• Non ci sono risultati.

Transverse momentum dependent (TMD) factorization in perturbation theory

N/A
N/A
Protected

Academic year: 2022

Condividi "Transverse momentum dependent (TMD) factorization in perturbation theory"

Copied!
33
0
0

Testo completo

(1)

Transverse momentum dependent (TMD) factorization

in perturbation theory

Alexey A. Vladimirov

Institut für Theoretische Physik Universität Regensburg

(2)

Introduction

TMD factorization is a complicated composition of perturbative and non-perturbative functions.

dσ dX '

Z

dbeibqTH(Q) {R(Q → (µi, ζi))}2 F1(x, b, µi, ζi)F2(x, b, µi, ζi)

Hard coef. Perturbative

Evolution factor γF D(b) UV anomalous dimension

Perturbative

Rap. anomalous dimension b  Λ−1 Perturbative b & Λ−1 Non-Perturbative

TMD distributions Non-Perturbative

at b  Λ−1 OPE to collinear F = C ⊗ f · fN P

C isPerturbative f isNon-Perturbative(known)

fN P isNon-Perturbative Balance

Perturbative Non-Perturbative

H Hard coeff. collinear distributions f, d, .. γ UV anomalous dimension TMD behaviour fN P

D rap. anomalous dimension rap. anomalous dimension DN P

C mathing coefficients

A.Vladimirov TMD factorization March 23, 2018 2 / 16

(3)

Introduction

TMD factorization is a complicated composition of perturbative and non-perturbative functions.

dσ dX '

Z

dbeibqTH(Q) {R(Q → (µi, ζi))}2 F1(x, b, µi, ζi)F2(x, b, µi, ζi)

Hard coef.

Perturbative

Evolution factor γF D(b) UV anomalous dimension

Perturbative

Rap. anomalous dimension b  Λ−1 Perturbative b & Λ−1 Non-Perturbative

TMD distributions Non-Perturbative

at b  Λ−1 OPE to collinear F = C ⊗ f · fN P

C isPerturbative f isNon-Perturbative(known)

fN P isNon-Perturbative Balance

Perturbative Non-Perturbative

H Hard coeff. collinear distributions f, d, .. γ UV anomalous dimension TMD behaviour fN P

D rap. anomalous dimension rap. anomalous dimension DN P

C mathing coefficients

(4)

Introduction

TMD factorization is a complicated composition of perturbative and non-perturbative functions.

dσ dX '

Z

dbeibqTH(Q) {R(Q → (µi, ζi))}2 F1(x, b, µi, ζi)F2(x, b, µi, ζi)

Hard coef.

Perturbative

Evolution factor γF D(b) UV anomalous dimension

Perturbative

Rap. anomalous dimension b  Λ−1 Perturbative b & Λ−1 Non-Perturbative

TMD distributions Non-Perturbative

at b  Λ−1 OPE to collinear F = C ⊗ f · fN P

C isPerturbative f isNon-Perturbative(known)

fN P isNon-Perturbative Balance

Perturbative Non-Perturbative

H Hard coeff. collinear distributions f, d, .. γ UV anomalous dimension TMD behaviour fN P

D rap. anomalous dimension rap. anomalous dimension DN P

C mathing coefficients

A.Vladimirov TMD factorization March 23, 2018 2 / 16

(5)

Introduction

TMD factorization is a complicated composition of perturbative and non-perturbative functions.

dσ dX '

Z

dbeibqTH(Q) {R(Q → (µi, ζi))}2 F1(x, b, µi, ζi)F2(x, b, µi, ζi)

Hard coef.

Perturbative

Evolution factor γF D(b) UV anomalous dimension

Perturbative

Rap. anomalous dimension b  Λ−1 Perturbative b & Λ−1 Non-Perturbative

TMD distributions Non-Perturbative

at b  Λ−1 OPE to collinear F = C ⊗ f · fN P

C isPerturbative f isNon-Perturbative(known)

fN P isNon-Perturbative Fq←h

b b~B b-1

Perturbative LeadingorderOPE Perturbative HigherorderOPE Non-Perturbative

b1/Q

n=0 n=1 n=2 n=3

Balance

Perturbative Non-Perturbative

H Hard coeff. collinear distributions f, d, .. γ UV anomalous dimension TMD behaviour fN P

D rap. anomalous dimension rap. anomalous dimension DN P

C mathing coefficients

(6)

Introduction

TMD factorization is a complicated composition of perturbative and non-perturbative functions.

dσ dX '

Z

dbeibqTH(Q) {R(Q → (µi, ζi))}2 F1(x, b, µi, ζi)F2(x, b, µi, ζi)

Hard coef.

