• Non ci sono risultati.

Direct virtual photon production in Au+Au collisions atsNN=200 GeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Direct virtual photon production in Au+Au collisions atsNN=200 GeV"

Copied!
8
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Direct

virtual

photon

production

in

Au

+

Au

collisions

at

s

N N

=

200 GeV

STAR

Collaboration

L. Adamczyk

a

,

J.K. Adkins

s

,

G. Agakishiev

q

,

M.M. Aggarwal

ae

,

Z. Ahammed

ax

,

N.N. Ajitanand

an

,

I. Alekseev

o

,

z

,

D.M. Anderson

ap

,

R. Aoyama

at

,

A. Aparin

q

,

D. Arkhipkin

c

,

E.C. Aschenauer

c

,

M.U. Ashraf

as

,

A. Attri

ae

,

G.S. Averichev

q

,

X. Bai

g

,

V. Bairathi

aa

,

A. Behera

an

,

R. Bellwied

ar

,

A. Bhasin

p

,

A.K. Bhati

ae

,

P. Bhattarai

aq

,

J. Bielcik

j

,

J. Bielcikova

k

,

L.C. Bland

c

,

I.G. Bordyuzhin

o

,

J. Bouchet

r

,

J.D. Brandenburg

aj

,

A.V. Brandin

z

,

D. Brown

w

,

I. Bunzarov

q

,

J. Butterworth

aj

,

H. Caines

bb

,

M. Calderón de la Barca Sánchez

e

,

J.M. Campbell

ac

,

D. Cebra

e

,

I. Chakaberia

c

,

P. Chaloupka

j

,

Z. Chang

ap

,

N. Chankova-Bunzarova

q

,

A. Chatterjee

ax

,

S. Chattopadhyay

ax

,

X. Chen

ak

,

X. Chen

u

,

J.H. Chen

am

,

J. Cheng

as

,

M. Cherney

i

,

W. Christie

c

,

G. Contin

v

,

H.J. Crawford

d

,

S. Das

g

,

L.C. De Silva

i

,

R.R. Debbe

c

,

T.G. Dedovich

q

,

J. Deng

al

,

A.A. Derevschikov

ag

,

L. Didenko

c

,

C. Dilks

af

,

X. Dong

v

,

J.L. Drachenberg

t

,

J.E. Draper

e

,

L.E. Dunkelberger

f

,

J.C. Dunlop

c

,

L.G. Efimov

q

,

N. Elsey

az

,

J. Engelage

d

,

G. Eppley

aj

,

R. Esha

f

,

S. Esumi

at

,

O. Evdokimov

h

,

J. Ewigleben

w

,

O. Eyser

c

,

R. Fatemi

s

,

S. Fazio

c

,

P. Federic

k

,

P. Federicova

j

,

J. Fedorisin

q

,

Z. Feng

g

,

P. Filip

q

,

E. Finch

au

,

Y. Fisyak

c

,

C.E. Flores

e

,

J. Fujita

i

,

L. Fulek

a

,

C.A. Gagliardi

ap

,

D. Garand

ah

,

F. Geurts

aj

,

A. Gibson

aw

,

M. Girard

ay

,

D. Grosnick

aw

,

D.S. Gunarathne

ao

,

Y. Guo

r

,

A. Gupta

p

,

S. Gupta

p

,

W. Guryn

c

,

A.I. Hamad

