• Non ci sono risultati.

LHC Bounds on Large Extra Dimensions

N/A
N/A
Protected

Academic year: 2021

Condividi "LHC Bounds on Large Extra Dimensions"

Copied!
73
0
0

Testo completo

(1)

1

Universitร  di Pisa

Facoltร  di Scienze Matematiche, Fisiche e Naturali

Corso di Laurea Magistrale in Fisica

Elaborato Finale

LHC Bounds on Large Extra Dimensions

Candidato

Giorgio Busoni

Chiarissimo Prof. A. Strumia

Relatore

(2)

2

This work is dedicated to my family and to those that really love me. To my father Marco, who has always supported and encouraged me in my choices; to my mother Alessandra, maybe the person who loves me most in the world; to my brother, Dario, to my grandfather Alberto, to my grandparents Luciano and Lidia, who are no longer here, but who would have liked to be here, and last, but not the least, but particularly it is dedicated, to my grandmother Greta, who has always helped me in every step of my life with love, and without whom probably I wouldnโ€™t be who I am.

(3)

3

Index

Index ... 3

0 Premises ... 7

0.1 Notation... 7 0.2 Natural Units ... 7 0.3 Conversion factors ... 7

0.4 Values of coupling constants ... 8

1 Introduction ... 9

1.1 Hierarchy Problem ... 9

1.1.1 Planck scale ... 9

1.1.2 Higgs Boson mass ... 9

1.1.3 Zero-point energy ... 9

1.1.4 Super-symmetry Solution ...10

1.1.5 Models with additional dimensions ...10

1.1.6 The ADD/GOD model and the Large Extra Dimensions ...11

2 Standard Model... 13

2.1 Standard Model and the Yang-Mills Lagrangian ...13

2.1.1 Gauge invariant definitions ...13

2.1.2 Boson Fields ...14

2.1.3 Fermion Fields ...15

2.1.4 Higgs Field Lagrangian ...16

2.1.5 Higgsโ€™s and fermionsโ€™s couplings Lagrangian ...17

2.2 Feynman Rules for the Standard Model ...18

2.2.1 How to obtain Feynman Rules for the propagators ...18

2.2.2 Feynman Rules for the propagators, Standard Model ...18

2.2.3 How to obtain Feynman Rules for vertices ...19

2.2.4 Feynman Rules for vertices, Standard Model ...19

2.3 Running Coupling Constant ...20

2.4 Two body processes general Kinematics ...21

2.4.1 Degrees of freedom ...21

2.4.2 Mandelstam variables ...21

(4)

4

2.5 Cross section calculation of elementary processes between partons ...24

2.5.1 ๐’ˆ๐’ˆ โ†’ ๐’ˆ๐’ˆ ...24 2.5.2 ๐’ˆ๐’ˆ โ†’ ๐’’๐’’...24 2.5.3 ๐’’๐’’ โ†’ ๐’ˆ๐’ˆ...24 2.5.4 ๐’ˆ๐’’ โ†’ ๐’ˆ๐’’...25 2.5.5 ๐’’๐’’ โ†’ ๐’’๐’’ ...25 2.5.6 ๐’’๐’’ โ†’ ๐’’๐’’ ...25 2.5.7 ๐’’๐’’ โ†’ ๐’’โ€ฒ๐’’โ€ฒ ...25 2.5.8 ๐’’๐’’โ€ฒ โ†’ ๐’’๐’’โ€ฒ ...25

2.6 Deep Inelastic Scattering ...26

2.6.1 Useful variables ...26

2.6.2 Bjorkenโ€™s Scaling...27

2.7 Parton Distribution Functions ...27

2.8 Proton-Proton processes ...28

3 Gravity Interactions ... 30

3.1 Einsteinโ€™s Equation ...30

3.1.1 Kaluza-Klein modes ...30

3.1.2 Physical Fields and Gauge-dependent Fields ...31

3.1.3 Identification of the Particles ...33

3.2 Gravitational Lagrangian ...34

3.3 Feynman rules ...34

3.3.1 Feynman Rules for propagators ...34

3.3.2 Feynman Rules for vertices ...35

3.4 Real Graviton Production ...36

3.4.1 Modes density ...36

3.4.2 Real Graviton production cross sections ...36

3.4.3 Expected results ...38

3.5 Virtual Graviton Exchange ...38

3.5.1 Scattering amplitudes ...38

3.5.2 Relevant processes Cross sections ...38

3.5.3 Expected results ...40

3.6 Limits on the application of perturbation theory ...41

4 Experimental Parameters ... 42

(5)

5

4.2 Hadron Colliders Kinematics ...42

4.2.1 ๐‘ช๐’๐‘ด Frame ...42

4.2.2 Variables for integration over the ๐‘ท๐‘ซ๐‘ญ ...43

4.2.3 Transverse momenta and Azimuthal Angle ...43

4.2.4 Rapidity and Pseudo-rapidity ...43

4.2.5 Lego Plot and jet resolution ...44

4.3 Machine Diagram ...44

4.3.1 Detectors ...44

4.3.2 Decay length and direct and indirect measurements ...45

4.3.3 Indirect measurements...47

4.3.4 Triggering ...47

4.4 Experimental cuts...48

4.4.1 Real Graviton production cuts ...48

4.4.2 Virtual Graviton Exchange cuts ...48

5 Simulations with Mathematica ... 49

5.1 MonteCarlo integration method ...49

5.1.1 Numerical Integration...49

5.1.2 MonteCarlo: Sampling method ...49

5.1.3 MonteCarlo: Hit and miss method ...50

5.1.4 MonteCarlo Integration accuracy: sampling method...50

5.1.5 MonteCarlo Integration accuracy: Hit and miss method ...51

5.1.6 Comparing integration with and without changing variables ...52

5.2 Implementation in Mathematica ...53

5.2.1 Choosing the integration variables...53

5.2.2 Generating events ...53

5.2.3 Implementing cuts ...54

5.2.4 Memorizing points ...54

5.2.5 Calculating cross section ...54

5.2.6 Important precautions ...54

5.2.7 Used Approximations ...54

5.3 Testing the program with the Standard Model ...55

6 Results ... 57

6.1 Virtual Graviton Exchange ...57

(6)

6

6.3 Cross section dependence on Gravitonโ€™s mass cut-off ...59

6.4 Bounds on ๐‘ด๐‘ซ and ๐šฒ, 2010 data ...60

6.5 Bounds on ๐‘ด๐‘ซ and ๐šฒ, 2011 data ...63

6.6 Conclusions ...65

7 Appendix ... 66

7.1 Calculation of the gravitational field in the Large Extra Dimensions with the images method ...66

7.2 Parton Distribution Functions from H1 and HERA data ...67

7.3 Used functions ...68

7.3.1 Functions ๐‘ญ ...68

7.3.2 Functions ๐“• ...68

7.4 Comparison between Numerical and MonteCarlo Integration ...68

7.4.1 Numerical Integrations comparison source code (fixed number of points) ...69

7.4.2 MonteCarlo comparison source code ...70

7.4.3 Numerical Integration comparison source code (variable number of points) ...71

References ... 72

(7)

7

0 Premises

0.1 Notation

Greek indices have been used for four-vectors, and run from 0 to 3.

Four-vectors may be written separating the time component from the space components ๐‘‹๐œ‡= ๏ฟฝ๐‘‹0, ๐‘‹โƒ—๏ฟฝ.

The quadri-dimensional metric is (+, โˆ’, โˆ’, โˆ’).

Indices ๐‘—, ๐‘˜, ๐‘™, ๐‘š run over the Extra-dimensions, therefore their values run from 4 to 3 + ๐›ฟ. Indices ๐‘Ž, ๐‘, ๐‘, ๐‘‘ run over all dimensions, and so their values run from 0 to 3 + ๐›ฟ.

As color indices, ๐‘Ž, ๐‘, ๐‘ or ๐‘–, ๐‘—, ๐‘˜ have been used.

The subscript/superscript ๐น stands for a generic fermion, ๐ต for a boson, ๐‘„ for a quark, ๐‘” for a gluon. If a graviton is present in a vertex, indices ๐œ‡, ๐œˆ are to be assigned to the graviton, while ๐›ผ, ๐›ฝ, ๐›พ, if present, refer to Photons or Gluons.

All the charges are expressed as multiples of the elementary charge, therefore they are dimensionless numbers.

Means of quantities have been indicated with โŒฉ โŒช, or, where this couldnโ€™t cause confusion, with ๏ฟฝ . References have been indicated with a number in square brackets [๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ]

0.2 Natural Units

Natural units have been used, in this system

โ„ = ๐‘ = 1 (0.2.1) The use of natural units simplifies a lot the writing of the formulas.

All energies are measured, as usually done in Particle Physics, in ๐บ๐‘’๐‘‰, and, thanks to the fact that ๐‘ = 1, masses and momenta are measured in ๐บ๐‘’๐‘‰ as well.

The value of ๐บ, in this measurement system, is expressed in ๐บ๐‘’๐‘‰โˆ’2 and is

๐บ = 6.7087 โˆ™ 10โˆ’39๐บ๐‘’๐‘‰โˆ’2 (0.2.2)

0.3 Conversion factors

The use of natural units makes the ๐‘“๐‘š be the inverse of ๐บ๐‘’๐‘‰, when converting from one of these units to the other, we have to remember that

1 = โ„๐‘ = 197.3๐‘€๐‘’๐‘‰ โˆ™ ๐‘“๐‘š (0.3.1) Therefore we obtain the following conversion factors

(8)

8

1๐บ๐‘’๐‘‰โˆ’1= 10โˆ’3๐‘€๐‘’๐‘‰โˆ’1= 10โˆ’3๐‘€๐‘’๐‘‰โˆ’1โˆ™ 197.3๐‘€๐‘’๐‘‰ โˆ™ ๐‘“๐‘š = 0.1973๐‘“๐‘š (0.3.2)

For the cross sections we need square of lengths (areas)

1๐บ๐‘’๐‘‰โˆ’2= 10โˆ’6๐‘€๐‘’๐‘‰โˆ’2โˆ™ (197.3๐‘€๐‘’๐‘‰ โˆ™ ๐‘“๐‘š)2= 0.03893๐‘“๐‘š2 (0.3.3)

If we want to measure cross sections in picobarn, that is

1๐‘ = 10โˆ’28๐‘š2โ†’ 1๐‘๐‘ = 10โˆ’40๐‘š2= 10โˆ’10๐‘“๐‘š2 (0.3.4)

The conversion factor that we need is

1๐บ๐‘’๐‘‰โˆ’2= 0.03893๐‘“๐‘š2โˆ™ 1010 ๐‘๐‘

๐‘“๐‘š2= 3.893 โˆ™ 108๐‘๐‘ (0.3.5)

0.4 Values of coupling constants

The values of the coupling constants for the standard model are:

๐‘” = 0.652 ๐‘”โ€ฒ= 0.357 ๐‘’ = 0.09173 ๐›ผ = ๐‘’2

4๐œ‹ = 0.0073 (0.4.1) while ๐‘”๐‘† and so ๐›ผ๐‘†=๐‘”๐‘†

2

4๐œ‹ are strongly dependent on the energy value at which the process takes place

(9)

9

1 Introduction

1.1 Hierarchy Problem

In physics we call โ€œHierarchy problemโ€ the fact that some fundamental constants in a Lagrangian (coupling constants or masses) are totally different from their experimental values. This may happen because the measured values are not the bare ones of the Lagrangian, but the renormalized ones. Radiative corrections usually cause small corrections of the bare values, but sometimes there might be cancellations between fundamental quantities and radiative corrections.

1.1.1 Planck scale

Combining the fundamental constants ๐‘, ๐บ, โ„, we may obtain 4 quantities with the dimensions of length, time, mass, and energy. They are

๐‘™๐‘ = ๏ฟฝโ„๐บ๐‘3 โ‰… 1,1616 โˆ™ 10โˆ’35๐‘š (1.1.1) ๐‘ก๐‘ = ๏ฟฝโ„๐บ๐‘5 โ‰… 5,391 โˆ™ 10โˆ’44๐‘  (1.1.2) ๐‘€๐‘ = ๏ฟฝโ„๐‘๐บ โ‰… 1,2209 โˆ™ 1019๐บ๐‘’๐‘‰๐‘2 โ‰… 21.76 ๐œ‡๐‘” (1.1.3) ๐ธ๐‘ = ๏ฟฝโ„๐‘ 5 ๐บ โ‰… 1,2209 โˆ™ 1019๐บ๐‘’๐‘‰ โ‰… 1.1956 ๐บ๐ฝ (1.1.4)

Gravity should became important when we get close to these values, that is on very small scales of length , that is on very large energy scales. These scales are very far from the ones probed experimentally.

1.1.2 Higgs Boson mass

In the Standard Model, the โ€œHierarchy Problemโ€ is about the Higgs Boson mass. Its value is considered to be between 100๐บ๐‘’๐‘‰ and 1๐‘‡๐‘’๐‘‰. We would expect this value to be, because of quantum corrections, much larger. Radiative divergences are usually power-law, and therefore they are proportional to a power of ฮ›๐‘๐‘ข๐‘ก๐‘œ๐‘“๐‘“, the maximum energy for the validity of the standard model. In the Standard Model, assuming that

there are no changes in the physical laws up to the grand unification with the gravitational force, that should take place at Planck scale, ฮ›๐‘๐‘ข๐‘ก๐‘œ๐‘“๐‘“ should then be equal to the Planck energy, that is 1019๐บ๐‘’๐‘‰, and

therefore we would expect the Higgs Boson mass to be the same order of magnitude, unless opportune cancellations could reduce its value of 17 orders of magnitude.

1.1.3 Zero-point energy

When we quantize a field, for example a scalar field, we find out that the energy density of the vacuum receives an infinite contribution from the zero-point energy of the oscillations modes. If we put a cut-off ฮ›๐‘๐‘ข๐‘ก๐‘œ๐‘“๐‘“, this energy density is about

(10)

10

โŸจ0|๐ป|0โŸฉ~ฮ›4๐‘๐‘ข๐‘ก๐‘œ๐‘“๐‘“ (1.1.5)

Fermion fields give a similar contribution, but of opposite sign. Spontaneous symmetry breaking contributes with another term

โŸจ0|๐ป|0โŸฉ~ โˆ’ ๐‘Ž๐‘ฃ4 (1.1.6)

where ๐‘ฃ is the expectation value of the field and ๐‘Ž is a positive constant.

In strong and electroweak interactions, this zero-point energy shift cannot be observed, as only differences in energy can be measured. Anyway, as the source of gravitational field is the energy-momentum tensor, energy couples with gravity, and therefore zero-point energy should contribute to the gravitational field as source term in Einsteinโ€™s equation. A zero-point energy density ๐œ† contributes to Einsteinโ€™s equation with a source term ๐œ†๐‘”๐œ‡๐œˆ; this term has the form of the cosmological constant term in Einsteinโ€™s equation. We may

therefore think that a cosmological constant in Einsteinโ€™s equation may be due to a non-zero zero-point energy, but the two parameters have completely different values, indeed zero-point energy density is, as stated above, about ฮ›4๐‘๐‘ข๐‘ก๐‘œ๐‘“๐‘“, while the observed value of the cosmological constant is

๐œ† โ‰ˆ10โˆ’30๐‘”

๐‘๐‘š3 ~(2.3 โˆ™ 10โˆ’12๐บ๐‘’๐‘‰)4 (1.1.7)

Therefore the two values differ of 120 orders of magnitude.