Perturbative

Evolution factor γF D(b) UV anomalous dimension

Perturbative

Rap. anomalous dimension b  Λ−1 Perturbative b & Λ−1 Non-Perturbative

TMD distributions Non-Perturbative

at b  Λ−1 OPE to collinear F = C ⊗ f · fN P

C isPerturbative f isNon-Perturbative(known)

fN P isNon-Perturbative Balance

Perturbative Non-Perturbative

H Hard coeff. collinear distributions f, d, ..

γ UV anomalous dimension TMD behaviour fN P

D rap. anomalous dimension rap. anomalous dimension DN P

C mathing coefficients

A.Vladimirov TMD factorization March 23, 2018 2 / 16

(7)

Introduction

Perturbative input is essential for presice phenomenology.

All perturbative inputs are important.

plots from [I.Scimemi,AV; 1706.01473]

High energy

LL/LO NLL/NLO NNLL/NNLO

18% 3-10% 2-6%

+1 loop +1 loop

(8)

Introduction

Perturbative input is essential for presice phenomenology.

All perturbative inputs are important.

plots from [I.Scimemi,AV; 1706.01473]

Low energy

50-100% 10-40% 5-20%

+1 loop +1 loop

A.Vladimirov TMD factorization March 23, 2018 3 / 16

(9)

Introduction

Perturbative input is essential for presice phenomenology.

All perturbative inputs are important.

plots from [I.Scimemi,AV; 1706.01473]

Effect on the TMD extraction

LL/LO is not shown (errors too large) χ2/dof

0.5 1.0 1.5 2.0 2.5 3.0

λ1[GeV]

0.0 0.1 0.2 0.3 0.4

λ2[GeV2]

0.0 0.2 0.4 0.6 0.8 1.0 1.2

gK⨯10-2[GeV2]

0 1 2 3 4

NLL/NLO

NNLL/NLO

NNLL/NNLO

Conlusion

Perturbation input is important at both low and high energies.

The higher order – the better.

(10)

PT in TMD

There was significant progress in the perturbative calculus

Schemes of perturbative calculation were consistently formulated 3-loop TMD evolution[Li,Zhu,1604.01404][AV,1610.05791]

All TMD distributions (tw-2) were recalculated in the same scheme [Scimemi,AV,1702.06558][Buffing,Diehl,Kasemets,1708.03528].

(Rapidity divergences part) of TMD factorization was proven[AV,1707.07606].

More to come soon.

known in this talk H(universal) 3-loop[2010]

γF (universal) 3-loop[2010]

D(universal) 3-loop[2016]

X

f1(unpol. PDF) 2-loop[2015]

d1(unpol.FF) 2-loop[2016]

g1(helicity) 1-loop[2013]

h1(transvercity) 1-loop[2013]

X

h1T(pretzelocity) 1-loop (=0)[2017]

X

f1T(Sivers) ?tree[2014]

X

d1T(Collins) unknown

X

h1(Boer-Mulders) unknown

X

g1T, h1L(worm-gear T,L) unknown

X

A.Vladimirov TMD factorization March 23, 2018 4 / 16

(11)

Use others experience

Not everything requares (full) calculation.

Universal quantities could be taken from outside.

Directly

Vector form factor (of parton)

Hard coefficient H(Q, µ) = |CV(Q, µ)|2

TMD anomalous dimension γF(µ, ζ) = Γcusp(µ) ln(µ2/ζ) − γV(µ)

Soft/rapidity anomalous dimension correspondance

Rapidity anomalous dimension D(µ, b)(= − ˜K/2)

TMD physics

Soft anomalous dimension γsoft(µ, vij) jet production Byproduct of rapidity divergences renormalization theorem

that completes the TMD factorization

(12)

Use others experience

Not everything requares (full) calculation.

Universal quantities could be taken from outside.

