• Non ci sono risultati.

Of mice and men: molecular genetics of congenital heart disease

N/A
N/A
Protected

Academic year: 2021

Condividi "Of mice and men: molecular genetics of congenital heart disease"

Copied!
21
0
0

Testo completo

(1)

References

 Alison C. Brewer, Alexander Alexandrovich, Corey H. Mjaatvedt, Ajay M.

Shah, Roger K. Patient, and Dr. John A. Pizzey GATA Factors Lie Upstream of Nkx 2.5 in the Transcriptional Regulatory Cascade That Effects Cardiogenesis. Stem Cells and Development 2005;14(4): 425- 439.

 Andersen TA, Troelsen Kde L, Larsen LA. Of mice and men: molecular

genetics of congenital heart disease. Cell Mol Life Sci 2014;71(8):1327- 52.

 Andreassi MG, Picano E. Reduction of radiation to children: our responsibility to change. Circulation. 2014 Jul 8;130(2):135-7.

Barenboim M, Zoltick BJ, Guo Y, Weinberger DR. MicroSNiPer: a web tool for prediction of SNP effects on putative microRNA targets. Hum Mutat 2010;31:

1223–32.

 Basson CT, Bachinsky DR, Lin RC, Levi T, Elkins JA, Soults J, Grayzel

D, Kroumpouzou E, Traill TA, Leblanc-Straceski J, Renault B, Kucherlapati R, Seidman JG, Seidman CE. Mutations in human TBX5 [corrected] cause limb and cardiac malformation in Holt-Oram syndrome.

Nat Genet 1997;15(1):30-5.

 Baumgartner H. What news in the 2010 European Society of Cardiology

(ESC) guidelines for the management of grown-up congenital heart disease? J Cardiovasc Med (Hagerstown) 2013;14(2):100-3.

 Benson DW. Genetic origins of pediatric heart disease. Pediatr Cardiol 2010;31(3):422-9.

(2)

 Black BL. Transcriptional pathways in second heart field development.

Semin Cell Dev Biol 2007;18(1):67-76.

 Blue GM, Kirk EP, Sholler GF, Harvey RP, Winlaw DS. Congenital heart

disease: current knowledge about causes and inheritance. Med J Aust 2012;197(3):155-9.

 Brown CO 3rd, Chi X, Garcia-Gras E, Shirai M, Feng XH, Schwartz RJ.

The cardiac determination factor, Nkx2-5, is activated by mutual cofactors GATA-4 and Smad1/4 via a novel upstream enhancer. J Biol Chem 2004;279(11):10659-69.

 Bruneau BG. The developmental genetics of congenital heart disease.

Nature 2008;451(7181):943-8.

 Carter DR, Buckle AD, Tanaka K, Perdomo J, Chong BH. Art27 interacts

with GATA4, FOG2 and NKX2.5 and is a novel co-repressor of cardiac genes PLoS One 2014;9(4):e95253.

 Chang X, Wang K. wANNOVAR: annotating genetic variants for personal genomes via the web. J Med Genet 2012;49(7):433-6.

 Charron F, Nemer M. GATA transcription factors and cardiac development.Semin Cell Dev Biol 1999;10(1):85-91.

 Chen K, Song F, Calin GA, Wei Q, Hao X, Zhang W. Polymorphisms in microRNA targets: a gold mine for molecular epidemiology.

Carcinogenesis 2008;29(7):1306-11.

(3)

 Cipollini M, Landi S, Gemignani F. MicroRNA binding site polymorphisms

as biomarkers in cancer management and research. Pharmgenomics Pers Med 2014;7:173-91.

 Conne B, Stutz A, Vassalli JD. The 3' untranslated region of messenger RNA: A molecular 'hotspot' for pathology? Nat Med 2000;6(6):637-41.

 Cordell HJ, Bentham J, Topf A, Zelenika D, Heath S, Mamasoula C,

Cosgrove C, Blue G, Granados-Riveron J, Setchfield K, Thornborough C, Breckpot J, Soemedi R, Martin R, Rahman TJ, Hall D, van Engelen K, Moorman AF, Zwinderman AH, Barnett P, Koopmann TT, Adriaens ME, Varro A, George AL Jr, dos Remedios C, Bishopric NH, Bezzina CR, O'Sullivan J, Gewillig M, Bu'Lock FA, Winlaw D, Bhattacharya S, Devriendt K, Brook JD, Mulder BJ, Mital S, Postma AV, Lathrop GM, Farrall M, Goodship JA, Keavney B. Genome-wide association study of multiple congenital heart disease phenotypes identifies a susceptibility locus for atrial septal defect at chromosome 4p16. Nat Genet. 2013a; 45:

822–824.