r

,

A. Hamed

ap

,

A. Harlenderova

j

,

J.W. Harris

bb

,

L. He

ah

,

S. Heppelmann

e

,

S. Heppelmann

af

,

A. Hirsch

ah

,

G.W. Hoffmann

aq

,

S. Horvat

bb

,

B. Huang

h

,

T. Huang

ab

,

H.Z. Huang

f

,

X. Huang

as

,

T.J. Humanic

ac

,

P. Huo

an

,

G. Igo

f

,

W.W. Jacobs

n

,

A. Jentsch

aq

,

J. Jia

c

,

an

,

K. Jiang

ak

,

S. Jowzaee

az

,

E.G. Judd

d

,

S. Kabana

r

,

D. Kalinkin

n

,

K. Kang

as

,

K. Kauder

az

,

H.W. Ke

c

,

D. Keane

r

,

A. Kechechyan

q

,

Z. Khan

h

,

D.P. Kikoła

ay

,

I. Kisel

l

,

A. Kisiel

ay

,

L. Kochenda

z

,

M. Kocmanek

k

,

T. Kollegger

l

,

L.K. Kosarzewski

ay

,

A.F. Kraishan

ao

,

P. Kravtsov

z

,

K. Krueger

b

,

N. Kulathunga

ar

,

L. Kumar

ae

,

J. Kvapil

j

,

J.H. Kwasizur

n

,

R. Lacey

an

,

J.M. Landgraf

c

,

K.D. Landry

f

,

J. Lauret

c

,

A. Lebedev

c

,

R. Lednicky

q

,

J.H. Lee

c

,

W. Li

am

,

X. Li

ak

,

C. Li

ak

,

Y. Li

as

,

J. Lidrych

j

,

T. Lin

n

,

M.A. Lisa

ac

,

Y. Liu

ap

,

F. Liu

g

,

H. Liu

n

,

P. Liu

an

,

T. Ljubicic

c

,

W.J. Llope

az

,

M. Lomnitz

v

,

R.S. Longacre

c

,

S. Luo

h

,

X. Luo

g

,

G.L. Ma

am

,

Y.G. Ma

am

,

L. Ma

am

,

R. Ma

c

,

N. Magdy

an

,

R. Majka

bb

,

D. Mallick

aa

,

S. Margetis

r

,

C. Markert

aq

,

H.S. Matis

v

,

K. Meehan

e

,

J.C. Mei

al

,

Z.W. Miller

h

,

N.G. Minaev

ag

,

S. Mioduszewski

ap

,

D. Mishra

aa

,

S. Mizuno

v

,

B. Mohanty

aa

,

M.M. Mondal

m

,

D.A. Morozov

ag

,

M.K. Mustafa

v

,

Md. Nasim

f

,

T.K. Nayak

ax

,

J.M. Nelson

d

,

M. Nie

am

,

G. Nigmatkulov

z

,

T. Niida

az

,

L.V. Nogach

ag

,

T. Nonaka

at

,

S.B. Nurushev

ag

,

G. Odyniec

v

,

A. Ogawa

c

,

K. Oh

ai

,

V.A. Okorokov

z

,

D. Olvitt Jr.

ao

,

B.S. Page

c

,

R. Pak

c

,

Y. Pandit

h

,

Y. Panebratsev

q

,

B. Pawlik

ad

,

H. Pei

g

,

C. Perkins

d

,

P. Pile

c

,

J. Pluta

ay

,

K. Poniatowska

ay

,

J. Porter

v

,

M. Posik

ao

,

A.M. Poskanzer

v

,

N.K. Pruthi

ae

,

M. Przybycien

a

,

E-mailaddress:chiyang@sdu.edu.cn(C. Yang). http://dx.doi.org/10.1016/j.physletb.2017.04.050

(2)