1.1.4 Super-symmetry Solution

A way of solving the Higgs mass problem is hypothesizing the existence of a super-symmetry, that is the existence, for each boson, of a fermion with opportune mass and quantum numbers to cancel exactly the radiative contribution of the boson at every renormalization order; and vice-versa, the existence, for each fermion, of a boson with the same properties. This would cancel all the radiative contributions to the Higgs mass. The problem is that none of such particle partners have been found yet, and this raises questions on their effective existence.

Fig. 1.1. Left: diagram of a radiative contribution of a fermion. Right, diagram of a contribution due to a boson.

1.1.5 Models with additional dimensions

In a world with 3+1 dimensions, we can find the gravitational field in the case of a point particle using the Gaussโ€™s Theorem

๐‘”(๐‘Ÿโƒ—) = โˆ’๐บ๐‘š๐‘Ÿ2 ๐‘Ÿฬ‚ = โˆ’ ๐‘š

๐‘€๐‘ƒ2๐‘Ÿ2๐‘Ÿฬ‚ (1.1.8)

We assume now that there are ๐›ฟ additional dimensions where the gravity is free to propagate. The previous law would change to

๐‘”(๐‘Ÿโƒ—) = โˆ’๐บโ€ฒ๐‘š ๐‘Ÿ2+๐›ฟ๐‘Ÿฬ‚ = โˆ’

๐‘š

(11)

11

where ๐บโ€ฒ and ๐‘€๐ท are new constants. Unfortunately the modified law would wouldnโ€™t be in agreement with

experimental data, in fact the law

๐‘”(๐‘Ÿโƒ—) โˆ โˆ’๐‘Ÿ12๐‘Ÿฬ‚ (1.1.10) has been verified for many orders of magnitude, up to 1๐‘š๐‘š.

Moreover, even without comparing with experimental data, we find that the effective potential of a two body problem, for a number of dimensions greater than 4, would not have a minimum and therefore there would be no stable orbits.

Fig. 1.2. Effective Gravitational potential in 2 spatial dimensions Fig. 1.3. Effective gravitational potential in 3 spatial dimensions

Fig. 1.4. Effective Gravitational potential in 4 spatial dimensions Fig. 1.5. Effective Gravitational potential in 5 spatial dimensions

Therefore additional dimensions, if they exist, cannot be infinite.

1.1.6 The ADD/GOD model and the Large Extra Dimensions

We assume now that additional dimensions are compact and have a limited radius ๐‘… (for example a 2-sphere or a 2-torus with zero internal radius).

In this case, for small distances ๐‘Ÿ โ‰ช ๐‘… law 1.1.9 would apply, while for larger distances ๐‘Ÿ โ‰ซ ๐‘… the classical gravitational field would be*

๐‘”(๐‘Ÿโƒ—) = โˆ’ ๐‘š

๐‘€๐ท2+๐›ฟ๐‘Ÿ2๐‘…๐›ฟ๐‘Ÿฬ‚ (1.1.11)

because gravity could not propagate for more than a distance ๐‘… in the additional dimensions, as those have a finite small radius.

(12)

12 From that law we derive the relation

1

๐บ = ๐‘€๐‘ƒ๐‘™2~๐‘€๐ท2+๐›ฟ๐‘…๐›ฟ (1.1.12)

This relation would explain the large size of the Planck mass: it is not a new fundamental energy scale, and its largeness is due to the large radius of the additional dimensions.

Assuming that the only important energy scale is ๐‘€๐ธ๐‘Š~๐‘€๐ท, maximum energy for the validity of the

Standard Model (and of the same order of the Higgs mass), we obtain

๐‘…~ ๏ฟฝ ๐‘€๐‘ƒ๐‘™2 ๐‘€๐ธ๐‘Š2+๐›ฟ๏ฟฝ 1 ๐›ฟ ๐‘“๐‘š = 1030๐›ฟ โˆ’17๐‘๐‘š โˆ™ ๏ฟฝ1๐‘‡๐‘’๐‘‰ ๐‘€๐ธ๐‘Š๏ฟฝ 1+2๐‘› (1.1.13)

๐›ฟ = 1 would imply ๐‘… = 1013๐‘๐‘š and therefore it would imply changes on scales of length at which gravity

has been verified changing with the rule โˆ โˆ’๐‘Ÿ12, and so ๐›ฟ = 1 is not a possible choice. On the contrary, for

๐›ฟ โ‰ฅ 2 and ๐‘€๐ธ๐‘Š~1 ๐‘‡๐‘’๐‘‰ we obtain ๐‘… โ‰ค 0.1 ๐‘š๐‘š and therefore scales of length at which gravity has not

been experimentally probed yet, and so this new theory may apply.

We must remember that, if gravity has been tested only up to scales of 1๐‘š๐‘š, strong and electroweak interactions have been probed up to scales of 1๐‘“๐‘š, and therefore it is necessary for the Standard Model fields not to propagate in the additional dimensions, and to be then confined in the usual 4 dimensions.

(13)

13

2 Standard Model

In this chapter I will discuss various topics, apparently unrelated, that will be useful for the following chapters.

2.1 Standard Model and the Yang-Mills Lagrangian

The Lagrangian density of the Standard Model is:

โ„’ = โ„’๐น+ โ„’๐ต+ โ„’๐ป+ โ„’๐น๐ป (2.1.1)

where โ„’๐น is the fermion term, โ„’๐ต is the boson term, โ„’๐ป is the Higgs term and โ„’๐น๐ป is the fermion to Higgs

coupling term.

2.1.1 Gauge invariant definitions

For a start, we define some fields:

๐ต๐œ‡ is a spin 1 boson vector gauge field with ๐‘ˆ(1) Hypercharge symmetry, the covariant derivative for this

gauge field is

๐ท๐œ‡= ๐œ•๐œ‡+ ๐‘–๐‘”โ€ฒ๐ต๐œ‡ (2.1.2)

The commutator of the covariant derivative defines the field strength tensor: ๏ฟฝ๐ท๐œ‡, ๐ท๐œˆ๏ฟฝ = ๐‘–๐‘”โ€ฒ๐ต๐œ‡ฮฝ (2.1.3)

An alternative definition for ๐ต๐œ‡๐œˆ is

๐ต๐œ‡๐œˆ = ๐œ•๐œˆ๐ต๐œ‡โˆ’ ๐œ•๐œ‡๐ต๐œˆ (2.1.4)

Similarly, ๐‘Š๐‘–๐œ‡ are spin 1 boson vector gauge fields with ๐‘†๐‘ˆ(2)๐ฟ symmetry, the covariant derivative for this

fields is

๐ท๐œ‡ = ๐œ•๐œ‡โˆ’ ๐‘–๐‘”๐‘Š๐‘–,๐œ‡๐œŽ2 (2.1.5)๐‘–

๏ฟฝ๐ท๐œ‡, ๐ท๐œˆ๏ฟฝ = โˆ’๐‘–๐‘”2 ๐น๐‘Š,๐œ‡๐œˆ (2.1.6)

๐น๐‘Š๐œ‡๐œˆ = ๐น๐‘Š,๐‘–๐œ‡๐œˆ๐œŽ๐‘–, ๐น๐‘Š,๐‘–๐œ‡๐œˆ = ๐œ•๐œˆ๐‘Š๐‘–๐œ‡โˆ’ ๐œ•๐œ‡๐‘Š๐‘–๐œˆ+ ๐‘”๐œ€๐‘–๐‘—๐‘˜๐‘Š๐‘—๐œ‡๐‘Š๐‘˜๐œˆ (2.1.7)

๐ด๐‘Ž๐œ‡ are spin 1 boson vector gauge fields with ๐‘†๐‘ˆ(3)๐‘, the covariant derivative for this fields is

๐ท๐œ‡ = ๐œ•๐œ‡โˆ’ ๐‘–๐‘”๐‘†๐ด๐‘Ž,๐œ‡๐œ†2 (2.1.8)๐‘Ž

๏ฟฝ๐ท๐œ‡, ๐ท๐œˆ๏ฟฝ = โˆ’๐‘–๐‘”2 ๐น๐‘† ๐‘†,๐œ‡๐œˆ (2.1.9)

(14)

14

where ๐œŽ๐‘– are Pauliโ€™s matrices, irreducible representation of ๐‘†๐‘ˆ(2)

๐œŽ๐‘– = ๏ฟฝ๏ฟฝ0 11 0๏ฟฝ , ๏ฟฝ0 โˆ’1๐‘– 0 ๏ฟฝ , ๏ฟฝ10 โˆ’1๏ฟฝ๏ฟฝ (2.1.11)0

๐œ†๐‘Ž are Gell-Mannโ€™s matrices, irreducible representation of ๐‘†๐‘ˆ(3)

๐œ†๐‘Ž = ๏ฟฝ๏ฟฝ 0 1 0 1 0 0 0 0 0๏ฟฝ , ๏ฟฝ 0 โˆ’๐‘– 0 ๐‘– 0 0 0 0 0๏ฟฝ , ๏ฟฝ 1 0 0 0 โˆ’1 0 0 0 0๏ฟฝ , ๏ฟฝ 0 0 1 0 0 0 1 0 0๏ฟฝ , ๏ฟฝ 0 0 โˆ’๐‘– 0 0 0 ๐‘– 0 0๏ฟฝ , ๏ฟฝ0 0 00 0 1 0 1 0๏ฟฝ , ๏ฟฝ 0 0 0 0 0 โˆ’๐‘– 0 ๐‘– 0๏ฟฝ , 1 โˆš3๏ฟฝ 1 0 0 0 1 0 0 0 โˆ’2๏ฟฝ๏ฟฝ (2.1.12) These matrices have the following commutation rules:

๏ฟฝ๐œŽ2 ,๐‘– ๐œŽ2๐‘—๏ฟฝ = ๐‘–๐œ€๐‘–๐‘—๐‘˜๐œŽ2 ๐‘‡๐‘Ÿ๐‘˜ ๏ฟฝ๏ฟฝ๐œŽ2 ,๐‘– ๐œŽ2๐‘—๏ฟฝ๏ฟฝ = ๐›ฟ๐‘–๐‘— (2.1.13) ๏ฟฝ๐œ†๐‘Ž 2 , ๐œ†๐‘ 2๏ฟฝ = ๐‘–๐‘“๐‘Ž๐‘๐‘ ๐œ†๐‘ 2 ๐‘‡๐‘Ÿ๏ฟฝ๏ฟฝ ๐œ†๐‘Ž 2 , ๐œ†๐‘ 2๏ฟฝ๏ฟฝ = ๐›ฟ๐‘Ž๐‘ (2.1.14)

2.1.2 Boson Fields

โ„’๐ต = โˆ’1 4 ๐ต๐œ‡ฮฝ๐ต๐œ‡๐œˆโˆ’ 1 2 ๐‘‡๐‘Ÿ๏ฟฝ๐น๐‘Š,๐œ‡๐œˆ๐น๐‘Š๐œ‡๐œˆ๏ฟฝ โˆ’12 ๐‘‡๐‘Ÿ๏ฟฝ๐น๐‘†,๐œ‡๐œˆ๐น๐‘†๐œ‡๐œˆ๏ฟฝ (2.1.15) Fields ๐ต๐œ‡, ๐‘Š

3๐œ‡ are linear combinations of ๐ด๐œ‡ of the photon and of ๐‘๐œ‡ of the ๐‘ boson:

๏ฟฝ๐‘Š3๐œ‡ ๐ต๐œ‡๏ฟฝ = ๏ฟฝ ๐ถ๐‘œ๐‘ ๐œƒ๐‘Š ๐‘†๐‘–๐‘›๐œƒ๐‘Š โˆ’๐‘†๐‘–๐‘›๐œƒ๐‘Š ๐ถ๐‘œ๐‘ ๐œƒ๐‘Š๏ฟฝ ๏ฟฝ ๐‘ ๐œ‡ ๐ด๐œ‡๏ฟฝ (2.1.16)

๐œƒ๐‘Š is called Weinbergโ€™s angle, and ๐ด๐œ‡ and ๐‘๐œ‡ fields are obtained through a rotation of the ๐ต๐œ‡, ๐‘Š3๐œ‡ fields.

The ๐‘Š boson field is

๐‘Š๐œ‡ = 1

โˆš2๏ฟฝ๐‘Š1

๐œ‡โˆ’ ๐‘–๐‘Š

2๐œ‡๏ฟฝ (2.1.17)

The Lagrangian written in the previous form is clearly gauge-invariant.

Using the previous substitutions and with the constrain that the ๐ด๐œ‡ field is the electromagnetic field of

Q.E.D., (that is that ๐‘†๐‘ˆ(2)๐ฟร— ๐‘ˆ(1) symmetry spontaneously breaks to ๐‘ˆ(1) symmetry)

๐‘”๐‘†๐‘–๐‘›๐œƒ๐‘Š= ๐‘’ (2.1.18)

(this relation implies the unification of the electric and weak forces, as they have the same coupling constant), we obtain โ„’๐ต = โ„’ 0 ๐ต+ โ„’ ๐ผ ๐ต (2.1.19)

Using the definitions

๐‘๐œ‡๐œˆ = ๐œ•๐œˆ๐‘๐œ‡โˆ’ ๐œ•๐œ‡๐‘๐œˆ (2.1.20)

(15)

15 one obtains ๐ด๐‘–๐œ‡๐œˆ = ๐œ•๐œˆ๐ด ๐‘– ๐œ‡โˆ’ ๐œ•๐œ‡๐ด ๐‘– ๐œˆ (2.1.22) โ„’0๐ต = โˆ’14 ๐น๐œ‡ฮฝ๐น๐œ‡๐œˆโˆ’14 ๐‘๐œ‡ฮฝ๐‘๐œ‡๐œˆโˆ’12 ๐‘Š๐œ‡๐œˆ+๐‘Š๐œ‡๐œˆโˆ’14๏ฟฝ ๐ด๐‘–,๐œ‡ฮฝ๐ด๐œ‡๐œˆ๐‘– 8 ๐‘–=1 (2.1.23)

This term is the free (quadratic) part of the Lagrangian, from which we can obtain the propagators for the fields, while

โ„’๐ผ๐ต = ๐‘”๐œ€๐‘–๐‘—๐‘˜๐‘Š๐‘–,๐œ‡๐‘Š๐‘—,๐œˆ๐œ•๐œ‡๐‘Š๐‘˜๐œˆโˆ’14 ๐‘”2๐œ€๐‘–๐‘—๐‘˜๐œ€๐‘–๐‘™๐‘š๐‘Š๐‘—๐œ‡๐‘Š๐‘˜๐œˆ๐‘Š๐‘™,๐œ‡๐‘Š๐‘š,๐œˆ+ ๐‘”๐‘†๐‘“๐‘Ž๐‘๐‘๐ด๐‘Ž,๐œ‡๐ด๐‘,๐œˆ๐œ•๐œ‡๐ด๐‘๐œˆ

โˆ’1

4 ๐‘”๐‘†2๐‘“๐‘Ž๐‘๐‘๐‘“๐‘Ž๐‘‘๐‘’๐ด๐œ‡๐‘๐ด๐œˆ๐‘๐ด๐‘‘,๐œ‡๐ด๐‘’,๐œˆ (2.1.24)

where the sum over the indices is assumed, as in the rest of this work, each term is associated to a vertex with 3 or 4 vector bosons.