 Cordell HJ, Töpf A, Mamasoula C, Postma AV, Bentham J, Zelenika D,

Heath S, Blue G, Cosgrove C, Granados Riveron J, Darlay R, Soemedi R, Wilson IJ, Ayers KL, Rahman TJ, Hall D, Mulder BJ, Zwinderman AH, van Engelen K, Brook JD, Setchfield K, Bu'Lock FA, Thornborough C, O'Sullivan J, Stuart AG, Parsons J, Bhattacharya S, Winlaw D, Mital S, Gewillig M, Breckpot J, Devriendt K, Moorman AF, Rauch A, Lathrop GM, Keavney BD, Goodship JA. Genome-wide association study

(4)

identifies loci on 12q24 and 13q32 associated with tetralogy of Fallot.

Hum Mol Genet. 2013b; 22: 1473–1481.

 Crawford DC and Nickerson DA. Definition and clinical importance of haplotypes. Annu. Rev. Med 2005.;56:303–20.

 Cummins JM, He Y, Leary RJ, Pagliarini R, Diaz Jr LA, Sjoblom T, et al.

The colorectal microRNAome. Proc Natl Acad Sci U S A 2006;103:3687–

92.

 Dai YS, Cserjesi P, Markham BE, Molkentin JD. The transcription

factors GATA4 and dHAND physically interact to synergistically activate cardiac gene expression through a p300-dependent mechanism. J Biol Chem. 2002;277(27):24390-8.

 Deng X, Zhou J, Li FF, Yan P, Zhao EY, Hao L, Yu KJ, Liu SL.

Characterization of nodal/TGF-lefty signaling pathway gene variants for possible roles in congenital heart diseases. PLoS One 2014;9(8):e104535.

 Dodou, E., Verzi, M. P., Anderson, J. P., Xu, S. M., and Black, B. L.

Mef2c is a direct transcriptional target of ISL1 and GATA factors in the anterior heart field during mouse embryonic development.

Development.2004;131,3931–3942.

 Dorn C, Grunert M, Sperling SR. Application of high-throughput sequencing for studying genomic variations in congenital heart disease.

Brief Funct Genomics 2014;13(1):51-65.

(5)

 Draus Jr JM, Hauck MA, Goetsch M, Austin III EH, Tomita-Mitchell A,

Mitchell ME. Investigation of somatic NKX2-5 mutations in congenital heart disease. J Med Genet 2009;46:115–22.

 Durocher D, Charron F, Warren R, Schwartz RJ, Nemer M. The cardiac transcription factors Nkx2-5 and GATA-4 are mutual cofactors. EMBO J 1997;16:5687– 96.

 Erickson RP. Somatic gene mutation and human disease other than cancer: an update. Mutat Res. 2010;705(2):96-106

 Esposito G, Butler TL, Blue GM, Cole AD, Sholler GF, Kirk EP Grossfeld

P, Perryman BM, Harvey RP, Winlaw DS. Somatic mutations in NKX2-5, GATA4, and HAND1 are not a common cause of Tetralogy of Fallot or hypoplastic left heart. Am J Med Genet A. 2011;155A:2416–21.

 Fallin D and Schork NJ. Accuracy of Haplotype Frequency Estimation for Biallelic Loci, via the Expectation-Maximization Algorithm for Unphased Diploid Genotype Data. Am. J. Hum. Genet 2000; 67:947–959.

 Fallin D, Cohen A, Essioux L, Chumakov I, Blumenfeld M, Cohen D,

Schork NJ. Genetic analysis of case/control data using estimated haplotype frequencies: application to APOE locus variation and Alzheimer's disease. Genome Res 2001;11(1):143-51.

 Fahed AC, Gelb BD, Seidman JG, Seidman CE. Genetics of congenital heart disease: the glass half empty. Circ Res 2013;112(4),707-720.

 Freylikhman O, Tatarinova T, Smolina N, Zhuk S, Klyushina A, Kiselev A, Moiseeva O, Sjoberg G, Malashicheva A, Kostareva A. Variants in

(6)

the NOTCH1 gene in patients with aortic coarctation. Congenit Heart Dis 2014;9(5):391-6.

 Garg V, Muth AN, Ransom JF, Schluterman MK, Barnes R, King

IN, Grossfeld PD, Srivastava D. Mutations in NOTCH1 cause aortic valve disease. Nature 2005;437(7056):270-4.