Directly

Vector form factor (of parton)

Hard coefficient H(Q, µ) = |CV(Q, µ)|2

TMD anomalous dimension γF(µ, ζ) = Γcusp(µ) ln(µ2/ζ) − γV(µ)

Soft/rapidity anomalous dimension correspondance

Rapidity anomalous dimension D(µ, b)(= − ˜K/2)

TMD physics

Soft anomalous dimension γsoft(µ, vij) jet production

Byproduct of rapidity divergences renormalization theorem that completes the TMD factorization

A.Vladimirov TMD factorization March 23, 2018 5 / 16

(13)

Use others experience

TMD factorization is two successive factorizations The first: collinear factorization[Collins’ book], [SCET]

The second: rapidity divergences factorization[AV,1707.07606]

∞n

∞¯n

transverse plane

transverse plane

b xB

xA b b

dX ' H(Q) Z d2b

(2π)2ei(bk)T f (xA, b) S(b) f (xB, b)

(14)

Use others experience

Soft factor is vacuum matrix element of a Wilson loop.

S(b) = h0|[0,±∞n][±∞n + b, b][b,±∞¯n + b][±∞¯n, 0]|0i

Various kinds of divergences

Ultraviolet (renormalized) Collinear (cancel in sum) Mass divergences (cancel in sum) Rapidity divergences (???)

A.Vladimirov TMD factorization March 23, 2018 7 / 16

(15)

Use others experience

Soft factor is vacuum matrix element of a Wilson loop.

S(b) = h0|[0,±∞n][±∞n + b, b][b,±∞¯n + b][±∞¯n, 0]|0i

Various kinds of divergences

Ultraviolet (renormalized) Collinear (cancel in sum) Mass divergences (cancel in sum) Rapidity divergences (???)

(16)

Use others experience

There is a geometrical transformation that turns rapidity divergence to UV

Cn¯: {x+, x, x} → {−1 2a

1

λ + 2ax+, x+ ax2

λ + 2ax+, x

λ + 2ax+} The UV renormalization imposes rapidity divergence renormalization

R(b)S(b)R(b) TMD soft factor

Z(v)Ω(v)Z(v) compact Wilson loop CnCn¯

A.Vladimirov TMD factorization March 23, 2018 8 / 16

(17)

Use others experience

Rapidity divergence renormalization theorem

Rapidity divergences for TMD soft factor can be renormalized for each direction separately (also holds for MPS).

Immediate in conformal field theory

Proof by iteration in QCD (1-loop in conformal)

R(b)S(b)R(b) TMD soft factor

Z(v)Ω(v)Z(v) compact Wilson loop CnCn¯

(18)

Soft/Rapidity correspondence

Soft/Rapidity anomalous dimension correspondence

Exact relation

γ

soft

(v) = 2D(b, 

)

How to use it?

Physical value is D({b}, 0)

= 0 − asβ0− a2sβ1− a3sβ2− ....

We can compare order by order in PT

D1({b}) = 1 2γγγ1({v}), D2({b}) = 1

2γγγ2({v}) + β0D01({b}), D3({b}) = 1

2γγγ3({v}) + β0D02({b}) + β1D01({b}) −β02

2 D001({b}), Always gain one order!

A.Vladimirov TMD factorization March 23, 2018 9 / 16

(19)

Soft/Rapidity correspondence

This simple exercise gives 3-loop rapidity anomalous dimension.

D(3)L=0 = −CA2 2

 12328 27 ζ3−88

3 ζ2ζ3− 192ζ5−297029 729 +6392

81 ζ2+154 3 ζ4



−CANf

2



−904

27ζ3+62626 729 −824

81ζ2+20 3 ζ4



− CFNf

2



−304

9 ζ3+1711 27 − 16ζ4



−Nf2 2



−32

9 ζ3−1856 729



Coincides with the one calculated directly[Li,Zhu,1604.01404]

(20)

Small-b OPE

Unfortunately, there is something to calculate

OPE at small values of b F (x, b) = C(x, b; µOPE) ⊗ f (x, µOPE) + ...

Leading twist-2 Leading twist-3 Leading twist-2 and 3 f1→Unpol.PDF (2-loop)

[1403.6451,1604.07869]

d1→Unpol.FF (2-loop)

[1509.06392,1604.07869]

g1→helicity PDF (1-loop)

[1303.2129,1702.06558,1708.03528 ]

h1→transvercity PDF (1-loop)

[1303.2129,1702.06558,1708.03528 ]

h1T →transvercity PDF(1-loop) (=0)[1702.06558]

f1T →Qui-Sterman all calculations made for cross-section

h1 →??