J. Putschke

az

,

H. Qiu

ah

,

A. Quintero

ao

,

S. Ramachandran

s

,

R.L. Ray

aq

,

R. Reed

w

,

M.J. Rehbein

i

,

H.G. Ritter

v

,

J.B. Roberts

aj

,

O.V. Rogachevskiy

q

,

J.L. Romero

e

,

J.D. Roth

i

,

L. Ruan

c

,

J. Rusnak

k

,

O. Rusnakova

j

,

N.R. Sahoo

ap

,

P.K. Sahu

m

,

S. Salur

v

,

J. Sandweiss

bb

,

M. Saur

k

,

J. Schambach

aq

,

A.M. Schmah

v

,

W.B. Schmidke

c

,

N. Schmitz

x

,

B.R. Schweid

an

,

J. Seger

i

,

M. Sergeeva

f

,

P. Seyboth

x

,

N. Shah

am

,

E. Shahaliev

q

,

P.V. Shanmuganathan

w

,

M. Shao

ak

,

A. Sharma

p

,

M.K. Sharma

p

,

W.Q. Shen

am

,

Z. Shi

v

,

S.S. Shi

g

,

Q.Y. Shou

am

,

E.P. Sichtermann

v

,

R. Sikora

a

,

M. Simko

k

,

S. Singha

r

,

M.J. Skoby

n

,

N. Smirnov

bb

,

D. Smirnov

c

,

W. Solyst

n

,

L. Song

ar

,

P. Sorensen

c

,

H.M. Spinka

b

,

B. Srivastava

ah

,

T.D.S. Stanislaus

aw

,

M. Strikhanov

z

,

B. Stringfellow

ah

,

T. Sugiura

at

,

M. Sumbera

k

,

B. Summa

af

,

Y. Sun

ak

,

X.M. Sun

g

,

X. Sun

g

,

B. Surrow

ao

,

D.N. Svirida

o

,

A.H. Tang

c

,

Z. Tang

ak

,

A. Taranenko

z

,

T. Tarnowsky

y

,

A. Tawfik

ba

,

J. Thäder

v

,

J.H. Thomas

v

,

A.R. Timmins

ar

,

D. Tlusty

aj

,

T. Todoroki

c

,

M. Tokarev

q

,

S. Trentalange

f

,

R.E. Tribble

ap

,

P. Tribedy

c

,

S.K. Tripathy

m

,

B.A. Trzeciak

j

,

O.D. Tsai

f

,

T. Ullrich

c

,

D.G. Underwood

b

,

I. Upsal

ac

,

G. Van Buren

c

,

G. van Nieuwenhuizen

c

,

A.N. Vasiliev

ag

,

F. Videbæk

c

,

S. Vokal

q

,

S.A. Voloshin

az

,

A. Vossen

n

,

G. Wang

f

,

Y. Wang

g

,

F. Wang

ah

,

Y. Wang

as

,

J.C. Webb

c

,

G. Webb

c

,

L. Wen

f

,

G.D. Westfall

y

,

H. Wieman

v

,

S.W. Wissink

n

,

R. Witt

av

,

Y. Wu

r

,

Z.G. Xiao

as

,

W. Xie

ah

,

G. Xie

ak

,

J. Xu

g

,

N. Xu

v

,

Q.H. Xu

al

,

Y.F. Xu

am

,

Z. Xu

c

,

Y. Yang

ab

,

Q. Yang

ak

,

C. Yang

al

,

S. Yang

c

,

Z. Ye

h

,

Z. Ye

h

,

L. Yi

bb

,

K. Yip

c

,

I.-K. Yoo

ai

,

N. Yu

g

,

H. Zbroszczyk

ay

,

W. Zha

ak

,

Z. Zhang

am

,

X.P. Zhang

as

,

J.B. Zhang

g

,

S. Zhang

ak

,

J. Zhang

u

,

Y. Zhang

ak

,

J. Zhang

v

,

S. Zhang

am

,

J. Zhao

ah

,

C. Zhong

am

,

L. Zhou

ak

,

C. Zhou

am

,

X. Zhu

as

,

Z. Zhu

al

,

M. Zyzak

l

aAGHUniversityofScienceandTechnology,FPACS,Cracow30-059,Poland bArgonneNationalLaboratory,Argonne,Illinois60439

cBrookhavenNationalLaboratory,Upton,NewYork11973 dUniversityofCalifornia,Berkeley,California94720 eUniversityofCalifornia,Davis,California95616 fUniversityofCalifornia,LosAngeles,California90095 gCentralChinaNormalUniversity,Wuhan,Hubei430079 hUniversityofIllinoisatChicago,Chicago,Illinois60607 iCreightonUniversity,Omaha,Nebraska68178

jCzechTechnicalUniversityinPrague,FNSPE,Prague,11519,CzechRepublic kNuclearPhysicsInstituteASCR,25068Prague,CzechRepublic

lFrankfurtInstituteforAdvancedStudiesFIAS,Frankfurt60438,Germany mInstituteofPhysics,Bhubaneswar751005,India

nIndianaUniversity,Bloomington,Indiana47408

oAlikhanovInstituteforTheoreticalandExperimentalPhysics,Moscow117218,Russia pUniversityofJammu,Jammu180001,India

qJointInstituteforNuclearResearch,Dubna,141980,Russia rKentStateUniversity,Kent,Ohio44242

sUniversityofKentucky,Lexington,Kentucky40506-0055 tLamarUniversity,PhysicsDepartment,Beaumont,Texas77710

uInstituteofModernPhysics,ChineseAcademyofSciences,Lanzhou,Gansu730000 vLawrenceBerkeleyNationalLaboratory,Berkeley,California94720

wLehighUniversity,Bethlehem,Pennsylvania 18015 xMax-Planck-InstitutfurPhysik,Munich80805,Germany yMichiganStateUniversity,EastLansing,Michigan48824

zNationalResearchNuclearUniversityMEPhI,Moscow115409,Russia

aaNationalInstituteofScienceEducationandResearch,Bhubaneswar751005,India abNationalChengKungUniversity,Tainan70101