 Gelb BD, Chung WK2. Complex genetics and

the etiology of human congenital heart disease. Cold Spring Harb Perspect Med. 2014;4(7):a013953.

 Goldmuntz E, Bamford R, Karkera JD et al. CFC1 mutations in patients with transposition of the great arteries and doubleoutlet right ventricle.

Am J Hum Genet 2002;70: 776–780.

 Goldmuntz E, Clark BJ, Mitchell LE, Jawad AF, Cuneo BF, Reed

L, McDonald-McGinn D, Chien P, Feuer J, Zackai EH, Emanuel BS, Driscoll DA. Frequency of 22q11 deletions in patients with conotruncal defects. J Am Coll Cardiol. 1998;32(2):492-8.

 Gollob MH, Jones DL, Krahn AD, Danis L, Gong XQ, Shao Q, Liu

X, Veinot JP, Tang AS, Stewart AF, Tesson F, Klein GJ, Yee R, Skanes AC, Guiraudon GM,Ebihara L, Bai D. Somatic mutations in the connexin 40 gene (GJA5) in atrial fibrillation. N Engl J Med. 2006;354(25):2677-88.

 Granados-Riveron JT1, Ghosh TK, Pope M, Bu'Lock F, Thornborough

C, Eason J, Kirk EP, Fatkin D, Feneley MP, Harvey RP, Armour

JA, David Brook J. Alpha-

cardiac myosin heavy chain (MYH6) mutations affecting myofibril formati

(7)

on are associated with congenitalheart defects. Hum Mol Genet 2010;19(20):4007-16.

 Greenway SC, Pereira AC, Lin JC, DePalma SR, Israel SJ, Mesquita

SM, Ergul E, Conta JH, Korn JM, McCarroll SA, Gorham JM, Gabriel S, Altshuler DM,Quintanilla-Dieck Mde L, Artunduaga MA, Eavey RD, Plenge RM, Shadick NA, Weinblatt ME, De Jager PL, Hafler DA, Breitbart RE, Seidman JG, Seidman CE. De novo copy number variants identify new genes and loci in isolated sporadic tetralogy of Fallot. Nat Genet 2009;41(8):931-5.

 Grépin C, Nemer G, Nemer M. Enhanced cardiogenesis in embryonic

stem cells overexpressing the GATA-4 transcription factor.

Development. 1997;124(12):2387-95.

 Gruber AR, Lorenz R, Bernhart SH, Neubock R, Hofacker IL. The Vienna RNA website. Nucleic Acids Res 2008;36:W70–4.

 Haas U, Sczakiel G, Laufer SD. MicroRNA-

mediated regulation of gene expression is affected by disease-

associated SNPs within the 3'-UTR viaaltered RNA structure.

RNA Biol 2012;9(6):924-37.

 Hammell M. Computational methods to identify miRNA targets. Semin Cell Dev Biol 2010;21:738–44.

 Harvey RP, Lai D, Elliott D, Biben C, Solloway M, Prall O, Stennard F, Schindeler A, Groves N, Lavulo L, Hyun C, Yeoh T, Costa M, Furtado M,

(8)

Kirk E. Homeodomain factor Nkx2-5 in heart development and disease.

Cold Spring Harb. Symp. Quant. Biol. 2002;67,107–114.

 Hinton RB, Martin LJ, Rame-Gowda S, Tabangin ME, Cripe LH, Benson

DW. Hypoplastic left heart syndrome links to chromosomes 10q and 6q and is genetically related to bicuspid aortic valve. J Am Coll Cardiol 2009;53(12):1065-71.

 Hu Z, Shi Y, Mo X, Xu J, Zhao B, Lin Y, Yang S, Xu Z, Dai J, Pan S, Da

M, Wang X, Qian B, Wen Y, Wen J, Xing J, Guo X, Xia Y, Ma H, Jin G, Yu S, Liu J, Zhou Z, Wang X, Chen Y, Sha J, Shen H. A genome-wide association study identifies two risk loci for congenital heart malformations in Han Chinese populations. Nat Genet. 2013; 45: 818–

821.

 Huang RT, Xue S, Xu YJ, Yang YQ. Somatic mutations in

the GATA6 gene underlie sporadic tetralogy of Fallot. Int J Mol Med 2013;31(1):51-8.

 Jorgensen M, McPherson E, Zaleski C, Shivaram P, Cold C. Stillbirth:

the heart of the matter. Am J Med Genet A. 2014;164A(3):691-9.