These function must change sign under DY↔SIDIS h1L→??+WW(helicity PDF) g1T →??+WW(transvercity PDF)

WW part can be found in [Kanazawa,et al;1512.07233]

A.Vladimirov TMD factorization March 23, 2018 11 / 16

(21)

Small-b OPE

Unfortunately, there is something to calculate

OPE at small values of b F (x, b) = C(x, b; µOPE) ⊗ f (x, µOPE) + ...

Leading twist-2

Leading twist-3 Leading twist-2 and 3

f1→Unpol.PDF (2-loop)

[1403.6451,1604.07869]

d1→Unpol.FF (2-loop)

[1509.06392,1604.07869]

g1→helicity PDF (1-loop)

[1303.2129,1702.06558,1708.03528 ]

h1→transvercity PDF (1-loop)

[1303.2129,1702.06558,1708.03528 ]

h1T →transvercity PDF(1-loop) (=0)[1702.06558]

f1T →Qui-Sterman all calculations made for cross-section

h1 →??

These function must change sign under DY↔SIDIS h1L→??+WW(helicity PDF) g1T →??+WW(transvercity PDF)

WW part can be found in [Kanazawa,et al;1512.07233]

(22)

Small-b OPE

Unfortunately, there is something to calculate

OPE at small values of b F (x, b) = C(x, b; µOPE) ⊗ f (x, µOPE) + ...

Leading twist-2 Leading twist-3

Leading twist-2 and 3 f1→Unpol.PDF (2-loop)

[1403.6451,1604.07869]

d1→Unpol.FF (2-loop)

[1509.06392,1604.07869]

g1→helicity PDF (1-loop)

[1303.2129,1702.06558,1708.03528 ]

h1→transvercity PDF (1-loop)

[1303.2129,1702.06558,1708.03528 ]

h1T →transvercity PDF(1-loop) (=0)[1702.06558]

f1T →Qui-Sterman all calculations made for cross-section

h1 →??

These function must change sign under DY↔SIDIS

h1L→??+WW(helicity PDF) g1T →??+WW(transvercity PDF)

WW part can be found in [Kanazawa,et al;1512.07233]

A.Vladimirov TMD factorization March 23, 2018 11 / 16

(23)

Small-b OPE

Unfortunately, there is something to calculate

OPE at small values of b F (x, b) = C(x, b; µOPE) ⊗ f (x, µOPE) + ...

Leading twist-2 Leading twist-3 Leading twist-2 and 3

f1→Unpol.PDF (2-loop)

[1403.6451,1604.07869]

d1→Unpol.FF (2-loop)

[1509.06392,1604.07869]

g1→helicity PDF (1-loop)

[1303.2129,1702.06558,1708.03528 ]

h1→transvercity PDF (1-loop)

[1303.2129,1702.06558,1708.03528 ]

h1T →transvercity PDF(1-loop) (=0)[1702.06558]

f1T →Qui-Sterman all calculations made for cross-section

h1 →??

These function must change sign under DY↔SIDIS

h1L→??+WW(helicity PDF) g1T →??+WW(transvercity PDF)

WW part can be found in [Kanazawa,et al;1512.07233]

(24)

Pretzelosity

New 2-loop results

Φ[iσq←hα+γ5](x, b) = sαTh1(x, b) + 2 gTαµ 2 +bαbµ

b2



sT µh1T(x, b) + bµ(...)αµ

transvercity TMDPDF

⇓ transvercity PDF h1(x, b) = C ⊗ δf (x) + b2...

tree+1loop

linear in b

⇓ twist-3 pretzelocity TMDPDF

⇓ transvercity PDF h1T(x, b) = CT⊗ δf (x) + b2...

CT(x, b) = −4a2s

" 4



CF2 −CFCA

2

 

¯

x ln ¯x + x ln x −3 2x¯



− CF2x(x − 11 − x¯ −1)

#

Preliminary

The first model independent result for pretzelocity

Natural explanation of smallness of sin(3ϕ − ϕs) assymetry

A.Vladimirov TMD factorization March 23, 2018 12 / 16

(25)

Pretzelosity

New 2-loop results

Φ[iσq←hα+γ5](x, b) = sαTh1(x, b) + 2 gTαµ 2 +bαbµ

b2



sT µh1T(x, b) + bµ(...)αµ

transvercity TMDPDF

⇓ transvercity PDF h1(x, b) = C ⊗ δf (x) + b2...

tree+1loop

linear in b

⇓ twist-3 pretzelocity TMDPDF

⇓ transvercity PDF h1T(x, b) = CT⊗ δf (x) + b2...

