• Non ci sono risultati.

Matricola __________________ Nome _____________________ Cognome __________________

N/A
N/A
Protected

Academic year: 2021

Condividi "Matricola __________________ Nome _____________________ Cognome __________________"

Copied!
2
0
0

Testo completo

(1)

Università degli Studi di Udine

Corsi di laurea in Ingegneria Elettronica e Ingegneria Gestionale Architettura dei calcolatori / Fondamenti di Informatica II 13 febbraio 2015 - Prova scritta

Matricola __________________

Nome _____________________

Cognome __________________

ISTRUZIONI (da leggere attentamente)

1) Lo studente è tenuto a scrivere, correggere, compilare ed eseguire su computer (a casa o in laboratorio) gli esercizi di programmazione prima della prova orale. Alla prova orale lo studente deve portare una memoria USB contenente i sorgenti dei programmi corretti e le stampe dei relativi file.

2) Non è consentito l’uso di libri, appunti, calcolatrici, telefoni cellulari.

3) Rispondere sinteticamente negli spazi di fianco o seguenti le domande, oppure sul retro del foglio.

1. (3 punti) Si esegua l’operazione -70 – 30 in complemento a 2 su 8 bit, riportando tutti i passaggi.

(svolgere sul retro)

2. (2 punti) Indicare le affermazioni corrette:

L’algoritmo LZW serve per...

[ ] controllare e correggere gli errori di [ ] controllare gli errori di

[ ] comprimere con perdita [ ] comprimere senza perdita

...una seguenza di dati e si basa su una codifica...

[ ] RLE [ ] MNP5 [ ] a dizionario [ ] di Huffman [ ] di Hamming

3. (3 punti) Dovete trasmettere il messaggio 1001010 proteggendolo con un codice di Hamming a 1 bit. Scrivere il messaggio codificato riportando tutti i passaggi effettuati per calcolare i valori dei bit di controllo.

11 10 9 8 7 6 5 4 3 2 1

Si consideri la libreria in linguaggio C per manipolare file bitmap vista a lezione, così definita:

typedef unsigned char byte;

typedef unsigned short int word;

typedef unsigned long int dword;

#define BMPFILETYPE 0x4D42

typedef struct tagCOLORTRIPLE {

byte blue;

byte green;

byte red;

} COLORTRIPLE;

typedef struct tagFILEHEADER {

word ImageFileType;

dword FileSize;

word Reserved1;

word Reserved2;

dword ImageDataOffset;

} FILEHEADER;

typedef struct tagBMPHEADER {

dword HeaderSize;

dword ImageWidth;

dword ImageHeight;

word NumberOfImagePlanes;

word BitsPerPixel;

dword CompressionMethod;

dword SizeOfBitmap;

dword HorizonalResolution;

dword VerticalResolution;

dword NumberOfColorsUsed;

dword

NumberOfSignificantColors;

} BMPHEADER;

typedef struct tagBITMAP {

dword width;

dword height;

COLORTRIPLE *pixel;

FILEHEADER fileheader;

BMPHEADER bmpheader;

} BITMAP;

#define PIXEL(image, row, column) \ image.pixel [(row( * image.width +

(column)]

BITMAP ReadBitmap (FILE *fp);

void WriteBitmap (BITMAP bitmap, FILE *fp);

BITMAP CreateEmptyBitmap

(dword height, dword width);

void ReleaseBitmapData (BITMAP *bitmap);

4. (10 punti) Si vuole realizzare un filtro che componga due immagini in una di uscita copiando la prima nella parte in alto a sinistra della diagonale e la seconda nella parte in basso a destra, come nell’esempio qui riportato.

c:\programmi>diagonal_mix neve_A.bmp neve_B.bmp output.bmp

neve_A.bmp neve_B.bmp output.bmp

(2)

Si scriva un programma in linguaggio C che riceva sulla riga di comando il nome di un due file bitmap di ingresso e di uno di uscita e scriva nel file di uscita l’immagine creata come sopra descritto.

Si assuma che le due immagini abbiano la stessa dimensione (opzionalmente il programma può effettuare un controllo), che sarà la stessa dell’immagine di uscita.

Si ricorda che le immagini sono memorizzate nei file bitmap in coordinate cartesiane, quindi la diagonale che rappresenta il

“taglio” parte dalle coordinate [0, 0] e arriva a [M-1, N-1].

Si ricorda inoltre che in un rettangolo la diagonale è il luogo geometrico dei punti la cui posizione verticale in rapporto all’altezza è pari alla posizione orizzontale in rapporto alla larghezza.

(svolgere sul retro)

Un elaboratore (il modello didattico SimCPU visto a lezione) dispone di CPU (a 16 bit) con 16 registri di uso generale (R0, R1, ..., R15) più il Program Counter, l’Instruction Register, lo Stack Pointer e 4 flag Z (zero), N (negative), C (carry) e V (overflow). Si ricorda che il linguaggio assembler di tale elaboratore dispone delle seguenti istruzioni:

5. (5 punti) Si traduca in linguaggio assembly e in linguaggio macchina la funzione ABS riportata nel seguito in linguaggio C, che restituisce nel registro R0 il valore assoluto del valore contenuto in R1 al momento della chiamata.

int ABS (int R1) {

if (R1 >= 0) R0 = R1;

else

R0 = -R1;

return R0;

}

6. (3 punti) Si disegni il diagramma degli stati in cui può trovarsi un processo in un sistema time-sharing, specificando le condizioni per le quali il processo transita da uno stato ad un altro.