2.1.3 Fermion Fields

โ„’๐น = โ„’๐ฟ + โ„’๐‘„ (2.1.25) โ„’๐ฟ = ๐‘–ฮจ๏ฟฝ ๐ฟ๐›พ๐œ‡๐ท๐œ‡ฮจ๐ฟ+ ๐‘– ๏ฟฝ ฯˆ๏ฟฝ๐‘“,๐‘…๐›พ๐œ‡๐ท๐œ‡ฯˆ๐‘“,๐‘… ๐‘“=๐‘’,๐œ‡,๐œ + ฯˆ๏ฟฝ๐œˆ๐‘“,๐‘…๐›พ๐œ‡๐ท๐œ‡ฯˆ๐œˆ๐‘“,๐‘… (2.1.26) โ„’๐‘„= ๐‘–ฮจ๏ฟฝ ๐‘„,๐ฟ๐›พ๐œ‡๐ท๐œ‡ฮจ๐‘„,๐ฟ+ ๐‘– ๏ฟฝ ฯˆ๏ฟฝ๐‘„,๐‘“,๐‘…๐›พ๐œ‡๐ท๐œ‡ฯˆ๐‘„,๐‘“,๐‘… ๐‘“=๐‘ข,๐‘‘,๐‘ ,๐‘,๐‘,๐‘ก (2.1.27)

where ๐ท๐œ‡ is the covariant derivative:

๐ท๐œ‡ = ๐œ•๐œ‡+ ๐‘–๐‘”๐‘‡๐‘Ž๐‘›(๐œƒ๐‘Š)๐‘Œ๐ต๐œ‡+ ๐‘–๐‘”๐‘‡๏ฟฝ๐‘Š๐‘–,๐œ‡๐œŽ๐‘–+ ๐‘–๐‘”๐‘†๐‘‡๏ฟฝ๐‘†๐ด๐‘Ž,๐œ‡๐œ†๐‘Ž (2.1.28)

and where ๐‘‡๏ฟฝฯˆ = 0 if ฯˆ is an ๐‘†๐‘ˆ(2)๐ฟ singolet, ๐‘‡๏ฟฝฯˆ = 1/2 if ฯˆ is an ๐‘†๐‘ˆ(2)๐ฟ doublet.

Similarly ๐‘‡๏ฟฝ๐‘†ฯˆ = 0 if ฯˆ is an ๐‘†๐‘ˆ(3)๐‘ singlet, ๐‘‡๏ฟฝ๐‘†ฯˆ = 1/2 if ฯˆ is an ๐‘†๐‘ˆ(3)๐‘ triplet.

ฯˆ๐‘“ is the Diracโ€™s spinor field of a generic spinor field of some fermion.

ฯˆ๐‘“,๐‘… = ๏ฟฝ1 + ๐›พ2 ๏ฟฝ ฯˆ5 ๐‘“ (2.1.29)

Right handed fields can be simply obtained using the projector.

ฮจ๐ฟ = ๏ฟฝ ฮจ๐‘’,๐ฟ ฮจ๐œ‡,๐ฟ ฮจ๐œ,๐ฟ ๏ฟฝ ๐‘’โˆ’๐‘–๐‘”๐œƒ๏ฟฝ ๐œŽ๐šค2๐‘– ฮจ ๐‘„,๐ฟ= ๏ฟฝ ฮจ๐‘ข,๐ฟ ฮจ๐‘,๐ฟ ฮจ๐‘ก,๐ฟ ๏ฟฝ ๐‘’โˆ’๐‘–๐‘”๐œƒ๏ฟฝ ๐œŽ๐šค2๐‘– (2.1.30) ฮจ๐‘“,๐ฟ= ๏ฟฝฯˆฯˆ๐‘“,๐ฟ ๐œˆ๐‘“,๐ฟ๏ฟฝ ฮจ๐‘ข,๐ฟ= ๏ฟฝ ฯˆ๐‘ข,๐ฟ ฯˆ๐‘‘,๐ฟ๏ฟฝ ฮจ๐‘,๐ฟ = ๏ฟฝ ฯˆ๐‘,๐ฟ ฯˆ๐‘ ,๐ฟ๏ฟฝ ฮจ๐‘ก,๐ฟ= ๏ฟฝ ฯˆ๐‘ก,๐ฟ ฯˆ๐‘,๐ฟ๏ฟฝ (2.1.31) ฯˆ๐‘“,๐ฟ= ๏ฟฝ1 โˆ’ ๐›พ2 ๏ฟฝ ฯˆ5 ๐‘“ (2.1.32)

(16)

16

Left handed fields are instead grouped into doublets, belonging to the same 1/2 representation of Weak Isospin, and grouped again in vectors containing the three generations of particles (for the sake of simplicity).

Particle classification assigns them the following quantum numbers:

Particle ๐‘Œ Hypercharge ๐‘†๐‘ˆ(2)๐ฟ representation ๐‘†๐‘ˆ(3)๐‘ representation

๐‘™๐ฟ โˆ’1/2 1/2 0 ๐‘™๐‘… โˆ’1 0 0 ๐œˆ๐ฟ โˆ’1/2 1/2 0 ๐œˆ๐‘… 0 0 0 ๐‘ข๐ฟ 1/3 1/2 3 ๐‘ข๐‘… 4/3 0 3 ๐‘‘๐ฟ 1/3 1/2 3 ๐‘‘๐‘… โˆ’2/3 0 3

Tab. 2.1. Standard Model particles quantum numbers

The Lagrangian written in the precedent form is clearly gauge-invariant, making various substitutions we obtain โ„’๐น = โ„’ 0 ๐น + โ„’ ๐ผ ๐น (2.1.33) โ„’0๐น = ๐‘– ๏ฟฝ ฯˆ๏ฟฝ๐น๐›พ๐œ‡๐œ•๐œ‡ฯˆ๐น ๐น๐‘’๐‘Ÿ๐‘š๐‘–๐‘œ๐‘›๐‘– (2.1.34)

that is the free (quadratic) part, and โ„’๐ผ๐น = ๐‘ž๐นฯˆ๏ฟฝ๐น๐›พ๐œ‡ฯˆ๐น๐ด๐œ‡โˆ’ ๐‘” โˆš2๏ฟฝฯˆ๏ฟฝ๐นโˆ’๐›พ๐œ‡๏ฟฝ 1 โˆ’ ๐›พ5 2 ๏ฟฝ ฯˆ๐น+๐‘Š๐œ‡+ ฯˆ๏ฟฝ๐น+๐›พ๐œ‡๏ฟฝ 1 โˆ’ ๐›พ5 2 ๏ฟฝ ฯˆ๐นโˆ’๐‘Š๐œ‡+๏ฟฝ โˆ’ ๐‘” ๐ถ๐‘œ๐‘ (๐œƒ๐‘Š) ฯˆ๏ฟฝ๐น๐›พ ๐œ‡๏ฟฝ๏ฟฝ๐‘ก 3,๐นโˆ’ ๐‘ž๐น๐‘†๐‘–๐‘›2(๐œƒ๐‘Š)๏ฟฝ ๏ฟฝ1 โˆ’ ๐›พ2 ๏ฟฝ +5 ๏ฟฝโˆ’๐‘ž๐น๐‘†๐‘–๐‘›2(๐œƒ๐‘Š)๏ฟฝ ๏ฟฝ1 + ๐›พ2 ๏ฟฝ5 ๏ฟฝ ฯˆ๐น๐‘๐œ‡ โˆ’ ๐‘”๐‘†ฯˆ๏ฟฝ๐‘„๐œ†2 ๐›พ๐‘Ž ๐œ‡ฯˆ๐‘„๐ด๐‘Ž,๐œ‡ (2.1.35)

that is the interaction part, where sum over ๐น (all the fermions), over the couples (๐น+, ๐นโˆ’) (couple of fermions belonging to the same ๐‘†๐‘ˆ(2)๐ฟ doublet respectively with ๐‘ก3= +1/2 and ๐‘ก3= โˆ’1/2) and over the

quarks ๐‘„ is assumed.

From this term Feynman rules for the interaction vertices of fermion with gauge bosons can be obtained.

2.1.4 Higgs Field Lagrangian

โ„’๐ป = [๐ท๐œ‡ฮฆ]+๏ฟฝ๐ท

๐œ‡ฮฆ๏ฟฝ + ๐œ‡2โ€–ฮฆโ€–2โˆ’ ๐œ†โ€–ฮฆโ€–4 (2.1.36)

where the field ฮฆ is a weak isospin doublet, it has Hypercharge ๐‘Œ = +1 and a non-zero vacuum expectation value: ฮฆ๏ฟฝ = 1 โˆš2๏ฟฝ 0 ๐œ‡ โˆš๐œ†+ ๐œŒ๏ฟฝ๏ฟฝ ๐‘’ โˆ’๐‘–๐‘”๐œƒ๏ฟฝ ๐œŽ๐šค2๐‘– (2.1.37)

(17)

17

๐ท๐œ‡= ๐œ•๐œ‡+ ๐‘–๐‘”๐‘‡๐‘Ž๐‘›(๐œƒ๐‘Š)๐‘Œ๐ต๐œ‡+๐‘–๐‘”2 ๐‘Š๐‘–,๐œ‡๐œŽ๐‘– (2.1.38)

The Lagrangian written in the precedent form is once again clearly gauge-invariant. Expanding we obtain various terms: โ„’๐ป = โ„’ 0๐ป+ โ„’๐ผ๐ป (2.1.39) โ„’0๐ป =12 ๐œ•๐œ‡๐œŒ๐œ•๐œ‡๐œŒ โˆ’12(2๐œ‡2)๐œŒ2+ ๏ฟฝ12 ๐‘” ๐œ‡ โˆš๐œ†๏ฟฝ ๐‘Š๐œ‡+๐‘Š๐œ‡+ 1 2 ๏ฟฝ 1 2 ๐‘” ๐ถ๐‘œ๐‘ ๐œƒ๐‘Š ๐œ‡ โˆš๐œ†๏ฟฝ ๐‘๐œ‡๐‘๐œ‡ (2.1.40) In the free term we can identify two terms that give masses to the ๐‘Š and ๐‘ bosons.

โ„’๐ผ๐ป =12 ๐‘”2 ๐œ‡ โˆš๐œ†๐‘Š๐œ‡+๐‘Š๐œ‡๐œŒ + 1 4 ๐‘”2๐‘Š๐œ‡+๐‘Š๐œ‡๐œŒ2+ ๐‘”2 4๐ถ๐‘œ๐‘ 2(๐œƒ ๐‘Š) ๐œ‡ โˆš๐œ†๐‘๐œ‡๐‘๐œ‡๐œŒ + ๐‘”2 8๐ถ๐‘œ๐‘ 2(๐œƒ ๐‘Š) ๐‘๐œ‡๐‘ ๐œ‡๐œŒ2โˆ’ โˆš๐œ†๐œ‡๐œŒ3 โˆ’1 4 ๐œ†๐œŒ4 (2.1.41)

As usual from this term Feynman rules for the interaction vertices can be obtained.

2.1.5 Higgsโ€™s and fermionsโ€™s couplings Lagrangian

โ„’๐น๐ป = โˆ’๏ฟฝฮจ๏ฟฝ

๐ฟ,๐‘Ž๐‘€๐ฟ,๐‘Ž๐‘ฮจ๐‘…ฮฆ + ฮฆ+ฮจ๏ฟฝ๐‘…,๐‘Ž๐‘€๐ฟ,๐‘Ž๐‘+ ฮจ๐ฟ๏ฟฝ โˆ’ ๏ฟฝฮจ๏ฟฝ๐ฟ,๐‘Ž๐‘€๐œˆ,๐‘Ž๐‘ฮจ๐‘…ฮฆ๏ฟฝ + ฮฆ๏ฟฝ+ฮจ๏ฟฝ๐‘…,๐‘Ž๐‘€๐œˆ,๐‘Ž๐‘+ ฮจ๐ฟ๏ฟฝ

โˆ’ ๏ฟฝฮจ๏ฟฝ๐‘„,๐ฟ,๐‘Ž๐‘€๐‘„๐‘ข,๐‘Ž๐‘ฮจ๐‘„,๐‘…ฮฆ โˆ’ ฮฆ+ฮจ๏ฟฝ๐‘„,๐‘…,๐‘Ž๐‘€๐‘„๐‘ข,๐‘Ž๐‘+ ฮจ๐‘„,๐ฟ๏ฟฝ

โˆ’ ๏ฟฝฮจ๏ฟฝ๐‘„,๐ฟ,๐‘Ž๐‘€๐‘„๐‘‘,๐‘Ž๐‘ฮจ๐‘„,๐‘…ฮฆ๏ฟฝ โˆ’ ฮฆ๏ฟฝ+ฮจ๏ฟฝ๐‘„,๐‘…,๐‘Ž๐‘€๐‘„๐‘‘,๐‘Ž๐‘+ ฮจ๐‘„,๐ฟ๏ฟฝ (2.1.42)

where we have grouped also right handed fields in column vectors for sake of simplicity

ฮจ๐‘… = ๏ฟฝ ฯˆ๐‘’,๐ฟ ฯˆ๐œ‡,๐ฟ ฯˆ๐œ,๐ฟ ๏ฟฝ ฮจ๐‘„,๐‘… = ๏ฟฝ ฯˆ๐‘ข,๐ฟ ฯˆ๐‘,๐ฟ ฯˆ๐‘ก,๐ฟ ๏ฟฝ (2.1.43)

The field ฮฆ๏ฟฝ is defined as:

ฮฆ๏ฟฝ = โˆ’๐‘–[ฮฆ+๐œŽ

2]๐‘‡ (2.1.44)

๐‘€๐ฟ,๐‘Ž๐‘ is the mass matrix for leptons, that, if we assume that neutrinos are massless, can be diagonalized as

follows:

๏ฟฝ๐‘š0๐‘’ ๐‘š0๐œ‡ 00

0 0 ๐‘š๐œ

๏ฟฝ (2.1.45)

without changing the interaction terms with the ๐‘Š boson. This mass matrix can be diagonalized also if neutrinos are not massless, but in that case the interaction with the ๐‘Š boson changes, as indeed we will see it happen with quarks.

๐‘€๐œˆ,๐‘Ž๐‘ is the mass matrix for neutrinos, its form depends on the masses of the neutrinos, and the neutrino

mixing factors. For the rest of this work we will ignore neutrino.

Finally ๐‘€๐‘„๐‘ข,๐‘Ž๐‘ and ๐‘€๐‘„๐‘‘,๐‘Ž๐‘ are the mass matrices for quarks, and in the form in which the Lagrangian has

(18)

18

left and right handed fields, but in this way the interaction ๐‘ž๐‘žโ€ฒ๐‘Š (charged current) wonโ€™t be diagonal anymore, but will be mediated by the CKM matrix.

๐‘‰ = ๏ฟฝ๐‘‰๐‘‰๐‘ข๐‘‘๐‘๐‘‘ ๐‘‰๐‘‰๐‘ข๐‘ ๐‘๐‘  ๐‘‰๐‘‰๐‘ข๐‘๐‘๐‘

๐‘‰๐‘ก๐‘‘ ๐‘‰๐‘ก๐‘  ๐‘‰๐‘ก๐‘

๏ฟฝ (2.1.46)

Using the basis where the mass matrices are diagonal (the one commonly used), we can rewrite the Lagrangian separating the free part from the interaction part

โ„’๐น๐ป = โ„’

0๐น๐ป+ โ„’๐ผ๐น๐ป (2.1.47)

โ„’0๐น๐ป = โˆ’๐‘š๐นฯˆ๏ฟฝ๐นฯˆ๐น (2.1.48)

โ„’๐ผ๐น๐ป = โˆ’โˆš๐œ†๐œ‡ ๐‘š๐นฯˆ๏ฟฝ๐นฯˆ๐น๐œŒ (2.1.49)

Quark vertices with ๐‘Š will acquire a multiplicative factor ๐‘‰๐‘–๐‘—, moreover charged current processes may

occur also between quarks of different generations (as non diagonal ๐‘‰๐‘–๐‘— are not null). These transitions will

be called prohibited because they cause a variation of strangeness ๐‘†, or of charm ๐ถ, or of bottomness ๐ต, or of topness ๐‘‡.