CT(x, b) = −4a2s

" 4



CF2 −CFCA

2

 

¯

x ln ¯x + x ln x −3 2x¯



− CF2x(x − 11 − x¯ −1)

#

Preliminary

The first model independent result for pretzelocity

Natural explanation of smallness of sin(3ϕ − ϕs) assymetry

(26)

Pretzelosity

New 2-loop results

Φ[iσq←hα+γ5](x, b) = sαTh1(x, b) + 2 gTαµ 2 +bαbµ

b2



sT µh1T(x, b) + bµ(...)αµ

transvercity TMDPDF

⇓ transvercity PDF h1(x, b) = C ⊗ δf (x) + b2...

tree+1loop

linear in b

⇓ twist-3

pretzelocity TMDPDF

⇓ transvercity PDF h1T(x, b) = CT⊗ δf (x) + b2...

CT(x, b) = −4a2s

" 4



CF2 −CFCA

2

 

¯

x ln ¯x + x ln x −3 2x¯



− CF2x(x − 11 − x¯ −1)

#

Preliminary

The first model independent result for pretzelocity

Natural explanation of smallness of sin(3ϕ − ϕs) assymetry

A.Vladimirov TMD factorization March 23, 2018 12 / 16

(27)

Pretzelosity

New 2-loop results

Φ[iσq←hα+γ5](x, b) = sαTh1(x, b) + 2 gTαµ 2 +bαbµ

b2



sT µh1T(x, b) + bµ(...)αµ

transvercity TMDPDF

⇓ transvercity PDF h1(x, b) = C ⊗ δf (x) + b2...

tree+1loop

linear in b

⇓ twist-3 pretzelocity TMDPDF

⇓ transvercity PDF h1T(x, b) = CT⊗ δf (x) + b2...

CT(x, b) = −4a2s

"

4



CF2 −CFCA

2

 

¯

x ln ¯x + x ln x −3 2x¯



− CF2x(x − 11 − x¯ −1)

#

Preliminary

The first model independent result for pretzelocity

Natural explanation of smallness of sin(3ϕ − ϕs) assymetry

(28)

Pretzelosity

New 2-loop results

Φ[iσq←hα+γ5](x, b) = sαTh1(x, b) + 2 gTαµ 2 +bαbµ

b2



sT µh1T(x, b) + bµ(...)αµ

transvercity TMDPDF

⇓ transvercity PDF h1(x, b) = C ⊗ δf (x) + b2...

tree+1loop+2loop

linear in b

⇓ twist-3 pretzelocity TMDPDF

⇓ transvercity PDF h1T(x, b) = CT⊗ δf (x) + b2...

CT(x, b) = −4a2s

"

4



CF2 −CFCA

2

 

¯

x ln ¯x + x ln x −3 2x¯



− CF2x(x − 11 − x¯ −1)

#

Preliminary

The first model independent result for pretzelocity

Natural explanation of smallness of sin(3ϕ − ϕs) assymetry

A.Vladimirov TMD factorization March 23, 2018 12 / 16

(29)

Twist-3

Leading matching of all polarized distributions at twist-3

UDYΓ (z, b) = q(zn + b)[zn + b,¯ −∞n+ b]Γ[−∞n− b, −zn − b]q(−zn − b),

¯

q Γ q +∞n

−∞n

Drell-Yan SIDIS

USIDISΓ (z, b) = q(zn + b)[zn + b,¯ +∞n+ b]Γ[+∞n− b, −zn − b]q(−zn − b),

UDY(SIDIS)Γ (z, b) = OΓ(z) + bµn

x→zlim

∂xµOΓ(x) − i Z 1

−1

dv vz TµΓ(z, vz, −z)

++ +(−−−)i

Z z

−∞

+ Z −z

−∞



dτ TµΓ(z, τ, −z) o

+ O(b2),

OΓ(z) = ¯q(z)Γ[z, −z]q(z), TµΓ(z, τ, −z) = ¯q(z)[z, τ ]ΓFµ+(τ )[τ, −z]q(−z)