 Kaemmerer H, Hess J. Adult patients with congenital heart abnormalities:

present and future]. Dtsch Med Wochenschr. 2005;130(3):97-101.

 Karkera JD, Lee JS, Roessler E, Banerjee-Basu S, Ouspenskaia MV, Mez J, Goldmuntz E, Bowers P, Towbin J, Belmont JW, Baxevanis AD, Schier AF,Muenke M. Loss-of-function mutations in growth

(9)

differentiation factor-1 (GDF1) are associated with congenital heart defectsin humans. Am J Hum Genet 2007;81(5):987-94.

 Kathiresan S, Srivastava D. Genetics of human cardiovascular disease.

Cell 2012;148(6):1242-57.

 Kaynak B, von Heydebreck A, Mebus S, Seelow D, Hennig S, Vogel J

and Sperling HP, et al. Genome-wide array analysis of normal and malformed human hearts. Circulation 2003, 107: 2467–2474.

 Kodo K, Nishizawa T, Furutani M, Arai S, Ishihara K, Oda M, Makino

S, Fukuda K, Takahashi T, Matsuoka R, Nakanishi T, Yamagishi H.

Genetic analysis of essential cardiac transcription factors in 256 patients with non-syndromic congenital heartdefects. Circ J. 2012;76(7):1703-11.

 Kuhn DE, Nuovo GJ, Martin MM, et al. Human chromosome 21-derived

miRs are overexpressed in down syndrome brains and hearts. Biochem Biophys Res Commun 2008; 370:473–477.

 Kuo CT, Morrisey EE, Anandappa R, Sigrist K, Lu MM, Parmacek

MS, Soudais C, Leiden JM. GATA4 transcription factor is required for ventral morphogenesis and heart tube formation.

Genes Dev. 1997;11(8):1048-60.

 Landi D, Barale R, Gemignani F, Landi S. Prediction of the biological effect of polymorphisms within microRNA binding sites. Methods Mol Biol 2011;676:197–210.

(10)

 Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-

Duby R and Olson EN: microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart.

Genes Dev 22: 3242-3254, 2008.

 Long JC, Williams RC, and Urbanek M. An E-M algorithm and testing

strategy for multiple-locus haplotypes. Am J Hum Genet 1995; 56(3):

799–810.

 Lyons, I., Parsons, L. M., Hartley, L., Li, R., Andrews, J. E., Robb, L.,

Harvey, R. P. Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev.

1995;1654–1666.

 Lytle JR, Yario TA, Steitz JA. Target mRNAs are repressed as efficiently

by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proceedings of the National Academy of Sciences. 2007;104(23):9667–9672.

 Marelli AJ1, Mackie AS, Ionescu-Ittu R, Rahme E, Pilote L.Congenital

heart disease in the general population: changing prevalence and age distribution. Circulation. 2007 Jan 16;115(2):163-72. Epub 2007 Jan 8.

 Matsa LS, Rangaraju A, Vengaldas V, Latifi M, Jahromi HM, Ananthapur

V, Nallari P.

Haplotypes of NOS3 gene polymorphisms in dilated cardiomyopathy.

Plos one 2013; 29;8(7):e70523.

 McCulley DJ, Black BL. Transcription factor pathways and congenital heart disease. Curr Top Dev Biol. 2012;100:253-77.

(11)

 Meno C, Takeuchi J, Sakuma R, Koshiba-Takeuchi K, Ohishi S, Saijoh

Y, Miyazaki J, ten Dijke P, Ogura T, Hamada H.

Diffusion of nodal signaling activity in the absence of the feedback inhibitor Lefty2. Dev Cell 2001;1(1):127-38.

 Misra C, Chang SW, Basu M, Huang N, Garg V. Disruption of

myocardial Gata4 and Tbx5 results in defects in cardiomyocyte proliferation and atrioventricular septation. Hum Mol Genet.

2014;23(19):5025-35.

 Mohapatra B, Casey B, Li H et al. Identification and functional characterization of NODAL rare variants in heterotaxy and isolated cardiovascular malformations. Hum Mol Genet 2009: 18: 861–871.

 Molkentin JD, Lin Q, Duncan SA, Olson EN. 1997. Requirement of the

transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev. 11:1061–1072.

 Morin, S., Charron, F., Robitaille, L., and Nemer, M. GATA-dependent recruitment of MEF2 proteins to target promoters. EMBO J. 2000;19, 2046–2055.