NOTE: Alternatively there are other ways of describing neutrinos and of generating their masses, for example neutrinos may be described by a Majorana spinor, with only the left-handed component. The various descriptions lead to different consequences, but beyond the purpose of this work, and because of this here the simplest description has been adopted, with the use of sterile neutrinos (as right-handed neutrinos would have all null quantum numbers, and wouldnโ€™t interact either by strong interaction or by electroweak interaction).

2.2 Feynman Rules for the Standard Model

2.2.1 How to obtain Feynman Rules for the propagators

Finding the Feynman rules for propagators in a formally correct way is usually very complex, as there arenโ€™t unique expressions, but they are gauge-dependent. Propagators depend on how we quantize the field, and this is also a crucial point to have a theory that is renormalizable at every renormalization order. The most correct way is the use of auxiliary fields called Ghost, with their propagators and interaction vertices. Those vertices wonโ€™t give any contribution at tree level, as ghosts are not physical particles, therefore this

procedure is not relevant for the purpose of this work. We will only list, in the next section, Feynman rules for propagators.

2.2.2 Feynman Rules for the propagators, Standard Model

Higgs Boson ๐ป

Higgs boson propagator

๐‘– ๐‘˜2โˆ’ ๐‘š ๐ป 2 Photon ๐›พ Photon propagator โˆ’๐‘–๐‘”๐‘˜๐›ผ๐›ฝ2 ๐‘Š Boson ๐‘Š boson propagator ๐‘–โˆ’๐‘”๐›ผ๐›ฝ+ ๐‘˜๐›ผ๐‘˜๐›ฝ ๐‘€๐‘Š2 ๐‘˜2โˆ’ ๐‘€ ๐‘Š2

(19)

19 Fermion ๐น Fermion propagator ๐‘–๐›พ๐œ‡๐‘๐œ‡+ ๐‘š๐น ๐‘2โˆ’ ๐‘š ๐น 2 Gluon ๐‘” Gluon Propagator โˆ’๐‘–๐‘”๐‘˜๐›ผ๐›ฝ2 ๐›ฟ๐‘Ž๐‘ ๐‘ Boson ๐‘ boson propagator ๐‘–โˆ’๐‘”๐›ผ๐›ฝ+ ๐‘˜๐›ผ๐‘˜๐›ฝ ๐‘€๐‘2 ๐‘˜2โˆ’ ๐‘€ ๐‘2 Tab 2.2 Feynman rules for propagators, Standard Model

2.2.3 How to obtain Feynman Rules for vertices

The action, at first order, is

๐‘† = โˆ’๐‘– ๏ฟฝ ๐‘‘4๐‘ฅโ„‹

๐‘–๐‘›๐‘ก = โˆ’๐‘– ๏ฟฝ ๐‘‘4๐‘ฅ(โˆ’โ„’๐ผ) = ๐‘– ๏ฟฝ ๐‘‘4๐‘ฅ(โ„’๐ผ) (2.2.1)

We can find Feynman rules for the vertex by making functional derivatives in relation to the fields of this term. For example

โ„’๐ผ๐น = ๐‘ž๐นฯˆ๏ฟฝ๐น๐›พ๐œ‡ฯˆ๐น๐ด๐œ‡ (2.2.2) ๐‘‰(๐‘1, โ€ฆ , ๐‘๐‘›) =๐›ฟฯˆ๏ฟฝ๐›ฟ ๐น ๐›ฟ ๐›ฟฯˆ๐น ๐›ฟ ๐›ฟ๐ด๐œ‡๐‘† = ๐‘– ๐›ฟ ๐›ฟฯˆ๏ฟฝ๐น ๐›ฟ ๐›ฟฯˆ๐น ๐›ฟ ๐›ฟ๐ด๐œ‡๏ฟฝ ๐‘‘ 4๐‘ฅ๐‘ž ๐นฯˆ๏ฟฝ๐น๐›พ๐œ‡ฯˆ๐น๐ด๐œ‡ = ๐‘–๐‘ž๐น๐›พ๐œ‡ (2.2.3)

2.2.4 Feynman Rules for vertices, Standard Model

Here follows a list of the rules, but only of those that are necessary to this work. ๐น๐น๐›พ Vertex Fermion-Fermion-Photon Vertex ๐‘–๐‘ž๐›พ๐œ‡ ๐‘„๐‘„๐‘” Vertex Quark-Quark-Gluon Vertex ๐‘–๐‘”๐‘†๐œ†2 ๐›พ๐‘Ž ๐œ‡ ๐‘”๐‘”๐‘” Vertex 3 Gluons Vertex ๐‘”๐‘†๐‘“๐‘Ž๐‘๐‘[๐‘”๐œ‡๐œˆ(๐‘˜ โˆ’ ๐‘)๐œŒ+ ๐‘”๐œˆ๐œŒ(๐‘˜ โˆ’ ๐‘)๐œ‡ + ๐‘”๐œŒ๐œ‡(๐‘˜ โˆ’ ๐‘)๐œˆ]

Ingoing momenta, gluon indices (๐œ‡, ๐‘Ž); (๐œˆ, ๐‘); (๐œŒ, ๐‘)

Vertice ๐‘”๐‘”๐‘”๐‘” 4 Gluons Vertex โˆ’๐‘–๐‘”๐‘†2[๐‘“๐‘Ž๐‘๐‘’๐‘“๐‘๐‘‘๐‘’(๐‘”๐œ‡๐œŒ๐‘”๐œˆ๐œŽโˆ’ ๐‘”๐œ‡๐œŽ๐‘”๐œˆ๐œŒ) + ๐‘“๐‘Ž๐‘๐‘’๐‘“๐‘๐‘‘๐‘’(๐‘”๐œ‡๐œˆ๐‘”๐œŒ๐œŽโˆ’ ๐‘”๐œ‡๐œŽ๐‘”๐œˆ๐œŒ) + ๐‘“๐‘Ž๐‘‘๐‘’๐‘“๐‘๐‘๐‘’(๐‘”๐œ‡๐œˆ๐‘”๐œŒ๐œŽโˆ’ ๐‘”๐œ‡๐œŒ๐‘”๐œˆ๐œŽ)] Gluon indices (๐œ‡, ๐‘Ž); (๐œˆ, ๐‘); (๐œŒ, ๐‘); (๐œŽ, ๐‘‘)

(20)

20

2.3 Running Coupling Constant

When one renormalizes the theory, one finds that coupling constants values are modified if compared to the bare ones appearing in the Lagrangian, these variations are due to diagrams such as:

Fig. 2.1. Feynman Diagrams contributing to the coupling constant renormalization

While these variations are negligible at tree level in electroweak interactions, in QCD it is not possible to neglect these corrections, in fact ๐›ผ๐‘† varies of orders of magnitude depending on the energy of the process:

at low energy, ๐›ผ๐‘† is very large and so partons are in the โ€œinfrared slaveryโ€, that is they are confined;

instead, at high energy, partons are in the โ€œultraviolet freedomโ€, ๐›ผ๐‘† is very small and particles are

nearly-free. In other words, at low momenta subsequent orders of renormalization give a large contribution, while at high momenta their contributions are gradually suppressed.

The running coupling constant one loop equation is ๐‘‘

๐‘‘ ๐ฟ๐‘œ๐‘” ๏ฟฝ๐‘„๐‘€๏ฟฝ๐‘”๐‘  = ๐›ฝ(๐‘”๐‘ ) (2.3.1) where ๐›ฝ is, in the case of ๐‘†๐‘ˆ(๐‘๐‘) symmetry with ๐‘๐‘ colors and ๐‘›๐‘“ flavors

๐›ฝ(๐‘”) = โˆ’(4๐œ‹)๐‘”๐‘ 32๏ฟฝ11 3 ๐‘๐‘โˆ’ 2 3 ๐‘›๐‘“๏ฟฝ = โˆ’ ๐‘0๐‘”๐‘ 3 (4๐œ‹)2 (2.3.2)

Then in the case here examined

๐›ฝ(๐‘”) = โˆ’(4๐œ‹)7๐‘”๐‘ 32 (2.3.3) and one obtains

๐›ผ๐‘ (๐‘„) = ๐›ผ๐‘  1 + 7๐›ผ2๐œ‹ ๐ฟ๐‘œ๐‘” ๏ฟฝ๐‘  ๐‘€๏ฟฝ๐‘„ = 1 1 ๐›ผ๐‘ + 72๐œ‹ ๐ฟ๐‘œ๐‘” ๏ฟฝ ๐‘„ ๐‘€๏ฟฝ (2.3.4)

(21)

21

2.4 Two body processes general Kinematics

2.4.1 Degrees of freedom

In a two body process, initial state is uniquely determined by the two four-momenta ๐‘ƒ1๐œ‡, ๐‘ƒ2๐œ‡, that is by 8

quantities.

These 8 quantities are constrained by the on-shell condition

๐‘ƒ1๐œ‡๐‘ƒ1๐œ‡= ๐‘š12, ๐‘ƒ2๐œ‡๐‘ƒ2๐œ‡= ๐‘š22 (2.4.1)

therefore only 6 quantities are independent. Similarly, the final state is completely determined by 6 quantities.

Because of four-momenta conservation, these 6 quantities are related to the initial ones by a set of 4 equations, therefore the final state has only 2 degrees of freedom, that are the ๐œƒ and ๐œ‘ angles in relation to the direction of the center of mass, that we will call ๐‘๐‘œ๐‘š from now on.

Of these 6 quantities, one may find out that:

4 quantities are the four momenta of the center of mass, the other 2 ones are a direction in space. Going back to the final state, as stated above, it has only 2 degrees of freedom, and then the cross section may be written in differential form in this way:

๐‘‘๐œŽ = ๐‘‘๐œŽ

๐‘‘๐ถ๐‘œ๐‘ ๐œƒ๐‘‘๐œ‘(๐ธ๐‘๐‘‘๐‘š, ๐œƒ, ๐œ‘)๐‘‘๐ถ๐‘œ๐‘ ๐œƒ๐‘‘๐œ‘ (2.4.2)

In the center of mass frame, all processes have azimuthal symmetry, therefore we can remove the banal dependence on ๐œ‘ by integrating the above equation, obtaining as a result a multiplicative 2๐œ‹ factor.

2.4.2 Mandelstam variables

When working on two body processes it is useful to use Mandelstam variables, that are 3 variables that completely specify initial and final state in the center of mass frame. They are defined as follows:

Fig. 2.2. Two body process

๐‘  = (๐‘ + ๐‘โ€ฒ)๐œ‡(๐‘ + ๐‘โ€ฒ) ๐œ‡= (๐‘˜ + ๐‘˜โ€ฒ)๐œ‡(๐‘˜ + ๐‘˜โ€ฒ)๐œ‡ (2.4.3) ๐‘ก = (๐‘˜ โˆ’ ๐‘)๐œ‡(๐‘˜ โˆ’ ๐‘) ๐œ‡= (๐‘โ€ฒโˆ’ ๐‘˜โ€ฒ)๐œ‡(๐‘โ€ฒโˆ’ ๐‘˜โ€ฒ)๐œ‡ (2.4.4) ๐‘ข = (๐‘˜โ€ฒโˆ’ ๐‘)๐œ‡(๐‘โ€ฒโˆ’ ๐‘) ๐œ‡= (๐‘โ€ฒโˆ’ ๐‘˜)๐œ‡(๐‘โ€ฒโˆ’ ๐‘˜)๐œ‡ (2.4.5)

(22)

22

The only variables on which the cross section depends are ๐ธ๐‘๐‘‘๐‘š and ๐œƒ, that are 2, consequently there must

be some relation between these 3 variables. The relation is

๐‘  + ๐‘ก + ๐‘ข = ๏ฟฝ ๐‘š๐‘–2 4 ๐‘–=1

(2.4.6)

When ๐‘š2โ‰ช ๐‘  one can use the approximated relation

๐‘  + ๐‘ก + ๐‘ข = 0 (2.4.7)

In this approximation the relations between Mandelstam variables and ๐ธ๐‘๐‘‘๐‘š and ๐œƒ variables are:

Fig. 2.3. Momenta in a two body process

๐‘  = (๐‘ + ๐‘โ€ฒ)๐œ‡(๐‘ + ๐‘โ€ฒ) ๐œ‡= 4๐ธ๐‘๐‘‘๐‘š2 (2.4.8) ๐‘ก = (๐‘˜ โˆ’ ๐‘)๐œ‡(๐‘˜ โˆ’ ๐‘) ๐œ‡= โˆ’4๐ธ๐‘๐‘‘๐‘š2 ๏ฟฝ1 โˆ’ ๐ถ๐‘œ๐‘ ๐œƒ2 ๏ฟฝ = โˆ’๐‘  ๏ฟฝ1 โˆ’ ๐ถ๐‘œ๐‘ ๐œƒ2 ๏ฟฝ (2.4.9) ๐‘ข = (๐‘˜โ€ฒโˆ’ ๐‘)๐œ‡(๐‘โ€ฒโˆ’ ๐‘) ๐œ‡= โˆ’4๐ธ๐‘๐‘‘๐‘š2 ๏ฟฝ1 + ๐ถ๐‘œ๐‘ ๐œƒ2 ๏ฟฝ = โˆ’๐‘  ๏ฟฝ1 + ๐ถ๐‘œ๐‘ ๐œƒ2 ๏ฟฝ (2.4.10) As ๐‘‘๐‘ก =๐‘ 2 ๐‘‘๐ถ๐‘œ๐‘ ๐œƒ (2.4.11) we can write the differential cross section in the form

๐‘‘๐œŽ =๐‘‘๐ถ๐‘œ๐‘ ๐œƒ๐‘‘๐œ‘๐‘‘๐œŽ (๐ธ๐‘๐‘‘๐‘š, ๐œƒ)๐‘‘๐ถ๐‘œ๐‘ ๐œƒ๐‘‘๐‘ก ๐‘‘๐‘ก๐‘‘๐œ‘ โ†’ ๐‘‘๐œŽ =๐‘‘๐œŽ๐‘‘๐‘ก(๐‘ , ๐‘ก)๐‘‘๐‘ก (2.4.12) where ๐‘‘๐œŽ ๐‘‘๐‘ก(๐‘ , ๐‘ก) = ๐‘‘๐œŽ ๐‘‘๐ถ๐‘œ๐‘ ๐œƒ๐‘‘๐œ‘(๐ธ๐‘๐‘‘๐‘š(๐‘ ), ๐œƒ(๐‘ , ๐‘ก)) ๐‘  2 2๐œ‹ = ๐œ‹๐‘  ๐‘‘๐œŽ ๐‘‘๐ถ๐‘œ๐‘ ๐œƒ๐‘‘๐œ‘(๐ธ๐‘๐‘‘๐‘š(๐‘ ), ๐œƒ(๐‘ , ๐‘ก)) (2.4.13) All the cross sections will be written in this form, that is the most used in literature. Total cross section will be

๐œŽ(๐‘ ) = ๏ฟฝ๐‘ก๐‘š๐‘Ž๐‘ฅ๐‘‘๐‘ก๐‘‘๐œŽ๐‘‘๐‘ก(๐‘ , ๐‘ก)

๐‘ก๐‘š๐‘–๐‘›

(23)

23

2.4.3 Channels for the processes

A two body process usually takes place through one of the following 3:

๐‘  channel: incident particles annihilate at a point ๐‘ฅ, a virtual boson propagates till a point ๐‘ฆ where the two final particles are created

Fig. 2.4. Feynman diagram of an ๐‘  channel process

This channel contributes to the cross section with a term proportional to

๐œŽ๐‘  โˆ๐‘ก 2+ ๐‘ข2

๐‘ 2 (2.4.15)

๐‘ก and ๐‘ข channels: the two particles exchange a virtual boson, and scatter

Fig. 2.5. Feynman diagrams ๐‘ก and ๐‘ข channel processes

These channels contribute to the cross section with terms proportional, respectively, to

๐œŽ๐‘ก โˆ๐‘ข 2+ ๐‘ 2 ๐‘ก2 (2.4.16) ๐œŽ๐‘ขโˆ๐‘  2+ ๐‘ก2 ๐‘ข2 (2.4.17)

Every elementary process may occur using some, or all, these channels, depending on the particles involved.