(30)

Twist-3

Leading matching of all polarized distributions at twist-3

UDYΓ (z, b) = q(zn + b)[zn + b,¯ −∞n+ b]Γ[−∞n− b, −zn − b]q(−zn − b),

¯

q Γ q +∞n

−∞n

Drell-Yan SIDIS

USIDISΓ (z, b) = q(zn + b)[zn + b,¯ +∞n+ b]Γ[+∞n− b, −zn − b]q(−zn − b),

UDY(SIDIS)Γ (z, b) = OΓ(z) + bµn

x→zlim

∂xµOΓ(x) − i Z1

−1

dv vz TµΓ(z, vz, −z)

++ +(−−−)i

Z z

−∞

+ Z −z

−∞



dτ TµΓ(z, τ, −z) o

+ O(b2),

OΓ(z) = ¯q(z)Γ[z, −z]q(z), TµΓ(z, τ, −z) = ¯q(z)[z, τ ]ΓFµ+(τ )[τ, −z]q(−z)

A.Vladimirov TMD factorization March 23, 2018 13 / 16

(31)

Twist-3

Leading matching of all polarized distributions at twist-3

Collins f1T(x, b) =+++(−−−)π T (x, x) + O(b2) Boer-Mulders h1(x, b) =−−−(+++)π δT(x, x) + O(b2) Worm-gear T g1T(x, b) = 2

Z dx2

x22 Zx

x−x2

du∆T (u, u + x2)

−1 2 Z

du u

|u|(g1(u) − gT(u)) + O(b2) Worm-gear L h1L(x, b) = −2

Z dx2

x22 Z x

x−x2

duδTg(u, u + x2)

+1 2 Z

du u

|u|(h1(u) − hL(u)) + O(b2)

Qiu-Sterman functions

hTµγ+i ∼ ˜sµTT hTµγ+γ5i ∼ sµT∆T hTµσα+γ5i ∼ µαT δT+ gµαT δTg

Functions gT and hLare compositions of twist-2/3 PDFs.

(32)

Conclusion

Conclusion

Factorization of rapidity divergences is proven (for SIDIS assuming universality) TMD evolution is complete 3-loop

Small-b matching is known for all TMDs (see table)

known soon to come H(universal) 3-loop[2010]

γF (universal) 3-loop[2010]

D(universal) 3-loop[2016]

f1(unpol. PDF) 2-loop[2015]

d1(unpol.FF) 2-loop[2016]

g1(helicity) 1-loop[2013]

h1(transvercity) 1-loop[2013] 2-loop h1T(pretzelocity) 1-loop (=0)[2017] 2-loop f1T(Sivers) ?tree[2014] tree

d1T(Collins) unknown tree

h1(Boer-Mulders) unknown tree

g1T, h1L(worm-gear T,L) unknown tree

A.Vladimirov TMD factorization March 23, 2018 15 / 16

(33)

Conclusion

arTeMiDe

Tool for phenomenological studies of TMDs with high-end theory input

FORTRAN 90 code Module structure

Convolutions, evolution (LO,NLO,NNLO) Fourier to qT-space, integrations over phase space Scale-variation (ζ-prescription)

User defined PDFs, scales, fN P

Efficient code (∼ 109 TMDs ∼ 6. min at NNLO) Currently ver 1.1 (soon 1.2 with TMD FFs)

Available at: https://teorica.fis.ucm.es/artemide

Riferimenti

Documenti correlati

18 The effect on disability progression continued to be significant at each time point and similar treatment effects were seen irrespective of on- study relapses, giving further

Com- prised of academic staff, faculty, and graduate students, the AAUP is a pro- fessional academic organization standing for «academic freedom, shared

A review of the most recent measurements of leading twist transverse momentum dependent distribu- tion and fragmentation function accessed in the semi-inclusive deep

Later experiments like HERMES, COMPASS and now also CLAS have measured the azimuthal amplitudes expected on the unpolarized target with a much higher statistic and separately

Program for Evolutionary Dynamics, Department of Organismic and Evolutionary Biology, Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138, USA.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma,

We’ll use the silhouette on a class attribute of Iris (no clustering here, just using the original class values from the data set).. Here is our hypothesis: the data instances with

Furthermore, recall that an abelian group is reduced if it has no non-trivial divisible subgroup; the reduced abelian groups and the divisible abelian groups form another