 Morton SU, Scherz PJ, Cordes KR, Ivey KN, Stainier DY and Srivastava

D: microRNA-138 modulates cardiac patterning during embryonic development. Proc Natl Acad Sci USA 2008;105: 17830-17835.

 Moskowitz IP, Kim JB, Moore ML, Wolf CM, Peterson MA, Shendure J, Nobrega MA, Yokota Y, Berul C, Izumo S, Seidman JG, Seidman CE. A

(12)

molecular pathway including Id2, Tbx5, and Nkx2-5 required for cardiac conduction system development. Cell. 2007;129, 1365–1376.

 Moskowitz IP, Wang J, Peterson MA, Pu WT, Mackinnon, AC, Oxburgh L,

Chu GC, Sarkar M, Berul C, Smoot L, Robertson EJ, Schwartz R, Seidman JG, Seidman CE. Transcription factor genes Smad4 and Gata4 cooperatively regulate cardiac valve development. Proc. Natl. Acad. Sci.

USA 2011;108,4006–4011. ,

 Nimura K, Ura K, Shiratori H, Ikawa M, Okabe M, Schwartz RJ, Kaneda

Y. A histone H3 lysine 36 trimethyltransferase links Nkx2-5 to Wolf- Hirschhorn syndrome. Nature 2009, 460: 287–291.

 Obermann-Borst SA, van Driel LM, Helbing WA, de Jonge R, Wildhagen

MF, Steegers EA, Steegers-Theunissen RP. Congenital heart defects and biomarkers of methylation in children: a case-control study. Eur J Clin Invest 2011;41(2):143-50.

 Olson EN. Gene regulatory network in the evolution and development of the heart. Science 2006407,221-226.

 O'Brien JE Jr, Kibiryeva N, Zhou XG, Marshall JA, Lofland GK, Artman

M, Chen J, Bittel DC. Noncoding RNA expression in myocardium from infants with tetralogy of fallot. Circ Cardiovasc Genet 2012; 5:279–286.

 Payne AR, Chang SW, Koenig SN, Zinn AR, Garg V. Submicroscopic chromosomal copy number variations identified in children with hypoplastic left heart syndrome. Pediatr Cardiol 2012;33(5):757-63.

(13)

 Poliseno L, Salmena L, Riccardi L, Fornari A, SongMS,HobbsRM, et al.

Identification of the miR-106b ~ 25 microRNA cluster as a proto- oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation. Sci Signal 2010;3:ra29.

 Posch MG, Waldmuller S, Müller M, Scheffold T, Fournier D, Andrade-

Navarro MA, De Geeter B, Guillaumont S, Dauphin C, Yousseff D, Schmitt KR, Perrot A,Berger F, Hetzer R, Bouvagnet P, Özcelik C.

Cardiac alpha-myosin (MYH6) is the predominant sarcomeric disease gene for familial atrial septal defects. PLoS One 2011;6(12):e28872.

 Posch MG1, Perrot A, Schmitt K, Mittelhaus S, Esenwein EM, Stiller

B, Geier C, Dietz R, Gessner R, Ozcelik C, Berger F Mutations in GATA4, NKX2.5, CRELD1, and BMP4 are infrequently found in patients with congenital cardiacseptal defects. Am J Med Genet A. 2008;146A(2):251-3.

 Pradat P, Francannet C, Harris JA, Robert E.The epidemiology of

cardiovascular defects, part I: a study based on data from three large registries of congenital malformations. Pediatr Cardiol. 2003 ;24(3):195- 221.

 Prall OW, Menon MK, Solloway MJ, Watanabe Y, Zaffran S, Bajolle F,

Biben C, McBride JJ, Robertson BR, Chaulet H, Stennard FA, Wise N, Schaft D, Wolstein O, Furtado MB, Shiratori H, Chien KR, Hamada H, Black BL, Saga Y, Robertson EJ, Buckingham ME, Harvey RP. An Nkx2-

(14)

5/Bmp2/Smad1 negative feedback loop controls heart progenitor specification and proliferation. Cell 2007; 128:947–959.

 Pu WT, Ishiwata T, Juraszek AL, Ma Q, Izumo S. GATA4 is a dosage-

sensitive regulator of cardiac morphogenesis. Dev. Biol. 2004;275:235–

244.

 Pulignani S, Cresci M, Andreassi MG. Genetics of congenital heart defects: is it not all in the DNA? Transl Res. 2013;161(1):59-61.

