• Non ci sono risultati.

Universit`a degli Studi di Pisa FACOLT `A DI INGEGNERIA Corso di Laurea Magistrale in Ingegneria Aerospaziale

N/A
N/A
Protected

Academic year: 2021

Condividi "Universit`a degli Studi di Pisa FACOLT `A DI INGEGNERIA Corso di Laurea Magistrale in Ingegneria Aerospaziale"

Copied!
12
0
0

Testo completo

(1)

Universit`

a degli Studi di Pisa

FACOLT `

A DI INGEGNERIA

Corso di Laurea Magistrale in Ingegneria Aerospaziale

Controlled Delamination in Carbon-Epoxy

Composite Laminate Specimens for Bolted Joint

Tests: Numerical Analysis and Experimental

Activity

Relatori:

Prof.ssa Ing. Roberta Lazzeri

Prof. Ing. Giorgio Cavallini

Prof. Satchi Venkataraman

Candidato: Nicola Giorgi

(2)

“Secondo alcuni autorevoli testi di tecnica aeronautica, il calabrone non pu`o volare a causa della forma e del peso del proprio corpo, in rapporto alla superficie alare. Ma il calabrone non lo sa e vola lo stesso.” - Igor’ Ivanoviˇc Sikorskij

(3)

Abstract

Controlled Delamination in

Carbon-Epoxy Composite Laminate Specimens for Bolted Joint Tests: Numerical Analysis and Experimental Activity

by Nicola Giorgi

Master of Science in Aerospace Engineering University of Pisa, 2015

Bolted joints are widely used in the aerospace industry but often represent a critical area of damage initiation, both on composite and metallic parts. End-life inspec-tions performed on several aircraft, found multiple instances of delamination dam-age initiation around the bolt holes of pin-loaded joints on carbon/epoxy composite structural panels. To investigate the severity of such damage and the conditions in which it can bring to dangerous failure, a research program will perform single and double-lap bolted joints tests using special composite specimen in which con-trolled and consistent delamination has been introduced around the hole location. At present time, however, there is no standard procedure to introduce such damage in a composite specimen. This thesis presents a research program with the aim of defining the best method to introduce a controlled and consistent delamination damage on a carbon/epoxy composite specimen with a countersunk hole. Several methods have been proposed and analyzed in detail using Finite Element simulations and experimental activity.

(4)

Contents

List of Figures iv

List of Tables viii

1 Introduction 1 1.1 Composite materials . . . 1 1.2 Manufacturing of composites . . . 8 1.3 Damage in composites . . . 12 1.4 Research goals . . . 15 2 Literature review 17 2.1 Bolted joints on composites . . . 17

2.2 Analytical and numerical modeling . . . 25

2.3 Damage characterization . . . 29

3 Proposed methods 32 3.1 “Shaped Indenter Damage Induction” . . . 32

3.2 “Two-Step Drill Indentation” . . . 35

4 Finite Element Analysis 37 4.1 Benchmarks . . . 37

(5)

4.1.2 Delamination . . . 44

4.1.3 Inter-laminar stress and free edge effect . . . 48

4.2 Finite Element Analysis . . . 52

4.2.1 Stress analysis . . . 52

4.2.2 Material damage prediction . . . 56

4.2.3 Delamination prediction . . . 58

5 Experimental activity 60 5.1 Fixture . . . 61

5.2 First test: practice session . . . 63

5.2.1 Specimens . . . 63 5.2.2 Parameters . . . 67 5.3 Second test . . . 71 5.3.1 Specimens . . . 71 5.3.2 Parameters . . . 74 6 Results 76 6.1 FEA results . . . 76 6.1.1 Stress Analysis . . . 77 6.1.2 Damage prediction . . . 84 6.1.3 Delamination prediction . . . 85 6.2 Test results . . . 88

6.2.1 First test: practice session . . . 88

6.2.2 Second test . . . 101

7 Conclusions 108 7.1 Future works . . . 109

Bibliography 111

(6)

