

26.7

± Proton like 702.0

12.2

± Electron like 135.0

N

1 10 102

/NDF = 1.04 χ2

Negative

5.4

± Proton like 19.1

29.5

± Electron like 863.9

We  produce  an  e±  enhanced  sample  by  soZ  cuts  on:  

- the  ra<o  Energy/|Rigidity|,  were  the  Energy  is  measured  by  ECAL  and   the  rigidity  by  the  Tracker.  

- the  ECAL  Es<mator,  to  separate  hadronic  showers  from  electromagne<c  showers   by  their  3D-­‐shape    

 

The  proton  templates  are  taken  from  ISS  Data,  the  electron  templates  from  Monte  Carlo.  

E=132-­‐152  GeV  

Par<cle  Iden<fica<on  

Nega<ve  Par<cles   Posi<ve  Par<cles  

e

-­‐  

e

+  

N   N  

ISS  data   ISS  data  

p

-­‐  

p

+  

χ2/NDF=1.04   χ2/NDF=1.02  

(6)

Raw  Event  Rates,  sta<s<cal  errors  only  

6  

Electrons:  0.5  -­‐  700  GeV   Positrons:  0.5  -­‐  500  GeV  

(7)

Frac<on  of  charge  confused  events:  fCC  

•  We  use  another  BDT  to  derive  for  each  event  a  classifier  (TrkCC)  to  determine     the  charge  confusion  directly  from  ISS  data  with  a  template  fit.  

e

+  

χ2/NDF=1.35  

E  =  56  –  80  GeV  

e

-­‐  

ISS  data  

posi<ve  event  sample  

fCC  =  0.0056  ±  0.0006  

(8)

Frac<on  of  charge  confused  events  vs  Energy  

8  

Energy  [GeV]  

10   100   1000  

Frac<on  of  charge  confused  events  

ISS  data   Monte  Carlo  

(9)

The  determina<on  of  the  Flux  

In  total,  9.23  ×  106  events  are  iden<fied  as  electrons  and  0.58  ×  106  as  positrons.    

(10)

Use  rare  nuclear  interac<on  events  to  op<mize  the     material  descrip<on  in  the  Monte  Carlo  

10  

side  view   front  view  

(11)

X-­‐Ray  of  AMS  on  the  ISS  from  rare  nuclear  interac<on  events   The  gray  scale  is  propor<onal  to  the  number  of  ver<ces  found.  

z  [cm]  

y  [cm]  

Number  of  ver<ces  

(12)

Control  the  TRD  Geometry  at  g=0  with  an  accuracy  of  0.1  mm  

12  

12  

0   2   4   6   8   [cm]   10  

z  [cm]  

(13)

ISS  Data  ó  MC  Data  

TRD  radiator  weight:  60  kg    MC:  59.6  kg  

ISS  

MC  

(14)

14  

|R|  =  6  -­‐  18  GV  

ISS  Data  ó  MC  Data  

(15)

ISS  Data  ó  MC  Data  

|R|  =  6  -­‐  18  GV  

(16)

16   16  

Efficiency  

E  [GeV]  

1   10   100   1000  

ISS  data   MC  data  

Efficiency  

(17)

•  ISS  tag  and  probe    

•  Monte  Carlo  tag  and  probe  

Efficiency  

e

±  Iden<fica<on:  E/p  

100   1000   10  

Energy  [GeV]  

1   1000  

100   10  

Energy  [GeV]  

log(E/p)  

1  

log(E/p)  

nega<ve  event  sample   posi<ve  event  sample  

FracBon  of  events  

(18)

18  

1   10   100   Energy  [GeV]   1000  

1+δ  A eff  [cm2  sr]  

1   10   100   Energy  [GeV]   1000  

Effec<ve  Acceptance  

Correc<on  1+δ  

(19)

1   10   100   1000  

Determined  from  ISS  data  using  the  unbiased  trigger  sample.  

(20)

Data  taking  <me  

•  We  have  analyzed  data  taken  from  19  May  2011  to  26  November  2013  ó  921  days.  

•  Due  to  the  geomagne<c  cutoff  the  exposure  <me  is  energy  dependent.    

•  The  exposure  <me  is  for  energies  above  30  GeV  constant  708  days  ó  61  ·∙  106  seconds    

Φe±(E) = Ne±(E)

Aeff (E)εtrig(E)T (E)⋅ ΔE

20  

87%  AMS  data  taking  (ISS  orienta<on,  TRD  gas  refills,  ...)   Live-­‐<me:  89%  

Geomagne<c  cutoff  

Energy  [GeV]  

Time  [days]  

1   10   100   1000  

(21)

Φe±(E) = Ne±(E)

Aeff (E)εtrig(E)⋅T (E)⋅ ΔE

(22)

22  

Ø  For  the  positron  flux,  the  sta<s<cal  error  dominates  above  ~50  GeV.  

 

Ø  For  the  electron  flux  above  ~200  GeV,  the  systema<c  error  and  the  sta<s<cal   error  are  compa<ble.    