For example ๐‘ž๐‘ž๏ฟฝ โ†’ ๐‘žโ€ฒ๐‘ž๏ฟฝโ€ฒ may occur using only ๐‘  channel, because final particles are different from the initial ones and because of this they have to annihilate.

Instead ๐‘ž๐‘žโ€ฒ โ†’ ๐‘ž๐‘žโ€ฒ may use only ๐‘ก channel, it cannot use ๐‘  channel because two different quarks cannot

(24)

24

2.5 Cross section calculation of elementary processes between partons

2.5.1 ๐’ˆ๐’ˆ โ†’ ๐’ˆ๐’ˆ

Feynman diagrams for this process are

Fig. 2.6. Feynmann diagrams for the Gluon Gluon to Gluon Gluon process

๐‘‘๐œŽ ๐‘‘๐‘ก(๐‘”๐‘” โ†’ ๐‘”๐‘”) = 9๐œ‹๐›ผ๐‘ 2 2๐‘ 2 ๏ฟฝ3 โˆ’ ๐‘ก๐‘ข ๐‘ 2โˆ’ ๐‘ข๐‘  ๐‘ก2 โˆ’ ๐‘ ๐‘ก ๐‘ข2๏ฟฝ (2.5.1)

This result must be divided by 2 because of the presence of identical particles in the final state.

*NOTE: while calculating, one must consider only the physical polarizations of gluons

2.5.2 ๐’ˆ๐’ˆ โ†’ ๐’’๐’’๏ฟฝ

Feynman diagrams for this process are*

Fig. 2.7. Feynman diagrams for the Gluon Gluon to Quark Anti-Quark process

๐‘‘๐œŽ ๐‘‘๐‘ก(๐‘”๐‘” โ†’ ๐‘ž๐‘ž๏ฟฝ) = ๐œ‹๐›ผ๐‘ 2 6๐‘ 2๏ฟฝ ๐‘ข ๐‘ก + ๐‘ก ๐‘ข โˆ’ 9 4 ๐‘ก2+ ๐‘ข2 ๐‘ 2 ๏ฟฝ (2.5.2)

*NOTE: while calculating, one must consider only the physical polarizations of gluons, ad adding the ๐‘”โ„Ž๐‘œ๐‘ ๐‘ก โˆ’ ๐‘Ž๐‘›๐‘ก๐‘–๐‘”๐‘œ๐‘ ๐‘ก โ†’ ๐‘ž๐‘ž๏ฟฝ diagram

2.5.3 ๐’’๐’’๏ฟฝ

โ†’

๐’ˆ๐’ˆ

The matrix element is the same as the one of the previous process, one must average on the quark colors instead of the gluon colors, and this contributes with a (8/3)2 factor

๐‘‘๐œŽ ๐‘‘๐‘ก(๐‘ž๐‘ž๏ฟฝ โ†’ ๐‘”๐‘”) = 32๐œ‹๐›ผ๐‘ 2 27๐‘ 2 ๏ฟฝ ๐‘ข ๐‘ก + ๐‘ก ๐‘ข โˆ’ 9 4 ๐‘ก2+ ๐‘ข2 ๐‘ 2 ๏ฟฝ (2.5.3)

(25)

25

2.5.4 ๐’ˆ๐’’ โ†’ ๐’ˆ๐’’

It can be obtained by crossing from ๐‘”๐‘” โ†’ ๐‘ž๐‘ž๏ฟฝ, that is exchanging ๐‘  with ๐‘ก, and multiplying by an 8/3 factor because of the average on the initial states

๐‘‘๐œŽ ๐‘‘๐‘ก(๐‘”๐‘ž โ†’ ๐‘”๐‘ž) = 4๐œ‹๐›ผ๐‘ 2 9๐‘ 2 ๏ฟฝโˆ’ ๐‘ข ๐‘  + ๐‘  ๐‘ข + 9 4 ๐‘ 2+ ๐‘ข2 ๐‘ก2 ๏ฟฝ (2.5.4) NOTE: crossing must be done using the cross section without the 1 2๏ฟฝ factor for identical particles.

2.5.5 ๐’’๐’’๏ฟฝ โ†’ ๐’’๐’’๏ฟฝ

Feynman diagrams for this process are

Fig. 2.8. Feynman diagrams for the Quark Anti-Quark to Quark Anti-Quark (of the same flavour) process

๐‘‘๐œŽ ๐‘‘๐‘ก(๐‘ž๐‘ž๏ฟฝ โ†’ ๐‘ž๐‘ž๏ฟฝ) = 4๐œ‹๐›ผ๐‘ 2 9๐‘ 2 ๏ฟฝ ๐‘ข2+ ๐‘ 2 ๐‘ก2 + ๐‘ก2+ ๐‘ข2 ๐‘ 2 โˆ’ 2 3 ๐‘ข2 ๐‘ ๐‘ก๏ฟฝ (2.5.5)

2.5.6 ๐’’๐’’ โ†’ ๐’’๐’’

It can be obtained by crossing from the previous process, that is exchanging ๐‘  with ๐‘ข ๐‘‘๐œŽ ๐‘‘๐‘ก(๐‘ž๐‘ž โ†’ ๐‘ž๐‘ž) = 4๐œ‹๐›ผ๐‘ 2 9๐‘ 2 ๏ฟฝ ๐‘ 2+ ๐‘ข2 ๐‘ก2 + ๐‘ก2+ ๐‘ 2 ๐‘ข2 โˆ’ 2 3 ๐‘ 2 ๐‘ข๐‘ก๏ฟฝ (2.5.6)

This result must be divided by 2 because of the presence of identical particles in the final state.

2.5.7 ๐’’๐’’๏ฟฝ โ†’ ๐’’โ€ฒ๐’’๏ฟฝโ€ฒ

Feynman diagrams for this process are

Fig. 2.9. Feynman diagrams for the Quark Anti-Quark to Quark Anti-Quark (of different flavour) process

๐‘‘๐œŽ ๐‘‘๐‘ก(๐‘ž๐‘ž๏ฟฝ โ†’ ๐‘žโ€ฒ๐‘ž๏ฟฝโ€ฒ) = 4๐œ‹๐›ผ๐‘ 2 9๐‘ 2 ๏ฟฝ ๐‘ก2+ ๐‘ข2 ๐‘ 2 ๏ฟฝ (2.5.7)

2.5.8 ๐’’๐’’โ€ฒ โ†’ ๐’’๐’’โ€ฒ

It can be obtained by crossing from the previous process, that is exchanging ๐‘  with ๐‘ก ๐‘‘๐œŽ ๐‘‘๐‘ก(๐‘ž๐‘žโ€ฒ โ†’ ๐‘ž๐‘žโ€ฒ) = 4๐œ‹๐›ผ๐‘ 2 9๐‘ 2 ๏ฟฝ ๐‘ 2+ ๐‘ข2 ๐‘ก2 ๏ฟฝ (2.5.8)

(26)

26

2.6 Deep Inelastic Scattering

2.6.1 Useful variables

So far, only processes between elementary particles have been considered. Before analyzing proton-proton processes, it is necessary to know how the first ones (partons) are related to the second ones (protons). To do this, one may probe protons with deep inelastic scattering, that is scattering of high energy light particles.

In these processes, occurring at high energies, one may assume that only one quark interacts, exchanging a virtual photon.

Fig. 2.10. Deep Inelastic Scattering ๐‘’๐‘ โ†’ ๐‘’๐‘‹

The cross section for this process is ๐‘‘๐œŽ ๐‘‘๐‘ก = 2๐œ‹๐‘„๐‘–2๐›ผ2 ๐‘ 2 ๏ฟฝ ๐‘ 2+ ๐‘ข2 ๐‘ก2 ๏ฟฝ (2.6.1)

Letโ€™s assume that the quark carries a fraction ๐‘ฅ of the protonโ€™s momenta, then, calling ๐‘ the quarkโ€™s momenta and ๐‘ƒ the protonโ€™s momenta, ๐‘ = ๐‘ฅ๐‘ƒ and

๐‘  = (๐‘ + ๐‘˜)2 = 2๐‘๐‘˜ = 2๐‘ฅ๐‘ƒ๐‘˜ = ๐‘ฅ๐‘ โ€ฒ (2.6.2)

Letโ€™s call ๐‘ž the exchanged momenta; as the scattered quark is massless in our approximations, 0 = (๐‘ + ๐‘ž)2= 2๐‘ฅ๐‘ƒ๐‘ž + ๐‘ž2= 2๐‘ฅ๐‘€๐œˆ โˆ’ ๐‘„2 (2.6.3)

where new variables have been defined

๐‘„2 = โˆ’๐‘ž2= โˆ’๐‘ก (2.6.4)

๐œˆ =๐‘ƒ๐‘ž๐‘€ =2๐‘€๐‘ฅ (2.6.5)๐‘„2 that are useful variables as they can be experimentally observed.

Moreover, one must take into account that the probability that the quark carries a fraction ๐‘ฅ of the protonโ€™s momenta will be given by a distribution function depending on ๐‘„2 and ๐œˆ, that is called ๐น

1(๐‘„2, ๐œˆ),

and that the probability that a parton has a fraction of the protonโ€™s momenta between ๐‘ฅ =2๐‘€๐œˆ๐‘„2 and ๐‘ฅ + ๐‘‘๐‘ฅ will be equal to ๐น1(๐‘„2, ๐œˆ)๐‘‘๐‘ฅ.

(27)

27 ๐‘‘๐œŽ ๐‘‘๐‘ฅ๐‘‘๐‘„2 = 2๐œ‹๐‘„๐‘–2๐›ผ2 ๐‘„4 ๏ฟฝ1 + ๏ฟฝ1 โˆ’ ๐‘„2 ๐‘ฅ๐‘ ๏ฟฝ 2 ๏ฟฝ ๐น1(๐‘„2, ๐œˆ) (2.6.6)

2.6.2 Bjorkenโ€™s Scaling

Bjorkenโ€™s scaling hypothesis is that in the limit

๏ฟฝ๐‘„ โ†’ โˆž๐œˆ โ†’ โˆž

๐‘ฅ < โˆž (2.6.7) ๐น1(๐‘„2, ๐œˆ) โ†’ ๐‘“(๐‘ฅ) (2.6.8)

In reality, this isnโ€™t true experimentally, more precisely

๐น1(๐‘„2, ๐œˆ) โ†’ ๐‘“(๐‘ฅ, ๐‘„) (2.6.9)

where the ๐‘„ is very weak.

The meaning of Bjorkenโ€™s scaling is that at high energies strong interactions between quarks are negligible, that is quarks are free. The running coupling constant goes to zero at high energies, but only logaritmically, because of this the ๐‘„ dependence vanishes very slowly.

2.7 Parton Distribution Functions

Inside protons, gluons and quarks may be found, with some probability distribution that depends on the fraction of the total momenta of the proton carried by the parton.

These functions, called PDF, Parton Distribution Functions, can be obtained from Deep Inelastic Scattering experimental results of neutrinos and electros on protons.

Fig. 2.11. Plot of the functions ๐‘ฅ๐‘“(๐‘ฅ) used in MonteCarlo simulations, black line for Gluons, green/orange lines for ๐‘ข๐‘ข๏ฟฝ, red/blue lines for ๐‘‘๐‘‘ฬ…, purple line for the couples ๐‘ ๐‘ ฬ… and brown for the couples ๐‘๐‘ฬ…. Distributions at ๐‘„ = 2๐บ๐‘’๐‘‰

(28)

28

As one may see from the plot, there is a quark, antiquark and gluons mix. Proton is a bound state ๐‘ข๐‘ข๐‘‘, but it contains also other quarks and antiquarks. Anyway there must be an excess of two ๐‘ข quarks and one ๐‘‘ quark, so that the following relations must hold

๏ฟฝ ๐‘‘๐‘ฅ[๐‘“๐‘ข(๐‘ฅ) โˆ’ ๐‘“๐‘ข๏ฟฝ(๐‘ฅ)] 1

0 = 2 ๏ฟฝ ๐‘‘๐‘ฅ[๐‘“๐‘‘(๐‘ฅ) โˆ’ ๐‘“๐‘‘๏ฟฝ(๐‘ฅ)] 1

0 = 1 (2.7.1)

Instead, as for the other quarks and antiquarks, the following relation applies ๐‘“๐‘ž(๐‘ฅ) = ๐‘“๐‘ž๏ฟฝ(๐‘ฅ) (2.7.2)

NOTE: in the case ๐‘ž = ๐‘  there might be a small asymmetry that violates this relation.

Finally, the sum of the momenta of the various constituents must be equal to the protonโ€™s momenta, therefore ๏ฟฝ ๐‘‘๐‘ฅ ๐‘ฅ ๏ฟฝ๐‘“๐‘”(๐‘ฅ) + ๏ฟฝ ๏ฟฝ๐‘“๐‘ž(๐‘ฅ) + ๐‘“๐‘ž๏ฟฝ(๐‘ฅ)๏ฟฝ ๐‘ž ๏ฟฝ 1 0 = 1 (2.7.3)

Experimentally one may observe that proton is dominated by gluons

๏ฟฝ ๐‘‘๐‘ฅ ๐‘“๐‘”(๐‘ฅ) 1

0 > 30 (2.7.4)

In the appendix (section 7.2) PDF plots obtained from H1, ZEUS HERA I and II dataโ€™s have been reported.