List of Figures

1.1 Bell-Boeing V-22 Osprey . . . 2

1.2 Boeing 787 Dreamliner . . . 3

1.3 Carbon-Carbon parts in a Space shuttle . . . 4

1.4 Sandwich structure . . . 5

1.5 Examples of parts made in carbon fibers . . . 6

1.6 Manufacturing of composite . . . 9

1.7 Application of a vacuum bag . . . 10

1.8 Concept of stacking sequence . . . 11

1.9 Different stages of damage in composites . . . 12

1.10 Evolution of damage in a [0◦/90◦]xS composite layup, [7] . . . 13

1.11 Interlaminar stress in a cross ply laminate . . . 14

1.12 Free edge effect visual explanation . . . 15

2.1 Failure modes of pin-loaded joints . . . 18

2.2 ASTM standard bearing failure test specimen . . . 20

2.3 ASTM standard single-lap bearing failure test fixture . . . 21

2.4 Bending behavior of a bolted joint during a single-lap test . . . 21

2.5 ASTM standard double-lap bearing failure test fixture . . . 22

2.6 Opening modes of cracks . . . 24

2.7 Traction-Separation bi-linear response of cohesive elements in Abaqus 28 2.8 Ultrasonic inspection visual explanation . . . 30

(7)

2.9 Example of microscopy on a damaged composite specimen. . . 31

3.1 Scheme of the “Shaped Indenter Damage Induction” method . . . 32

3.2 Different types of indenter . . . 33

3.3 Desired contact points . . . 34

3.4 Scheme of the constraint . . . 34

3.5 Scheme of the 2-Step Indentation method . . . 35

4.1 Representation of a three-points flexure test . . . 38

4.2 Three-points flexure test specimen . . . 38

4.3 Instron testing machine . . . 40

4.4 Three-points flexure test support and indenter . . . 41

4.5 Modeled part of the specimen . . . 42

4.6 Finite Element Model . . . 43

4.7 Three-point bending test results . . . 43

4.8 Scheme of the Alfano delamination problem . . . 44

4.9 Alfano delamination problem FE model . . . 44

4.10 Cohesive elements benchmark - Static analysis . . . 46

4.11 Cohesive elements benchmark - Dynamic analysis . . . 47

4.12 Inter-laminar stress benchmark FE model and mesh . . . 48

4.13 Interlaminar Shear stress τ23 at the 0◦/90◦ interface, comparison be-tween different elements . . . 50

4.14 Interlaminar Stress σ3 at the +45◦/ − 45◦ interface, comparison be-tween different elements . . . 50

4.15 Interlaminar Shear stress τ23 at the 0◦/90◦ interface, comparison be-tween different mesh density . . . 51

4.16 Interlaminar Stress σ3 at the +45◦/ − 45◦ interface, comparison be-tween different mesh density . . . 51

4.17 Modeled area . . . 53 v

(8)

4.18 The symmetry condition problem . . . 54

4.19 Stress analysis model and mesh . . . 55

4.20 Damage prediction model and mesh . . . 57

4.21 Delamination prediction FE model . . . 59

5.1 Detail of the aligner . . . 61

5.2 Assembly of the fixture . . . 62

5.3 Comparison between standard and modified specimen . . . 63

5.4 Specimen with countersunk holes . . . 65

5.5 Specimen with counterbore holes . . . 65

5.6 Two specimens used in the practice session . . . 66

5.7 A specimen positioned inside the fixture, ready to be tested . . . 67

5.8 Detail of the indentation in progress . . . 68

5.9 Specimen inside the testing machine during the test . . . 69

5.10 Calibration tests . . . 70

5.11 The fixture overlap problem . . . 72

5.12 Specimen used in the second session of tests . . . 73

5.13 Calibration tests . . . 75

6.1 Medium spherical indenter results - τ13 . . . 78

6.2 Medium spherical indenter results - σ3 . . . 78

6.3 Large spherical indenter results - τ13 . . . 79

6.4 Large spherical indenter results - σ3 . . . 79

6.5 Medium cylindrical indenter results - τ13 . . . 81

6.6 Medium cylindrical indenter results - σ3 . . . 81

6.7 Conical indenter results - τ13 . . . 83

6.8 Conical indenter results - σ3 . . . 83

6.9 Damage prediction results . . . 84

(9)

6.11 Delamination prediction results - Reaction force Vs Displacement plot 86

6.12 Delamination prediction results - Advancing front . . . 87

6.13 Spherical indenter - Test results . . . 88

6.14 Spherical indenter - C-Scan results . . . 90

6.15 Superposition of the fixture’s diameter on the C-Scan results . . . 91

6.16 Backside view of calibration hole D after the indentation procedure . 91 6.17 Conical indenter - Test results . . . 92