[m2  sr  s  GeV]-­‐1   [m2  sr  s  GeV]-­‐1  

(23)

Time  Dependence  (to  be  published)  

Electron  Flux  

<me  average  

Data  from   Sep.  2011  

(stat.  Err.  only)  

Data  from   Sep.  2013  

(stat.  Err.  only)  

Change/year  at  4  GeV:  -­‐9%  

E3  Φ e-­‐  [m-­‐2  sr-­‐1  s-­‐1  GeV2 ]  

(24)

24  

Electron  Flux  

24  

(25)

Electron  Flux  

(26)

26  

Positron  Flux  

26  

(27)

Positron  Flux  

(28)

28  

28  

(29)

10   100   Energy  [GeV]  

(30)

30  

The  Positron  Flux  has  no  sharp  structures  and     is  dominated  at  high  energies  by  the  source  term.  

Diffuse  Term  

Source  Term  

Positron  

E3  Φ e+  [m-­‐2  sr-­‐1  s-­‐1  GeV2 ]  

E  [GeV]  

1   10   100   1000  

Φe+(E)= E2

Eˆ2 ⎡⎣Ce+Eˆγe+ +CSEˆγS exp(− ˆE / ES)⎤⎦

with ES = 540 GeV from the e+ / (e+ + e) fit and ˆE as the energy scale of the LIS

(31)

Diffuse  Term  

Source  Term  

Ø Within  this  ansatz  only  one     parameter  has  to  be  <me     dependent:  

     

Positron  

Scaled  Neutron  Monitor  

Φe+(E)= E2

Eˆ2 ⎡⎣Ce+Eˆγe+ +CSEˆγS exp(− ˆE / ES)⎤⎦

Eˆ = E +ψe+(t)

E  [GeV]  

1   10   100   1000  

E3  Φ e+  [m-­‐2  sr-­‐1  s-­‐1  GeV2 ]  

<me  

Jul-­‐11   Jan-­‐12   Jul-­‐12   Dec-­‐12   Jul-­‐12   Dec-­‐13   Jul-­‐12   Dec-­‐14  

ψe+(t), which describes the solar modulation.

ψe+ [GV]

(32)

32  

Diffuse  Term  

Electron  

Source  Term  

The  spectral  index  of  the  diffuse  term  has  to  become  energy  dependent:  

   

The  source  term  parameters  are  constrained  from  the  positron  flux  fit.  

E3  Φ e-­‐  [m-­‐2  sr-­‐1  s-­‐1  GeV2 ]  

The  Electron  Flux  

Ø has  no  sharp  structures  and  is  dominated  by  the  diffuse  term.  

Ø is  consistent  with  a  charge  symmetric  source  term.  

E  [GeV]  

1   10   100   1000  

Φe−(E)= E2

Eˆ2 ⎡⎣Ce−Eˆγe−( ˆE ) +CSEˆγS exp(− ˆE / ES)⎤⎦

(33)

•  Since  September  2014  our  publica<on                    [PRL  113,  121102  (2014)]  

has  been  cited  many  <mes.  

 

•  The  models  to  explain  the  observed   spectral  features  can  be  divided  into   two  catergories:  

 

1.  New  astrophysical  processes  in  cosmic     ray  accelera<on  and/or  propaga<on.  

 

2.  Dark  Mater  annihila<on  or  decay.  

 

•  A  typical  example  is  shown  on  the  right.  

 

•  We  are  pleased  to  have  the  world    

leading  experts  with  us  during  these  days   to  discuss  these  aspects  in  detail.  

S.  Lin,  Q.  Yuan,  and  X.-­‐J.  Bi     PHYSICAL  REVIEW  D  91,  063508  (2015)  

(34)

34  

Summary  

1. Both  the  Electron  Flux  and  the  Positron  Flux  are  significantly  different  in   their  magnitude  and  energy  dependence.  

2. Neither  the  Electron  Flux  nor  the  Positron  Flux  has  any  sharp  structure.    

3. Both  Fluxes  can  not  be     described  by  a  single     power  law.  

4. Both  spectra  are  consistent       with  a  charge  symmetric     and  <me  independent     source  term  with  a  cutoff     at  Es=540  GeV.  

5. AMS  will  be  able  to  extend       these  measurements  to  the   TeV  scale.  

Riferimenti

Documenti correlati

The experimental data accumulated for more than 8 years of measurements, with the information of the calorimeter, the neutron detector and the scintillation counters made it

The purpose of this study has been to analyze the characteristics of pT1 and pT2 stage colorectal cancer and to determine the risk factors that may affect the survival of or relapse

88 Si veda, ancora §2.5, riguardo alla possibile interpretazione da dare all’art. La disposizione, infatti, afferma che il minore deve essere considerato un soggetto a

Given strong evidence from recent work in Psychology (see, e.g., [33]) in support of an argumentation- based theory for human reasoning, we adopt a form of argumentation as the

Number of events after background subtraction (without correction for the loss of CREs above the geomag- netic energy cutoff), residual background contamination and flux J E , with

To explore whether they can successfully indicate lakeshore habitat quality at a large, deep, oligotrophic lake, Lake Constance, we collected samples from 6 locations on the

vein branch draining the right adrenal nodule; the arrow points at adrenal vein branches surrounding 9. the right

Altogether, using four complementary methodologies of comparisons, sampling pre-CT, sampling post-CT, cancer -free versus cancer bearing status, and adjuvant versus