 Reamon-Buettner SM, Borlak J. Somatic mutations in cardiac malformations. J Med Genet 2006;43:e45.

 Reamon-Buettner SM, Cho SH, Borlak J. Mutations in the 3′-untraslated

region of GATA4 as molecular hotspots for congenital heart disease (CHD). BMC Med Genet. 2007;25;8:38.

 Reamon-Buettner SM, Borlak J. Somatic mutations in cardiac malformations. J Med Genet. 2004a;43(8):e45.

 Reamon-Buettner SM, Borlak J. Somatic NKX2-5 mutations as a novel

mechanism of disease in complex congenital heart disease. J Med Genet.

2004b;41(9):684-90.

 Reamon-Buettner SM1, Borlak J. NKX2-5: an update on this

hypermutable homeodomain protein and its role in human congenital heart disease (CHD). Hum Mutat. 2010;31(11):1185-94.

 Rehm HL, Bale SJ, Bayrak-Toydemir P, Berg JS, Brown KK, Deignan JL,

Friez MJ, Funke BH, Hegde MR, Lyon E, Working Group of the American College of Medical Genetics and Genomics Laboratory Quality Assurance Commitee: ACMG clinical laboratory standards for next-generation sequencing. Genet Med. 2013, 15(9):733–747.

(15)

 Salazar M, Consoli F, Villegas V, Caicedo V, Maddaloni V, Daniele P,

Caianiello G, Pachón S, Nuñez F, Limongelli G, Pacileo G, Marino B, Bernal JE, De Luca A, Dallapiccola B. Search of somatic GATA4 and NKX2.5 gene mutations in sporadic septal heart defects. Eur J Med Genet 2011;54:306–9.

 Schipper RF, D'Amaro J. de Lange P, Schreuder GM, van Rood JJ,

Oudshoorn M. Validation of haplotype frequency estimation methods.

Hum. Immunol 1998; 59:518–523.

 Selamet Tierney ES, Marans Z, Rutkin MB et al. Variants of the CFC1 gene in patients with laterality defects associated with congenital cardiac disease. Cardiol Young 2007;17:268–274.

 Sepulveda J L, Vlahopoulos S, Iyer D, Belaguli N, Schwartz RJ.

Combinatorial expression of GATA4, Nkx2-5, and serum response factor directs early cardiac gene activity. J. Biol. Chem. 2002;277, 25775–

25782.

 Sheng W, Qian Y, Zhang P, Wu Y, Wang H, Ma X, Chen L, Ma D, Huang

G. Association of promoter methylation statuses of congenital heart defect candidate genes with Tetralogy of Fallot. J Transl Med 2014;12:31.

 Sheng W, Wang H, Ma X, Qian Y, Zhang P, Wu Y, Zheng F, Chen L,

Huang G, Ma D: LINE-1 methylation status and its association with tetralogy of fallot in infants. BMC Med Genomics 2012, 5:20.

 Silversides CK, Lionel AC, Costain G, Merico D, Migita O, Liu B, Yuen T, Rickaby J, Thiruvahindrapuram B, Marshall CR, Scherer SW, Bassett AS.

(16)

Rare copy number variations in adults with tetralogy of Fallot implicate no vel risk gene pathways. PLoS Genet 2012;8(8):e1002843.

 Soemedi R, Wilson IJ, Bentham J, Darlay R, Töpf A, Zelenika D,

Cosgrove C, Setchfield K, Thornborough C, Granados-Riveron J, Blue GM, Breckpot J, Hellens S, Zwolinkski S, Glen E, Mamasoula C, Rahman TJ, Hall D, Rauch A, Devriendt K, Gewillig M, O' Sullivan J, Winlaw DS, Bu'Lock F, Brook JD, Bhattacharya S, Lathrop M, Santibanez-Koref M, Cordell HJ, Goodship JA, Keavney BD. Contribution of global rare copy- number variants to the risk of sporadic congenital heart disease. Am J Hum Genet 2012;91:489–501.

 Sung RY, So LY, Ng HK, Ho JK, Fok TF. Echocardiography as a tool for

determining the incidence of congenital heart disease in newborn babies:

a pilot study in Hong Kong. Int J Cardiol. 1991 Jan;30(1):43-7.

 Takeuchi JK and Bruneau BG. Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature 2009, 459: 708–711.

 Tanaka, M., Chen, Z., Bartunkova, S., Yamasaki, N., Izumo, S. The cardiac homeobox gene Csx/Nkx2.5 lies genetically upstream of multiple genes essential for heart development. Development. 1999;126, 1269–

1280.