6.18 Conical indenter - C-Scan results . . . 93

6.19 Two-Step Drill Indentation - Test results . . . 94

6.20 Detailed A-scan of hole C . . . 95

6.21 Two-Step Drill Indentation method - C-Scan results . . . 96

6.22 Cross sections used for the microscopy . . . 97

6.23 Spherical Indenter Damage Induction - Hole C - 45◦ cross section . . 99

6.24 Spherical Indenter Damage Induction - Hole C - 90◦ cross section . . 99

6.25 Two-Step Drill Indentation - Hole C - 0◦ cross section . . . 100

6.26 Two-Step Drill Indentation - Hole C - 90◦ cross section . . . 100

6.27 Two-Step Drill Indentation - LOC4 stacking sequence - Test results . 101 6.28 Two-Step Drill Indentation - LOC4 stacking sequence - C-Scan results 102 6.29 Superposition of the fixture’s diameter on the C-Scan results . . . 103

6.30 Two-Step Drill Indentation - SV-1 stacking sequence - Test results . . 104

6.31 Two-Step Drill Indentation - SV-1 stacking sequence - C-Scan results 105 6.32 LOC 4 stacking sequence microscopy - 45◦ cross section . . . 107

6.33 LOC 4 stacking sequence microscopy - 90◦ cross section . . . 107

(10)

List of Tables

4.1 AS4/3501-6 Material properties [38] . . . 39

4.2 LOC 4 stacking sequence . . . 39

4.3 Testing machine specifications . . . 40

4.4 Quasi-isotropic stacking sequence . . . 52

4.5 IM7/8552 Material properties [47] . . . 56

4.6 IM7/8552 Hashin damage model properties . . . 56

4.7 IM7/8552 Cohesive properties [47] . . . 59

5.1 Modified bearing specimen specifications . . . 64

5.2 Tested specimen specifications . . . 66

5.3 First test parameters . . . 68

5.4 LOC 4 & SV-1 stacking sequence . . . 72

5.5 Modified tested specimen specifications . . . 73

(11)

LIST OF SYMBOLS AND ABBREVIATIONS σn with n = 1, 2, 3 Normal stress components

τnm with n, m = 1, 2, 3 Shear stress components

un with n = 1, 2, 3 Displacement components

n with n = 1, 2, 3 Strain components

SnT with n = 1, 2, 3 Tensile strength

SnC with n = 1, 2, 3 Compressive strength

Snm with n, m = 1, 2, 3 Shear strength

Enn with n = 1, 2, 3 Young modulus in the 3 principal directions

νnm with n, m = 1, 2, 3 Poisson’s ratio

Gnm with n, m = 1, 2, 3 Shear modulus

GIC Critical strain energy release rate for Mode I

GIIC Critical strain energy release rate for Mode II

GIIIC Critical strain energy release rate for Mode III

SI, SII, SIII Strength values for the 3 crack opening modes

FE Finite Element

FRP Fiber Reinforced Plastic

CFRP Carbon Fiber Reinforced Plastic

ASTM American Society for Testing and Materials

(12)

ACKNOWLEDGMENT

Very special thanks to Prof. Roberta Lazzeri and Prof. Satchi Venkataraman who gave me the possibility to have this wonderful experience abroad.

Very thanks also to everyone I met during my stay in San Diego, if this experience is been so great, is only thanks to you.

Riferimenti

Documenti correlati

The goal of a database search tool for top-down mass spectra is, therefore, to determine, from a given spectrum and a database, the protein most likely to be the interpretation of

Tesi di Laurea Magistrale STUDIO E VALUTAZIONE DELLE PRESTAZIONI DI UN VELIVOLO TURBOELICA DI NUOVA CONCEZIONE Energy Liberated to Revenue Work Ratio of an Advanced Turboprop

114 Forcellone innovativo monobraccio in carbonio Tipo di Forcello- ne Monobraccio Peso Forcellone Innovativo Riduzione di peso Rigidezza Flessionale Rigidezza Torsionale

4.18 Optimized NACA 0015 blade - Created Component data with Hollow tip surfaces, 1 mm thick lateral surface Skin and middle 2 mm thick reinforce- ment (from 0.06 m blade chunk)..

(A) La somma di due angoli qualsiasi di un qualunque triangolo `e sempre > 90 ◦ (B) Se un triangolo ha due angoli < 45 ◦ , allora esso `e certamente ottusangolo (C) Se

[r]

I principali contributi della tesi consistono nella realizzazione di un sistema di acquisizione di immagini di profondit`a che integra un sensore complesso e potente come il Ranger

Una definizione rigorosa degli stati richiede un modello di stato coerente e una robusta gestione delle transizioni tra le varie modalit`a di funzionamento, anch’esse definite