2.8 Proton-Proton processes

Now we want to compute the cross section for a proton-proton process, like the one in the picture:

Fig. 2.12. Hard ๐‘๐‘ โ†’ ๐ฝ๐ฝ scattering

The contribution to the cross section of the elementary process 1 + 2 โ†’ 3 + 4 for what has been said so far is

๐‘“1(๐‘ฅ1)๐‘“2(๐‘ฅ2)๐‘‘๐œŽ๐‘‘๐‘ก(1 + 2 โ†’ 3 + 4) (2.8.1)

Particles 1 and 2 may be one of all the protonโ€™s constituents, therefore to calculate the total cross section it is necessary to sum this contribution over all the possible initial partons

(29)

29 ๐‘‘๐œŽ ๐‘‘๐‘ฅ1๐‘‘๐‘ฅ2๐‘‘๐‘ก(๐‘๐‘ โ†’ 3 + 4) = ๏ฟฝ ๐‘“1(๐‘ฅ1)๐‘“2(๐‘ฅ2) ๐‘‘๐œŽ ๐‘‘๐‘ก(1 + 2 โ†’ 3 + 4) 1,2 (2.8.2)

The total inclusive (sum over possible 3 and 4 particles) cross section will be then

๐œŽ = ๏ฟฝ ๏ฟฝ ๐‘‘๐‘ฅ1๐‘‘๐‘ฅ2๐‘‘๐‘ก๐‘“1(๐‘ฅ1)๐‘“2(๐‘ฅ2)๐‘‘๐œŽ๐‘‘๐‘ก(1 + 2 โ†’ 3 + 4) ๐ท

1,2,3,4

(2.8.3)

(30)

30

3 Gravity Interactions

3.1 Einsteinโ€™s Equation

Einsteinโ€™s equation of General relativity is

๐‘…๐œ‡๐œˆ โˆ’12 ๐‘…๐‘”๐œ‡๐œˆ =8๐œ‹๐บ๐‘4 ๐‘‡๐œ‡๐œˆ (3.1.1)

Adding the Extra-Dimensions then the equation will have ๐ท = 4 + ๐›ฟ dimensions:

๐‘…๐‘Ž๐‘โˆ’12 ๐‘…๐‘”๐‘Ž๐‘= โˆ’(2๐œ‹) ๐›ฟ

๐‘€๐ท2+๐›ฟ๐‘‡๐‘Ž๐‘ (3.1.2)

In general the presence of the four dimensional mainfold, of the world where we live, will produce a non-flat ๐ท-dimensional metric. Anyway at distances larger than ๐‘€1

๐ท it is reasonable that metric will be essentially

flat. For this reason while studying the emission of soft gravitons with a transverse momenta much smaller than ๐‘€๐ท, and therefore distances much larger than ๐‘€1

๐ท, one may expand the metric about the

Minkowskian one

๐‘”๐‘Ž๐‘ = ๐œ‚๐‘Ž๐‘+2(2๐œ‹) ๐›ฟ 2โ„

๐‘€๐ท1+๐›ฟ 2โ„ โ„Ž๐‘Ž๐‘ (3.1.3)

Substituting and linearizing the equation, that is retaining only the linear terms of โ„Ž๐‘Ž๐‘, one obtains

๐œ•2โ„Ž

๐‘Ž๐‘โˆ’ ๐œ•๐‘Ž๐œ•๐‘โ„Ž๐‘๐‘โˆ’ ๐œ•๐‘๐œ•๐‘โ„Ž๐‘๐‘Ž+ ๐œ•๐‘Ž๐œ•๐‘โ„Ž๐‘๐‘โˆ’ ๐œ‚๐‘Ž๐‘๐œ•2โ„Ž๐‘๐‘+ ๐œ‚๐‘Ž๐‘๐œ•๐‘๐œ•๐‘‘โ„Ž๐‘๐‘‘= โˆ’(2๐œ‹) ๐›ฟ 2โ„

๐‘€๐ท1+๐›ฟ 2โ„ ๐‘‡๐‘Ž๐‘ (3.1.4)

3.1.1 Kaluza-Klein modes

One can assume now, for simplicity, that the extra dimensions have the topology of a torus, and cyclical bounds are imposed on this coordinates

๐‘ฅ๐‘Ž = ๏ฟฝ๐‘ฅ๐œ‡, ๐‘ฆ1โ€ฆ ๐‘ฆ๐›ฟ๏ฟฝ (3.1.5)

๐‘ฆ๐‘– โ†’ ๐‘ฆ๐‘–+ 2๐œ‹๐‘… (3.1.6)

Expanding โ„Ž๐‘Ž๐‘ in Fourier series

โ„Ž๐‘Ž๐‘(๐‘ฅ๐‘Ž) =(2๐œ‹๐‘…)1 ๐›ฟ 2โ„ ๏ฟฝ โ„Ž๐‘Ž๐‘๐‘› (๐‘ฅ๐œ‡)๐‘’๐‘– ๐‘›๐‘—๐‘ฆ๐‘— ๐‘… โˆž ๐‘›๐‘–=โˆ’โˆž (3.1.7)

โ„Ž๐‘Ž๐‘๐‘› (๐‘ฅ๐œ‡) are called Kaluza-Klein modes, they live in the usual space-time.

As ordinary matter is confined to the four dimensional mainfold of our universe, it is possible to write ๐‘‡๐‘Ž๐‘(๐‘ฅ๐‘Ž) = ๐œ‚๐‘Ž๐œ‡๐œ‚๐‘๐œˆ๐‘‡๐œ‡๐œˆ(๐‘ฅ๐œ‡)๐›ฟ(๐‘ฆ) (3.1.8)

(31)

31

The singularity of the delta function and the fact that our universe is confined to a four dimensional

mainfold are only approximations, as both of them must have a finite thickness. Anyway this approximation is important only at short distances, while it is negligible at large distances, as happens in our case. For our goals, we only need to know that ๐พ๐พ modes of ๐‘‡๐‘Ž๐‘ are independent of ๐‘› for small ๐‘›, that is ๐‘› โ‰ช ๐‘€๐ท๐‘….

This means that all ๐พ๐พ modes have the same coupling to the ordinary matter, and allows us make accurate predictions on the cross sections.

3.1.2 Physical Fields and Gauge-dependent Fields

The following is from reference [3]. Substituting the expression for the Fourier transform of โ„Ž๐‘Ž๐‘ in

Einsteinโ€™s equation, and integrating over the coordinates of the extra dimensions, one obtains the following equations: (๐œ•2+ ๐‘›๏ฟฝ2)โ„Ž ๐œ‡ฮฝ(๐‘›)โˆ’ ๏ฟฝ๐œ•๐œ‡๐œ•๐œ†โ„Ž๐œˆ(๐‘›)๐œ†+ ๐‘–๐‘›๏ฟฝ๐‘—๐œ•๐œ‡โ„Ž(๐‘›)๐‘—๐œˆ + ๐œ•๐œˆ๐œ•๐œ†โ„Ž๐œ‡(๐‘›)๐œ†+ ๐‘–๐‘›๏ฟฝ๐‘—๐œ•๐œˆโ„Ž๐œ‡(๐‘›)๐‘—๏ฟฝ + ๏ฟฝ๐œ•๐œ‡๐œ•๐œˆโˆ’ ๐œ‚๐œ‡๐œˆ(๐œ•2+ ๐‘›๏ฟฝ2)๏ฟฝ ๏ฟฝโ„Ž๐œ†(๐‘›)๐œ†+ โ„Ž๐‘—(๐‘›)๐‘—๏ฟฝ + ๐œ‚๐œ‡๐œˆ๏ฟฝ๐œ•๐œ†๐œ•๐œŽโ„Ž๐œ†๐œŽ(๐‘›)+ 2๐‘–๐‘›๏ฟฝ๐‘—๐œ•๐œ†โ„Ž๐œ†(๐‘›)๐‘—โˆ’ ๐‘›๏ฟฝ๐‘—๐‘›๏ฟฝ๐‘˜โ„Ž๐‘—๐‘˜(๐‘›)๏ฟฝ = โˆ’ (8๐œ‹)1 2โ„ ๐‘…๐›ฟ 2โ„ ๐‘€ ๐ท1+๐›ฟ 2โ„ ๐‘‡๐œ‡๐œˆ (3.1.9) (๐œ•2+ ๐‘›๏ฟฝ2)โ„Ž ๐œ‡j(๐‘›)โˆ’ ๐œ•๐œ‡๐œ•๐œˆโ„Ž๐‘—(๐‘›)๐œˆโˆ’ ๐‘–๐‘›๏ฟฝ๐‘˜๐œ•๐œ‡โ„Ž๐‘—(๐‘›)๐‘˜โˆ’ ๐‘–๐‘›๏ฟฝ๐‘—๐œ•๐œˆโ„Ž๐œ‡(๐‘›)๐œˆ+ ๐‘›๏ฟฝ๐‘—๐‘›๏ฟฝ๐‘˜โ„Ž๐œ‡(๐‘›)๐‘˜+ ๐‘–๐‘›๏ฟฝ๐‘—๐œ•๐œ‡๏ฟฝโ„Ž๐œˆ(๐‘›)๐œˆ+ โ„Ž๐‘˜(๐‘›)๐‘˜๏ฟฝ = 0 (3.1.10) (๐œ•2+ ๐‘›๏ฟฝ2)โ„Ž ๐‘—๐‘˜(๐‘›)โˆ’ ๏ฟฝ๐‘–๐‘›๏ฟฝ๐‘—๐œ•๐œ‡โ„Ž๐‘˜(๐‘›)๐œ‡โˆ’ ๐‘›๏ฟฝ๐‘—๐‘›๏ฟฝ๐‘™โ„Ž(๐‘›)๐‘™๐‘˜ + ๐‘–๐‘›๏ฟฝ๐‘˜๐œ•๐œ‡โ„Ž๐‘—(๐‘›)๐œ‡โˆ’ ๐‘›๏ฟฝ๐‘˜๐‘›๏ฟฝ๐‘™โ„Ž๐‘—(๐‘›)๐‘™๏ฟฝ โˆ’ ๏ฟฝ๐‘›๏ฟฝ๐‘—๐‘›๏ฟฝ๐‘˜+ ๐œ‚๐‘—๐‘˜(๐œ•2+ ๐‘›๏ฟฝ2)๏ฟฝ ๏ฟฝโ„Ž๐œ‡(๐‘›)๐œ‡+ โ„Ž๐‘™(๐‘›)๐‘™๏ฟฝ + ๐œ‚๐‘—๐‘˜๏ฟฝ๐œ•๐œ‡๐œ•๐œˆโ„Ž๐œ‡๐œˆ(๐‘›)+ 2๐‘–๐‘›๏ฟฝ๐‘™๐œ•๐œ‡โ„Ž๐œ‡(๐‘›)๐‘™โˆ’ ๐‘›๏ฟฝ๐‘™๐‘›๏ฟฝ๐‘šโ„Ž๐‘™๐‘š(๐‘›)๏ฟฝ = 0 (3.1.11)

where ๐œ•2 operates only in the usual 4 dimensions, and it has been defined ๐‘›๏ฟฝ

๐‘— =๐‘›๐‘…๐‘— and ๐‘›๏ฟฝ2 = ๐‘›๏ฟฝ๐‘—๐‘›๏ฟฝ๐‘—.

Furthermore ๐œ‚๐œ‡๐œˆ = (+, โˆ’, โˆ’, โˆ’) and ๐œ‚๐‘—๐‘˜= โˆ’๐›ฟ๐‘—๐‘˜.

To solve this system it is better to rewrite it in terms of the following dynamic variables:

๐บ๐œ‡๐œˆ(๐‘›)= โ„Ž๐œ‡ฮฝ(๐‘›)+๐œ…3 ๏ฟฝ๐œ‚๐œ‡๐œˆ+๐œ•๐œ‡๐‘›๏ฟฝ๐œ•2๐œˆ๏ฟฝ ๐ป(๐‘›)โˆ’ ๐œ•๐œ‡๐œ•๐œˆ๐‘ƒ(๐‘›)+ ๐œ•๐œ‡๐‘„๐œˆ(๐‘›)+ ๐œ•๐œˆ๐‘„๐œ‡(๐‘›) (3.1.12) ๐‘‰๐œ‡๐‘—(๐‘›)= 1 โˆš2๏ฟฝ๐‘–โ„Ž๐œ‡j (๐‘›)โˆ’ ๐œ• ๐œ‡๐‘ƒ๐‘—(๐‘›)โˆ’ ๐‘›๏ฟฝ๐‘—๐‘„๐œ‡(๐‘›)๏ฟฝ (3.1.13) ๐‘†๐‘—๐‘˜(๐‘›)= โ„Ž๐‘—๐‘˜(๐‘›)โˆ’๐›ฟ โˆ’ 1 ๏ฟฝ๐œ‚๐œ… ๐‘—๐‘˜+๐‘›๏ฟฝ๐‘›๏ฟฝ๐‘—๐‘›๏ฟฝ2๐‘˜๏ฟฝ ๐ป(๐‘›)+ ๐‘›๏ฟฝ๐‘—๐‘ƒ๐‘˜(๐‘›)+ ๐‘›๏ฟฝ๐‘˜๐‘ƒ๐‘—(๐‘›)โˆ’ ๐‘›๏ฟฝ๐‘—๐‘›๏ฟฝ๐‘˜๐‘ƒ(๐‘›) (3.1.14) ๐ป(๐‘›)=1 ๐œ…๏ฟฝโ„Ž๐‘—(๐‘›)๐‘—+ ๐‘›๏ฟฝ2๐‘ƒ(๐‘›)๏ฟฝ (3.1.15) ๐‘„๐œ‡(๐‘›)= โˆ’๐‘–๐‘›๏ฟฝ๐‘›๏ฟฝ๐‘—2โ„Ž๐œ‡(๐‘›)๐‘— (3.1.16) ๐‘ƒ๐‘—(๐‘›)=๐‘›๏ฟฝ๐‘›๏ฟฝ๐‘˜2โ„Ž๐‘—(๐‘›)๐‘˜+ ๐‘›๏ฟฝ๐‘—๐‘ƒ(๐‘›) (3.1.17) ๐‘ƒ(๐‘›)=๐‘›๏ฟฝ๐‘—๐‘›๏ฟฝ๐‘›๏ฟฝ4๐‘˜โ„Ž๐‘—๐‘˜(๐‘›) (3.1.18)

(32)

32 where we have defined the factor

๐œ… = ๏ฟฝ3(๐›ฟ โˆ’ 1)๐›ฟ + 2 (3.1.19)

Letโ€™s check that the number of degrees of freedom is unchanged. The initial tensor is symmetric (4 + ๐›ฟ) ร— (4 + ๐›ฟ) tensor, therefore has (4+๐›ฟ)(5+๐›ฟ)2 ๐‘‘. ๐‘œ. ๐‘“.

๐บ๐œ‡๐œˆ(๐‘›) is symmetric and therefore has 5 โˆ™42= 10 ๐‘‘. ๐‘œ. ๐‘“.,

๐‘‰๐œ‡๐‘—(๐‘›) has 4 ร— ๐›ฟ components with the constrain ๐‘›๏ฟฝ๐‘—๐‘‰

๐œ‡๐‘—(๐‘›)= 0 and then has 4๐›ฟ โˆ’ 4 = 4(๐›ฟ โˆ’ 1)๐‘‘. ๐‘œ. ๐‘“.

๐‘†๐‘—๐‘˜(๐‘›) is symmetric with null trace and the constrain ๐‘›๏ฟฝ๐‘—๐‘†

๐‘—๐‘˜(๐‘›)= 0, then it has ๐›ฟ(๐›ฟ+1)

2 โˆ’ ๐›ฟ โˆ’ 1 =

(๐›ฟโˆ’2)(๐›ฟ+1)

2 ๐‘‘. ๐‘œ. ๐‘“.

๐ป(๐‘›) and ๐‘ƒ(๐‘›) are scalars and have then 1 ๐‘‘. ๐‘œ. ๐‘“. each,

๐‘„๐œ‡(๐‘›) has 4 ๐‘‘. ๐‘œ. ๐‘“.,

๐‘ƒ๐‘—(๐‘›) has the constrain ๐‘›๏ฟฝ๐‘—๐‘ƒ

๐‘—(๐‘›)= 0 and therefore has ๐›ฟ โˆ’ 1 ๐‘‘. ๐‘œ. ๐‘“.

The total is 10 +92๐›ฟ +12๐›ฟ2=(4+๐›ฟ)(5+๐›ฟ)

2 ๐‘‘. ๐‘œ. ๐‘“., the same as the ones of the initial tensor.

We may note that in the case ๐›ฟ = 1 the parametrization is singular because the fields ๐ป(๐‘›), ๐‘ƒ(๐‘›) and ๐‘ƒ ๐‘—(๐‘›)

are no more independent. Anyway we are interested in the case ๐›ฟ > 1.