 Thibodeau IL, Xu J, Li Q, Liu G, Lam K, Veinot JP, Birnie DH, Jones DL,

Krahn AD, Lemery R, Nicholson BJ, Gollob MH. Paradigm of genetic mosaicism and lone atrial fibrillation: physiological characterization of a connexin 43-deletion mutant identified from atrial tissue. Circulation 2010;122:236–44.

(17)

 Tobin MD, Braund PS, Burton PR, Thompson JR, Steeds R, Channer

K, Cheng S, Lindpaintner K, Samani NJ.

Genotypes and haplotypes predisposing to myocardial infarction: a multilocus case-control study. Eur Heart J 2004;25(6):459-67.

 van der Linde D, Konings EE, Slager MA, Witsenburg M, Helbing WA,

Takkenberg JJ, Roos-Hesselink JW. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol. 2011;58:2241–2247.

 van Driel LM, de Jonge R, Helbing WA, van Zelst BD, Ottenkamp J,

Steegers EA, Steegers-Theunissen RP. Maternal global methylation status and risk of congenital heart diseases. Obstet Gynecol 2008;112(2 Pt 1):277-83.

 Vecoli C, Pulignani S, Foffa I, Andreassi MG. Congenital Heart Disease:

the crossroads of genetics, epigenetics and environment. Curr Genomics. 2014; 15(5):390-9.

 Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ,

Newman J, Bronson RT, Crowley D, Stone JR, Jaenisch R, Sharp PA, Jacks T. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 2008;132:875–

886.

 Vincentz JW, Barnes RM, Firulli BA, Conway SJ, Firulli AB. Cooperative

interaction of Nkx2.5 and Mef2c transcription factors during heart development. Dev. Dyn. 2008;23,3809–3819.

 Waddington CH. The epigenotype. Endeavour 1942;1:18–20.

(18)

 Wang E, Sun S, Qiao B, Duan W, Huang G, An Y, Xu S, Zheng Y, Su

Z, Gu X, Jin L, Wang H. Identification of functional mutations in GATA4 in patients with congenital heart disease. PLoS One 2013;8(4):e62138.

 Wang J, Lu Y, Chen H, Yin M, Yu T, Fu Q. Investigation of somatic NKX2.5, GATA4 and HAND1 mutations in patients with Tetralogy of Fallot. Pathology 2011;43: 322–6.

 Wang Z, Zang C, Cui K, Schones DE, Barski A, Peng W and Zhao K.

Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 2009,138: 1019–1031.

 Wang Z, Luo X, Lu Y, Yang BmiRNAs at the heart of the matter. J Mol Med (Berl). 2008;86(7):771-83.

 Warburton D, Ronemus M, Kline J, Jobanputra V, Williams I, Anyane-

Yeboa K, Chung W, Yu L, Wong N, Awad D, Yu CY, Leotta A, Kendall J, Yamrom B, Lee YH, Wigler M, Levy D. The contribution of de novo and rare inherited copy number changes to congenital heart disease in an unselected sample of children with conotruncal defects or hypoplastic left heart disease. Hum Genet 2014;133(1):11-27.

 Watt AJ, Battle MA, Li J, Duncan SA. GATA4 is essential for formation of

the proepicardium and regulates cardiogenesis. Proc Natl Acad Sci U S A. 2004 24;101(34):12573-8.

 Wessels MW, Willems PJ. Genetic factors in non- syndromic congenital heart malformations. Clin Genet. 2010;78(2):103- 23.

 White PS, Xie HM, Werner P, Glessner J, Latney B, Hakonarson H, Goldmuntz E. Analysis of chromosomal structural variation in patients

(19)

with congenital left-sided cardiac lesions. Birth Defects Res A Clin Mol Teratol 2014;100(12):951-64.

 Wu MH, Chen HC, Lu CW, Wang JK, Huang SC, Huang SK. Prevalence

of congenital heart disease at live birth in Taiwan. J Pediatr. 2010;156(5):782-5.

 Xu M, Wu X1, Li Y, Yang X, Hu J, Zheng M, Tian J. CITED2 mutation

and methylation in children with congenital heart disease. J Biomed Sci 2014;21:7.

 Yamagishi, H., Yamagishi, C., Nakagawa, O., Harvey, R. P., Olson, E.

N., Srivastava, D. The combinatorial activities of Nkx2.5 and dHAND are essential for cardiac ventricle formation. Dev. Biol. 2001;239, 190–203.