7. (2 punti) Quali di questi termini si riferiscono alla memoria cache?

[ ] segmentation fault [ ] page table [ ] segment table [ ] linea

[ ] page fault

[ ] hit [ ] blocco [ ] pagina [ ] miss [ ] segmento 8. (2 punti) Cosa sono il tempo di “seek” e il tempo di “latenza”?

assembly inst. name machine code action

LDWI d X load word 00010000dddd0000 DATA(16) d <- X LDWA d A load word 00100000dddd0000 ADDR(16) d <- mem[A]

LDWR d a load word 00110000ddddaaaa d <- mem[a]

LDBI d X load byte 00010001dddd0000 DATA(8) d <- X LDBA d A load byte 00100001dddd0000 ADDR(16) d <- mem[A]

LDBR d a load byte 00110001ddddaaaa d <- mem[a]

STWA s A store word 00100010ssss0000 ADDR(16) mem[A] <- s STWR s a store word 00110010ssssaaaa mem[a] <- s STBA s A store byte 00100011ssss0000 ADDR(16) mem[A] <- s STBR s a store byte 00110011ssssaaaa mem[a] <- s MV s d move 00000100ssssdddd d <- s PUSH s push 00001000ssss0000 push (s) POP d pop 00001001dddd0000 d <- pop () SPRD d read SP 00001101ssss0000 d <- SP SPWR s write SP 00001110ssss0000 SP <- s

ADD s d add 01000000ssssdddd d <- d + s SUB s d subtract 01000001ssssdddd d <- d - s NOT r bitwise NOT 01000010rrrr0000 r <- ~r AND s d bitwise AND 01000011ssssdddd d <- d & s OR s d bitwise OR 01000100ssssdddd d <- d | s XOR s d bitwise XOR 01000101ssssdddd d <- d ^ s INC r increment 01001000rrrr0000 r <- r + 1 DEC r decrement 01001001rrrr0000 r <- r + 1 LSH r left shift 01001010rrrr0000 r <- r << 1 RSH r right shift 01001011rrrr0000 r <- r >> 1

assembly inst. name machine code action

INW d A input word 10000000dddd0000 IN_ADDR(16) d <- read[A]

INB d A input byte 10000001dddd0000 IN_ADDR(16) d <- read[A]

OUTW s A out word 10000010ssss0000 OUT_ADDR(16) out[A] <- s OUTB s A out byte 10000011ssss0000 OUT_ADDR(16) out[A] <- s

TSTI A test input 1000010000000000 IN_ADDR(16) if completed then Z <- 1 else Z <- 0

TSTO A test output 1000010100000000 OUT_ADDR(16) if completed then Z <- 1 else Z <- 0

BR A branch 1100000000000000 ADDR(16) PC <- A JMP F jump 11000001FFFFFFFF PC <- PC + F

JMPZ F jump if zero 11000010FFFFFFFF if (z == 1) PC <- PC + F JMPNZ F jump if not zero 11000011FFFFFFFF if (z == 0) PC <- PC + F JMPN F jump if negative 11000100FFFFFFFF if (N == 1) PC <- PC + F JMPNN F jump if not neg. 11000101FFFFFFFF if (N == 0) PC <- PC + F JMPC F jump if carry 11000110FFFFFFFF if (C == 1) PC <- PC + F JMPV F jump if overflow 11000111FFFFFFFF if (V == 1) PC <- PC + F CALL A subroutine call 1100100000000000 ADDR(16) push (PC); PC <- A RET return from sub. 1100100100000000 PC <- pop() HLT halt 1100111100000000 halt

LEGENDA:

- lettere minuscole = registri; lettere maiuscole = dati numerici - ‘r’ = registro letto e modificato

- ‘s’ = registro soltanto letto - ‘d’ = registro modificato

- ‘a’ = registro il cui contenuto è usato come indirizzo - FFFFFFFF = offset (in complemento a 2)

Riferimenti

Documenti correlati

Come è possibile, visto che entrambi utilizzano indirizzi privati ed entrambi sono collegati ad Internet tramite router che eseguono il NAT?. Spiegare con

(3 punti) Indicare le associazioni corrette (attenzione: non tutte le voci a sinistra hanno una corrispondenza con quelle a destra e viceversa, e alcune voci possono avere

(4 punti) Si descriva la differenza tra un server sequenziale e uno parallelo e si illustri con un esempio la struttura del programma (sequenza delle

I tre canali sono unidirezionali e vanno da ogni client collegato al servizio a un server centrale, dal quale altri tre canali analoghi vengono trasmessi ad ogni client.. Indicate,

(4 punti) Si disegni uno schema di rete aziendale con due sottoreti IP ciascuna con 4 computer e un server, e un collegamento a Internet via ADSL con indirizzo pubblico

(2 punti) Che messaggi ICMP sono utilizzati dal comando unix traceroute (tracert in Windows)?. (4 punti) Descrivere il funzionamento del controllo di flusso del

(3 punti) Si disegni una rete in cui possa verificarsi l’invio di un messaggio ICMP “redirect” da parte di un router.. (3 punti) Si disegni una rete in cui si verifichi il

Non sono ammessi appunti, libri, calcolatrici, personal computer, tablet, telefoni cellulari, ecc. Il cablaggio strutturato è già stato realizzato. Le attività nei diversi