Contracting the indices of the previous equation with the metric, we find the following constrains on the fields: ๐œ•๐œ‡๐บ ๐œ‡ฮฝ(๐‘›)= 1 ๐‘…๐›ฟ 2โ„ ๐‘€ ๐ท1+๐›ฟ 2โ„ ๐œ•๐œˆ๐‘‡๐œ†๐œ† 3๐‘›๏ฟฝ2 (3.1.20) ๐บ๐œ‡(๐‘›)๐œ‡= 1 ๐‘…๐›ฟ 2โ„ ๐‘€ ๐ท1+๐›ฟ 2โ„ ๐‘‡๐œ‡๐œ‡ 3๐‘›๏ฟฝ2 (3.1.21) ๐œ•๐œ‡๐‘‰ ๐œ‡j(๐‘›) = 0 (3.1.22)

If we use these constrains in the equations 3.1.9 โˆ’ 11, we obtain the following uncoupled equations:

(๐œ•2+ ๐‘›๏ฟฝ2)๐บ ๐œ‡ฮฝ(๐‘›)= 1 ๐‘…๐›ฟ 2โ„ ๐‘€ ๐ท1+๐›ฟ 2โ„ ๏ฟฝโˆ’๐‘‡๐œ‡๐œˆ + ๏ฟฝ๐œ‚๐œ‡๐œˆ +๐œ•๐œ‡๐‘›๏ฟฝ๐œ•2๐œˆ๏ฟฝ๐‘‡๐œ† ๐œ† 3 ๏ฟฝ (3.1.23) (๐œ•2+ ๐‘›๏ฟฝ2)๐‘‰ ๐œ‡j(๐‘›)= 0 (3.1.24) (๐œ•2+ ๐‘›๏ฟฝ2)๐‘† ๐‘—๐‘˜(๐‘›)= 0 (3.1.25)

(33)

33 (๐œ•2+ ๐‘›๏ฟฝ2)๐ป(๐‘›)=๐œ… 3 1 ๐‘…๐›ฟ 2โ„ ๐‘€ ๐ท1+๐›ฟ 2โ„ ๐‘‡๐œ‡๐œ‡ (3.1.26)

These equations mean that only ๐บ๐œ‡๐œˆ(๐‘›), ๐‘‰๐œ‡๐‘—(๐‘›), ๐‘†๐‘—๐‘˜(๐‘›) and ๐ป(๐‘›) are propagating particles, while ๐‘„๐œ‡(๐‘›), ๐‘ƒ(๐‘›) and

๐‘ƒ๐‘—(๐‘›) do not appear in the equations of motion. These fields are gauge-dependent, and therefore do not describe physical particles. To be more precise they can be all set to zero in every space-time point with an appropriate gauge transformation for each ๐‘› โ‰ . This gauge is called the Unitary Gauge.

3.1.3 Identification of the Particles

The equations for the field ๐บ๐œ‡๐œˆ(๐‘›), in the vacuum, are:

(๐œ•2+ ๐‘›๏ฟฝ2)๐บ

๐œ‡ฮฝ(๐‘›)= 0 (3.1.27)

๐œ•๐œ‡๐บ

๐œ‡๐œˆ(๐‘›)= 0 (3.1.28)

๐บ๐œ‡(๐‘›)๐œ‡= 0 (3.1.29)

The first equation tells us that this field represents propagating bosons of mass ๐‘›๏ฟฝ2, while the second and

the third ones cancel 5 of the 10 components, leaving only 5 non-zero components, corresponding to 5 particles of spin 2. Therefore this field describes 5 gravitons of mass ๐‘›๏ฟฝ2, that is the ๐‘›-th ๐พ๐พ eccitation.

The field ๐‘‰๐œ‡๐‘—(๐‘›) describes ๐›ฟ โˆ’ 1 spin 1 particles, each with 3 degrees of freedom because of constrain 3.1.22. Anyway in the weak field approximation they do not couple with the energy-momentum tensor, so,

because of this, they are not relevant for this work.

For ๐›ฟ โ‰ฅ 2 there are (๐›ฟโˆ’2)(๐›ฟ+1)2 massive scalar particles described by the tensor ๐‘†๐‘—๐‘˜(๐‘›), anyway also these particles do not couple with the energy-momentum tensor, and then are not relevant for this work. Finally, there is the scalar particle ๐ป(๐‘›) that couples only with the trace of the energy-momentum tensor.

This trace is null for a conformally flat theory, therefore also this particle is negligible at tree level in processes with massless particles, in fact it can couple at tree level only proportionally to the masses of the particles, because of this its coupling is at best of order ๏ฟฝ๐‘€๐‘

๐‘€๐ท๏ฟฝ 2

~ ๏ฟฝ๐‘€๐‘

๐‘€๐ธ๐‘Š๏ฟฝ 2

and can be then neglected.

Letโ€™s compare the initial number of ๐‘‘. ๐‘œ. ๐‘“. with the number of particles found, that is (๐›ฟ+4)(๐›ฟ+1)2 . The difference between these two numbers is 2(๐›ฟ + 4). These degrees of freedom are associated with the gauge invariance.

To choose a gauge, first of all it is necessary to choose a constrain like the one of the harmonic gauge ๐œ•๐‘Žโ„Ž๐‘๐‘Ž=12 ๐œ•๐‘โ„Ž๐‘Ž๐‘Ž (3.1.30)

that cancels ๐›ฟ + 4 degrees of freedom. Then, one may see that, like in QED, for a massless graviton there are still some degrees of freedom because of the freedom in the choice of the polarization, that can be canceled by demanding ๐œ•2๐œ–

๐‘Ž= 0, constrain that cancels ๐›ฟ + 4 degrees of freedom, for a total of

(34)

34

3.2 Gravitational Lagrangian

Starting from the 4 + ๐›ฟ dimensional Lagrangian density corresponding to Einsteinโ€™s equation 3.1.2

โ„’ = โˆ’12 โ„Ž๐‘Ž๐‘๐œ•2โ„Ž

๐‘Ž๐‘+12 โ„Ž๐‘Ž๐‘Ž๐œ•2โ„Ž๐‘๐‘โˆ’ โ„Ž๐‘Ž๐‘๐œ•๐‘Ž๐œ•๐‘โ„Ž๐‘๐‘+ โ„Ž๐‘Ž๐‘๐œ•๐‘Ž๐œ•๐‘โ„Ž๐‘๐‘ โˆ’(2๐œ‹) ๐›ฟ 2โ„

๐‘€๐ท1+๐›ฟ 2โ„ โ„Ž๐‘Ž๐‘๐‘‡๐‘Ž๐‘ (3.2.1) letโ€™s follow the procedure of the previous sections, that is substituting the Fourier series and the fields parametrization, and considering the Unitary gauge. We obtain:

โ„’ = ๏ฟฝ ๏ฟฝโˆ’12 ๐บ(โˆ’๐‘›๏ฟฝโƒ—)๐œ‡ฮฝ(๐œ•2+ ๐‘›๏ฟฝ2)๐บ ๐œ‡ฮฝ(๐‘›๏ฟฝโƒ—)+12 ๐บ๐œ‡(โˆ’๐‘›๏ฟฝโƒ—)๐œ‡(๐œ•2+ ๐‘›๏ฟฝ2)๐บฮฝ(๐‘›๏ฟฝโƒ—)ฮฝโˆ’ ๐บ(โˆ’๐‘›๏ฟฝโƒ—)๐œ‡ฮฝ๐œ•๐œ‡๐œ•๐œˆ๐บฮป(๐‘›๏ฟฝโƒ—)ฮป+ ๐บ(โˆ’๐‘›๏ฟฝโƒ—)๐œ‡ฮฝ๐œ•๐œ‡๐œ•๐œ†๐บฮฝ(๐‘›๏ฟฝโƒ—)ฮป๏ฟฝ ๐‘›๏ฟฝโƒ— + ๏ฟฝ ๏ฟฝโˆ’14๏ฟฝ๐œ•๐œ‡๐‘‰๐œˆ๐‘—(๐‘›๏ฟฝโƒ—)โˆ’ ๐œ•๐œˆ๐‘‰๐œ‡๐‘—(๐‘›๏ฟฝโƒ—)๏ฟฝ 2 +12 ๐‘›๏ฟฝ2๐‘‰(โˆ’๐‘›๏ฟฝโƒ—)๐œ‡j๐‘‰ ๐œ‡๐‘—(๐‘›๏ฟฝโƒ—)โˆ’12 ๐‘†(โˆ’๐‘›๏ฟฝโƒ—)๐‘—๐‘˜(๐œ•2+ ๐‘›๏ฟฝ2)๐‘†๐‘—๐‘˜(๐‘›๏ฟฝโƒ—)โˆ’12 ๐ป(โˆ’๐‘›๏ฟฝโƒ—)(๐œ•2+ ๐‘›๏ฟฝ2) ๐ป(๐‘›๏ฟฝโƒ—)๏ฟฝ ๐‘›๏ฟฝโƒ— + ๏ฟฝ ๏ฟฝโˆ’ 1 ๐‘…๐›ฟ 2โ„ ๐‘€ ๐ท1+๐›ฟ 2โ„ ๏ฟฝ๐บ(๐‘›๏ฟฝโƒ—)๐œ‡ฮฝโˆ’๐œ… 3 ๐œ‚๐œ‡๐œˆ๐ป(๐‘›๏ฟฝโƒ—)๏ฟฝ ๐‘‡๐œ‡๐œˆ๏ฟฝ ๐‘›๏ฟฝโƒ— (3.2.2) In QED ๐‘‡๐œ‡๐œˆ =4 ฯˆ๐‘– ๏ฟฝ๏ฟฝ๐›พ๐œ‡๐œ•๐œˆ+ ๐›พ๐œˆ๐œ•๐œ‡๏ฟฝฯˆ โˆ’4๐‘–๏ฟฝ๐œ•๐œˆฯˆ๏ฟฝ๐›พ๐œ‡+ ๐œ•๐œ‡ฯˆ๏ฟฝ๐›พ๐œˆ๏ฟฝฯˆ +12 ๐‘žฯˆ๏ฟฝ๏ฟฝ๐›พ๐œ‡๐ด๐œˆ+ ๐›พ๐œˆ๐ด๐œ‡๏ฟฝฯˆ + ๐น๐œ‡ฮป๐น๐œˆ๐œ† +1 4 ๐œ‚๐œ‡๐œˆ๐น๐œ†๐œŒ๐น๐œ†๐œŒ (3.2.3) One may notice that the trace of this tensor is zero. For the QCD the formula is similar, with the substitutions

๐‘ž๐ด๐œ‡โ†’ ๐‘”๐‘ ๐ด๐‘Ž,๐œ‡๐œ† ๐‘Ž

2 , ๐น๐œ‡๐œˆ โ†’ ๐น๐‘†๐œ‡๐œˆ (3.2.4)

3.3 Feynman rules

As for the Standard Model, one may calculate Feynman rules for vertices and propagators. Here is a list one the ones necessary for this work.

3.3.1 Feynman Rules for propagators

Feynman diagram for the graviton propagator

๐‘–๐‘˜2๐‘ƒ๐œ‡๐œˆ๐œŒ๐œŽโˆ’ ๐‘š2 (3.3.1) where ๐‘š2= ๐‘›๏ฟฝ2 is the mass of the ๐‘›-th ๐พ๐พ mode and

(35)

35 ๐‘ƒ๐œ‡๐œˆ๐œŒ๐œŽ =12๏ฟฝ๐œ‚๐œ‡๐›ผ๐œ‚๐œˆ๐›ฝโˆ’ ๐œ‚๐œ‡๐›ฝ๐œ‚๐œˆ๐›ผโˆ’ ๐œ‚๐œ‡๐œˆ๐œ‚๐›ผ๐›ฝ๏ฟฝ โˆ’2๐‘š12๏ฟฝ๐œ‚๐œ‡๐›ผ๐‘˜๐œˆ๐‘˜๐›ฝ+ ๐œ‚๐œˆ๐›ฝ๐‘˜๐œ‡๐‘˜๐›ผ+ ๐œ‚๐œ‡๐›ฝ๐‘˜๐œˆ๐‘˜๐›ผ+ ๐œ‚๐œˆ๐›ผ๐‘˜๐œ‡๐‘˜๐›ฝ๏ฟฝ +1 6 ๏ฟฝ๐œ‚๐œ‡๐œˆ+ 2 ๐‘š2๐‘˜๐œ‡๐‘˜๐œˆ๏ฟฝ ๏ฟฝ๐œ‚๐›ผ๐›ฝ+ 2 ๐‘š2๐‘˜๐›ผ๐‘˜๐›ฝ๏ฟฝ (3.3.2)

The propagator of the massless propagator in 4 + ๐›ฟ dimensions instead is

๐‘–๐‘ƒ๐œ‡๐œˆ๐œŒ๐œŽ

(0)

๐‘˜2 (3.3.3)

๐‘ƒ๐œ‡๐œˆ๐œŒ๐œŽ(0) =12(๐œ‚๐‘Ž๐‘๐œ‚๐‘๐‘‘+ ๐œ‚๐‘Ž๐‘‘๐œ‚๐‘๐‘) โˆ’๐›ฟ + 2 ๐œ‚1 ๐‘Ž๐‘๐œ‚๐‘๐‘‘+๐œ€ โˆ’ 12๐‘˜2 (๐œ‚๐‘Ž๐‘๐‘˜๐‘๐‘˜๐‘‘+ ๐œ‚๐‘๐‘‘๐‘˜๐‘Ž๐‘˜๐‘+ ๐œ‚๐‘Ž๐‘‘๐‘˜๐‘๐‘˜๐‘+ ๐œ‚๐‘๐‘๐‘˜๐‘Ž๐‘˜๐‘‘)(3.3.4)

where ๐œ€ is the gauge-fixing parameter.

3.3.2 Feynman Rules for vertices

๐น๐น๐บ vertex

Feynman diagram for the Fermion-Fermion-Graviton vertex โˆ’๐‘– (2๐œ‹)๐›ฟ 2โ„ ๐‘…๐›ฟ 2โ„ ๐‘€ ๐ท1+๐›ฟ 2โ„ ๐‘Š๐œ‡๐œˆ๐น ๐›พ๐›พ๐บ vertex

Feynman diagram for the Photon-Photon-Graviton vertex โˆ’๐‘– (2๐œ‹)๐›ฟ 2โ„ ๐‘…๐›ฟ 2โ„ ๐‘€ ๐ท1+๐›ฟ 2โ„ ๐‘Š๐œ‡๐œˆ๐›ผ๐›ฝ๐›พ ๐‘“๐‘“๐›พ๐บ vertex

Feynman diagram for the Fermion-Fermion-Photon-Graviton vertex โˆ’๐‘–๐‘ž (2๐œ‹)๐›ฟ 2โ„ 2๐‘…๐›ฟ 2โ„ ๐‘€ ๐ท1+๐›ฟ 2โ„ ๐‘‹๐œ‡๐œˆ๐›ผ ๐‘”๐‘”๐‘”๐บ vertex

Feynman diagram for the Gluon-Gluon-Gluon-Graviton vertex ๐‘”๐‘  (2๐œ‹) ๐›ฟ 2โ„ 2๐‘…๐›ฟ 2โ„ ๐‘€ ๐ท1+๐›ฟ 2โ„ ๐‘“๐‘Ž๐‘๐‘๐‘Œ ๐œ‡๐œˆ๐›ผ๐›ฝ๐›พ ๐‘”๐‘”๐บ vertex

Feynman diagram for the Gluon-Gluon-Graviton vertex โˆ’๐‘– (2๐œ‹)๐›ฟ 2โ„ ๐‘…๐›ฟ 2โ„ ๐‘€ ๐ท1+๐›ฟ 2โ„ ๐›ฟ๐‘Ž๐‘๐‘Š๐œ‡๐œˆ๐›ผ๐›ฝ๐›พ ๐น๐น๐‘”๐บ vertex

Feynman diagram for the Fermion-Fermion-Gluon-Graviton vertex โˆ’๐‘–๐‘”๐‘  (2๐œ‹) ๐›ฟ 2โ„ 2๐‘…๐›ฟ 2โ„ ๐‘€ ๐ท1+๐›ฟ 2โ„ ๐œ†12๐‘Ž 2 ๐‘‹๐œ‡๐œˆ๐›ผ

Tab. 3.1. Feynman rules for vertices, ADD model

Indices ๐œ‡, ๐œˆ refer to the graviton. Indices ๐›ผ, ๐›ฝ, ๐›พ refer, in order, to particles 1,2,3, if present. The same holds for color indices ๐‘Ž, ๐‘, ๐‘.