 Yamak A1, Latinkic BV, Dali R, Temsah R, Nemer M. Cyclin D2 is

a GATA4 cofactor in cardiogenesis. Proc Natl Acad Sci U S A. 2014;111(4):1415-20

 Yang F, Zhou L, Wang Q, You X, Li Y, Zhao Y, Han X, Chang Z, He X,

Cheng C, Wu C, Wang WJ, Hu FY, Zhao T, Li Y, Zhao M, Zheng GY, Dong J, Fan C, Yang J, Meng X, Zhang Y, Zhu X, Xiong J, Tian XL, Cao H. NEXN inhibits GATA4 and leads to atrial septal defects in mice and humans. Cardiovasc Res. 2014;103(2):228-37.

 Yang YQ, Gharibeh L, Li RG, Xin YF, Wang J, Liu ZM, Qiu XB, Xu YJ,

Xu L, Qu XK, Liu X, Fang WY, Huang RT, Xue S, Nemer G. GATA4 loss- of-function mutations underlie familial tetralogy of fallot. Hum Mutat.

2013;34(12):1662-71

 Yang YQ, Li L, Wang J, Liu XY, Chen XZ, Zhang W, Wang XZ, Jiang JQ, Liu X, Fang WY. A novel GATA4 loss-of-function mutation associated

(20)

with congenital ventricular septal defect. Pediatr Cardiol. 2012 Apr;33(4):539-46.

 Yu ZB, Han SP, Bai YF, Zhu C, Pan Y, Guo XR. MicroRNA expression profiling in fetal single ventricle malformation identified by deep sequencing. Int J Mol Med 2012; 29:53–60.

 Yuan Y, Gao Y, Wang H, Ma X, Ma D, Huang G.

Promoter methylation and expression of the VANGL2 gene in the myocardium of pediatric patients with Tetralogy of Fallot. Birth Defects Res A Clin Mol Teratol 2014;100(12):973-84.

 Zaidi S, Choi M, Wakimoto H, Ma L, Jiang J, Overton JD, Romano-

Adesman A, Bjornson RD, Breitbart RE, Brown KK, Carriero NJ, Cheung YH, Deanfield J,DePalma S, Fakhro KA, Glessner J, Hakonarson H, Italia MJ, Kaltman JR, Kaski J, Kim R, Kline JK, Lee T, Leipzig J, Lopez A, Mane SM, Mitchell LE, Newburger JW, Parfenov M, Pe'er I, Porter G, Roberts AE, Sachidanandam R, Sanders SJ, Seiden HS, State MW, Subramanian S, Tikhonova IR, Wang W, Warburton D,White PS, Williams IA, Zhao H, Seidman JG, Brueckner M, Chung WK, Gelb BD, Goldmuntz E, Seidman CE, Lifton RP. De novo mutations in histone- modifying genes in congenital heart disease. Nature 2013;498: 220–223.

 Zhao Y, Ransom JF, Li A, Vedantham V, von Drehle M, Muth AN,

Tsuchihashi T, McManus MT, Schwartz RJ, Srivastava D. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miR- 1-2. Cell 2007; 129:303–317.

(21)

 Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets hand2 during cardiogenesis.

Nature 2005; 436:214–220.

Riferimenti

Documenti correlati

Figure 5.4 Second trimester box-and-whisker plots of Z-scores for head circumference in fetuses with congenital heart defects, stratified according to sub-groups, compared to

Treatment of PIE caused by penicillin and gentamicin susceptible enterococci when no prosthetic material is present consists of a min- imum of four to six weeks of penicillin G at

The presence of profound pulmonary overcirculation, which may occur with a large ventricular septal defect or aortopulmonary window, may require pulmonary artery banding to

This reference book on the use of Magnetic Resonance in the study of the heart and vessels by Massimo Lombardi and Carlo Bartolozzi represents an excellent opportunity for

The increased spatial resolution of 0.4 mm that is possible with 64-slice CT even allows for visualization of the coronary arteries in babies, thus enabling the detec- tion of

Sagittal T1 w SE plane showing the origin of the left coronary artery (arrow) from the posterior wall of the main pulmonary artery (PA) in a case of anomalous origin of left

In a recent study where 182 parents of CHD children (54 having transposed great arteries, 55 a function- ally single ventricle and 73 complex variants of functionally

Director Emeritus, Cardiothoracic Surgery, Herma Heart Center, Children's Hospital of Wisconsin; Clinical Professor of Surgery, Medical College of Wisconsin, Milwaukee,