๐‘Š๐œ‡๐œˆ๐น = (๐‘˜1+ ๐‘˜2)๐œ‡๐›พ๐œˆ+ (๐‘˜1+ ๐‘˜2)๐œˆ๐›พ๐œ‡ (3.3.5)

๐‘Š๐œ‡๐œˆ๐›ผ๐›ฝ๐›พ =12 ๐œ‚๐œ‡๐œˆ๏ฟฝ๐‘˜1๐›ฝ๐‘˜2๐›ผโˆ’ (๐‘˜1๐œ†๐‘˜2๐œ†)๐œ‚๐›ผ๐›ฝ๏ฟฝ + ๐œ‚๐›ผ๐›ฝ๐‘˜1๐œ‡๐‘˜2๐œˆ+ ๐œ‚๐œ‡๐›ผ๏ฟฝ๏ฟฝ๐‘˜1๐œ†๐‘˜2๐œ†๏ฟฝ๐œ‚๐œˆ๐›ฝโˆ’ ๐‘˜1๐›ฝ๐‘˜2๐œˆ๏ฟฝ โˆ’ ๐œ‚๐œ‡๐›ฝ๐‘˜1๐œˆ๐‘˜2๐›ผ

+๐œ‡ โ†” ๐œˆ (3.3.6) ๐‘‹๐œ‡๐œˆ๐›ผ = ๐›พ๐œ‡๐œ‚๐œˆ๐›ผ+ ๐›พ๐œˆ๐œ‚๐œ‡๐›ผ

(36)

36

๐‘Œ๐œ‡๐œˆ๐›ผ๐›ฝ๐›พ = ๏ฟฝ๐‘๐œ‡๐œˆ๐›ผ๐›ฝ๐›พ(๐‘˜1) + ๐‘๐œ‡๐œˆ๐›ผ๐›ฝ๐›พ(๐‘˜2) + ๐‘๐œ‡๐œˆ๐›ผ๐›ฝ๐›พ(๐‘˜3)๏ฟฝ + ๐œ‡ โ†” ๐œˆ (3.3.7)

๐‘๐œ‡๐œˆ๐›ผ๐›ฝ๐›พ(๐‘˜1) = ๐‘˜1๐œ‡๏ฟฝ๐œ‚๐œˆ๐›ฝ๐œ‚๐›ผ๐›พโˆ’ ๐œ‚๐œˆ๐›พ๐œ‚๐›ผ๐›ฝ๏ฟฝ + ๐‘˜1๐›ฝ๏ฟฝ๐œ‚๐œ‡๐›ผ๐œ‚๐œˆ๐›พโˆ’12 ๐œ‚๐œ‡๐œˆ๐œ‚๐›ผ๐›พ๏ฟฝ โˆ’ ๐‘˜1๐›พ๏ฟฝ๐œ‚๐œ‡๐›ผ๐œ‚๐œˆ๐›ฝโˆ’12 ๐œ‚๐œ‡๐œˆ๐œ‚๐›ผ๐›ฝ๏ฟฝ (3.3.8)

3.4 Real Graviton Production

3.4.1 Modes density

Now we can consider some processes whose theoretical results are relevant to be compared to colliderโ€™s experimental data, starting from real graviton production. ๐พ๐พ excitations have masses ๐‘›๐‘… and therefore their masses are separated by a mass splitting factor of

โˆ†๐‘š~๐‘… = ๏ฟฝ1 8๐œ‹๐‘€๐ท2+๐›ฟ ๐‘€๐‘ƒ2 ๏ฟฝ 1/๐›ฟ = ๐‘€๐ท๏ฟฝโˆš8๐œ‹๐‘€๐‘€ ๐ท ๐‘ƒ ๏ฟฝ 2/๐›ฟ ~ ๏ฟฝ๐‘‡๐‘’๐‘‰๏ฟฝ๐‘€๐ท ๐›ฟ+2 2 โˆ™ 1012๐›ฟโˆ’31๐›ฟ ๐‘’๐‘‰ (3.4.1)

If ๐›ฟ is not too big mass splitting is very small and one can consider it continuum: the number of modes between ๐‘› and ๐‘› + ๐‘‘๐‘› is ๐‘‘๐‘ = 2๐œ‹๐›ฟ/2 ฮ“(๐›ฟ/2) ๐‘›๐›ฟโˆ’1๐‘‘๐‘› = 2๐œ‹๐›ฟ/2 ฮ“(๐›ฟ/2) ๐‘€๐‘ƒ2 8๐œ‹๐‘€๐ท2+๐›ฟ๐‘š๐›ฟโˆ’1๐‘‘๐‘š (3.4.2)

and therefore the cross section is ๐‘‘๐œŽ ๐‘‘๐‘ก ๐‘‘๐‘š = 2๐œ‹๐›ฟ/2 ฮ“(๐›ฟ/2) ๐‘€๐‘ƒ2 8๐œ‹๐‘€๐ท2+๐›ฟ๐‘š ๐›ฟโˆ’1๐‘‘๐œŽ๐‘š ๐‘‘๐‘ก (3.4.3)

3.4.2 Real Graviton production cross sections

Here is a list of the most relevant cross sections for high energy collider experiments.

(37)

37 ๐‘‘๐œŽ๐‘š ๐‘‘๐‘ก (๐‘ž๐‘ž๏ฟฝ โ†’ ๐‘”๐บ) = ๐›ผ๐‘† 36 8๐œ‹ ๐‘€๐‘ƒ2 ๐น1๏ฟฝ๐‘ก๐‘  ,๐‘š 2 ๐‘  ๏ฟฝ ๐‘  (3.4.4)

Fig. 3.2. Feynman diagrams that contribute to the Quark Gluon to Quark Graviton process

๐‘‘๐œŽ๐‘š ๐‘‘๐‘ก (๐‘ž๐‘” โ†’ ๐‘ž๐บ) = ๐›ผ๐‘† 96 8๐œ‹ ๐‘€๐‘ƒ2 ๐น2๏ฟฝ๐‘ก๐‘ ,๐‘š 2 ๐‘  ๏ฟฝ ๐‘  (3.4.5)

Fig. 3.3. Feynman diagrams that contribute to the Gluon Gluon to Gluon Graviton process

๐‘‘๐œŽ๐‘š ๐‘‘๐‘ก (๐‘”๐‘” โ†’ ๐‘”๐บ) = 3๐›ผ๐‘† 16 8๐œ‹ ๐‘€๐‘ƒ2 ๐น3๏ฟฝ๐‘ก๐‘ ,๐‘š 2 ๐‘  ๏ฟฝ ๐‘  (3.4.6) ๐น functions are listed in the appendix (section 7.3.1).

(38)

38

3.4.3 Expected results

Mono-jet cross section has therefore an additional term equal to the sum of all the previous contributions: โˆ†๐œŽ๐ด๐ท๐ท= ๐œŽ(๐‘ž๐‘ž๏ฟฝ โ†’ ๐‘”๐บ)๐‘ž=๐‘ข,๐‘‘,๐‘ ,๐‘,๐‘,๐‘ก+ ๐œŽ(๐‘ž๐‘” โ†’ ๐‘ž๐บ)๐‘ž=๐‘ข,๐‘‘,๐‘ ,๐‘,๐‘,๐‘ก,๐‘ž๏ฟฝ+ ๐œŽ(๐‘”๐‘” โ†’ ๐‘”๐บ) (3.4.7) ๐œŽ(1,2 โ†’ 3, ๐บ) = ๏ฟฝ ๐‘‘๐‘š๐‘‘๐‘ก๐‘‘๐‘ฅ1๐‘‘๐‘ฅ2 2๐œ‹ ๐›ฟ 2 ฮ“ ๏ฟฝ๐›ฟ2๏ฟฝ ๐‘€๐‘ƒ2 8๐œ‹๐‘€๐ท2+๐›ฟ๐‘š๐›ฟโˆ’1 ๐‘‘๐œŽ๐‘š ๐‘‘๐‘ก (1,2 โ†’ 3, ๐บ)๐‘“1(๐‘ฅ1, ๐‘„)๐‘“2(๐‘ฅ2, ๐‘„) ๐ท (3.4.8)

3.5 Virtual Graviton Exchange

3.5.1 Scattering amplitudes

In this case scattering amplitudes have the form

๐’œ = ๐’ฎ(๐‘ ) ๏ฟฝ๐‘‡๐œ‡๐œˆ๐‘‡๐œ‡๐œˆโˆ’๐‘‡๐œ‡ ๐œ‡๐‘‡ ๐œˆ๐œˆ 2 + ๐›ฟ๏ฟฝ = ๐’ฎ(๐‘ )๐’ฏ (3.5.1) where ๐’ฎ(๐‘ ) = 1 ๐‘€๐ท2+๐›ฟ ๏ฟฝ ๐‘‘๐›ฟ๐‘ž ๐‘  โˆ’ ๐‘ž2 |๐‘ž|<ฮ› = ๐œ‹ ๐›ฟ 2 ฮ“ ๏ฟฝ๐›ฟ2๏ฟฝ ฮ›๐›ฟโˆ’2 ๐‘€๐ท2+๐›ฟโ„ฑ๐›ฟ๏ฟฝ ๐‘  ฮ›2๏ฟฝ ๐‘ โ‰ชฮ›2 ๏ฟฝโŽฏโŽฏ๏ฟฝ โŽฉ โŽช โŽช โŽจ โŽช โŽช โŽง ๐œ‹๐›ฟ/2 ฮ“ ๏ฟฝ๐›ฟ2๏ฟฝ ฮ›๐›ฟโˆ’2 ๐‘€๐ท2+๐›ฟ = 8 ๐‘€๐’ฏ4 ๐›ฟ > 2 ๐œ‹ ๐‘€๐ท4๐ฟ๐‘› ๏ฟฝ ๐‘  ฮ›2๏ฟฝ ๐›ฟ = 2 โˆ’๐‘–๐œ‹ ๐‘€๐ท3โˆš๐‘  ๐›ฟ = 1 (3.5.2)

Here ฮ› is the cut-off energy for perturbation theory to be valid (see section 3.6). โ„ฑ functions are listed in the appendix (section 7.3.2).

3.5.2 Relevant processes Cross sections

The following is from reference [3].

Fig. 3.4. Additional diagram for the Fermion Anti-Fermion to Photon Photon process

๐‘‘๐œŽ ๐‘‘๐‘ก ๏ฟฝ๐‘“๐‘“ฬ… โ†’ ๐›พ๐›พ๏ฟฝ = ๐œ‹ 16๐‘๐‘“๐‘ 2 ๏ฟฝ2๐›ผ๐‘ž๐น2โˆ’ ๐‘ก๐‘ข4๐œ‹ ๐’ฎ(๐‘ )๏ฟฝ 2 ๐‘ก๐‘ข (3.5.3)

(39)

39

Fig. 3.5. Additional diagram for the Gluon Gluon to Photon Photon process

๐‘‘๐œŽ

๐‘‘๐‘ก (๐‘”๐‘” โ†’ ๐›พ๐›พ) =

๐‘ก4+ ๐‘ข4

512๐œ‹๐‘ 2|๐’ฎ(๐‘ )|2 (3.5.4)

Fig. 3.6. Additional diagrams for the Gluon Gluon to Gluon Gluon process

๐‘‘๐œŽ ๐‘‘๐‘ก (๐‘”๐‘” โ†’ ๐‘”๐‘”) = 1 256๐œ‹๐‘ 2 โŽฃ โŽข โŽข โŽก9๐‘”๐‘ 4(๐‘ 2+ ๐‘ก2+ ๐‘ข2)3 2๐‘ 2๐‘ก2๐‘ข2 โˆ’ ๏ฟฝ ๏ฟฝ6๐‘”๐‘ 2๐‘…๐‘’ ๏ฟฝ๐‘ก 4+ ๐‘ข4 ๐‘ก๐‘ข ๐’ฎโˆ—(๐‘ )๏ฟฝ โˆ’ ๐‘ข4(4|๐’ฎ(๐‘ )|2+ ๐‘…๐‘’[๐’ฎ(๐‘ )๐’ฎโˆ—(๐‘ก)] + 4|๐’ฎ(๐‘ก)|2)๏ฟฝ ๐‘๐‘ฆ๐‘™ ๐‘ ,๐‘ก,๐‘ข โŽฆ โŽฅ โŽฅ โŽค (3.5.5)

Fig. 3.7. Additional diagram for the Gluon Gluon to Quark Anti-Quark process

๐‘‘๐œŽ ๐‘‘๐‘ก (๐‘”๐‘” โ†’ ๐‘ž๐‘ž๏ฟฝ) = (๐‘ก2+ ๐‘ข2) 128๐œ‹๐‘ 2 ๏ฟฝ๐‘”๐‘ 4 (4๐‘ 2+ 9๐‘ ๐‘ก + 9๐‘ก2) 3๐‘ 2๐‘ก๐‘ข โˆ’ ๐‘”๐‘ 2๐‘…๐‘’[๐’ฎโˆ—(๐‘ )] + 3 2|๐’ฎ(๐‘ )|2๐‘ก๐‘ข๏ฟฝ (3.5.6) For the inverse process matrix element is the same, it is only necessary to average on quark colors instead of gluon colors, this contributes with a factor (8/3)2

๐‘‘๐œŽ ๐‘‘๐‘ก (๐‘ž๐‘ž๏ฟฝ โ†’ ๐‘”๐‘”) = (๐‘ก2+ ๐‘ข2) 36๐œ‹๐‘ 2 ๏ฟฝ๐‘”๐‘ 4 (4๐‘ 2+ 9๐‘ ๐‘ก + 9๐‘ก2) 3๐‘ 2๐‘ก๐‘ข โˆ’ ๐‘”๐‘ 2๐‘…๐‘’[๐’ฎโˆ—(๐‘ )] + 3 2|๐’ฎ(๐‘ )|2๐‘ก๐‘ข๏ฟฝ (3.5.7) By crossing one may obtain ๐‘”๐‘ž โ†’ ๐‘”๐‘ž, that is exchanging ๐‘  with ๐‘ก and multiplying for a factor 8/3 because of the average on the initial states

๐‘‘๐œŽ ๐‘‘๐‘ก (๐‘”๐‘ž โ†’ ๐‘”๐‘ž) = (๐‘ 2+ ๐‘ข2) 48๐œ‹๐‘ 2 ๏ฟฝ๐‘”๐‘ 4 (4๐‘ก2+ 9๐‘ ๐‘ก + 9๐‘ 2) 3๐‘ก2๐‘ ๐‘ข โˆ’ ๐‘”๐‘ 2๐‘…๐‘’[๐’ฎโˆ—(๐‘ก)] + 3 2|๐’ฎ(๐‘ )|2๐‘ ๐‘ข๏ฟฝ (3.5.8)

Figura

Fig. 1.1. Left: diagram of a radiative contribution of a fermion. Right, diagram of a contribution due to a boson
Fig. 1.2. Effective Gravitational potential in 2 spatial dimensions  Fig. 1.3. Effective gravitational potential in 3 spatial dimensions
Tab. 2.1. Standard Model particles quantum numbers
Fig. 2.3. Momenta in a two body process
+7

Riferimenti

Documenti correlati