acOhioStateUniversity,Columbus,Ohio43210 adInstituteofNuclearPhysicsPAN,Cracow31-342,Poland aePanjabUniversity,Chandigarh160014,India

afPennsylvaniaStateUniversity,UniversityPark,Pennsylvania16802 agInstituteofHighEnergyPhysics,Protvino142281,Russia ahPurdueUniversity,WestLafayette,Indiana47907 aiPusanNationalUniversity,Pusan46241,Korea ajRiceUniversity,Houston,Texas77251

akUniversityofScienceandTechnologyofChina,Hefei,Anhui230026 alShandongUniversity,Jinan,Shandong250100

amShanghaiInstituteofAppliedPhysics,ChineseAcademyofSciences,Shanghai201800 anStateUniversityofNewYork,StonyBrook,NewYork 11794

aoTempleUniversity,Philadelphia,Pennsylvania19122 apTexasA&MUniversity,CollegeStation,Texas77843 aqUniversityofTexas,Austin,Texas78712 arUniversityofHouston,Houston,Texas77204 asTsinghuaUniversity,Beijing100084

(3)

auSouthernConnecticutStateUniversity,NewHaven,Connecticut 06515 avUnitedStatesNavalAcademy,Annapolis,Maryland21402

awValparaisoUniversity,Valparaiso,Indiana46383 axVariableEnergyCyclotronCentre,Kolkata700064,India ayWarsawUniversityofTechnology,Warsaw00-661,Poland azWayneStateUniversity,Detroit,Michigan48201

baWorldLaboratoryforCosmologyandParticlePhysics(WLCAPP),Cairo11571,Egypt bbYaleUniversity,NewHaven,Connecticut06520

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory: Received6July2016

Receivedinrevisedform16March2017 Accepted23April2017

Availableonline27April2017 Editor:V.Metag

We report the direct virtual photon invariant yields in the transverse momentum ranges 1 <pT <

3 GeV/c and

5

<pT<10 GeV/c at

mid-rapidity derived from the dielectron invariant mass continuum

region 0.10 <Mee<0.28 GeV/c2for 0–80% minimum-bias Au+Au collisions at √sN N=200 GeV. A clear

excess in the invariant yield compared to the nuclear overlap function TA A scaled p+p reference is

observed in the pT range 1 <pT<3 GeV/c.

For

pT>6 GeV/c the

production follows

TA Ascaling. Model

calculations with contributions from thermal radiation and initial hard parton scattering are consistent within uncertainties with the direct virtual photon invariant yield.

©2017 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Photonproduction provides a unique observable to studythe fundamental propertiesof thehot and dense medium createdin ultra-relativisticheavy-ioncollisions.Theyareproducedduringall stages of the collisions and from all forms of the created mat-ter. Due to minimal interactions with this matter, photons can convey information about the dynamics of the entire time evo-lution of the medium [1]. Direct photons are defined to be all

produced photons except those from hadron decays in the last

stageofthecollision.Theyincludephotonsproducedintheinitial stagethroughhardscattering,thosefromthermalradiation,which arephotonsradiatedfromthe thermallyequilibratedpartonsand hadrons,fragmentationphotons, andthose fromjet-plasma inter-actions.MeasurementsatRHIC [2]andtheLHC[3,4] haveshown that the production of high pT direct photons in heavy-ion col-lisions is consistent with the p

+

p result scaled by the nuclear overlapfunctionTA A forpT

>

5 GeV

/c.

Theseresultsindicatethat highpT productionisdominatedbyhardprocesses.

At1

<

pT

<

3 GeV

/c thermal

contributionsfromthehadronic mediumandQuark–GluonPlasma(QGP)playa majorrole [5].At 3

<

pT

<

5 GeV

/c the

interaction of high energy partons with the QGP (e.g. q

+

g

γ

+

q) has been predicted to contribute a major part of the direct photon production [5]. An excess of direct photon yields compared to the TA A scaled p

+

p produc-tion was found in central Au

+

Au at

sN N

=

200 GeV in the pT range 0

.

4

<

pT

<

4

.

0 GeV

/c

[6,7] and in central Pb

+

Pb at

sN N

=

2

.

76 TeV for 0

.

9

<

pT

<

2

.

1 GeV

/c

[4]. The excess in-creases exponentially as pT decreases. Moreover, the azimuthal anisotropy(v2)ofdirectphotonshasbeenfoundtobesubstantial intherange1

<

pT

<

4 GeV

/c in

0–20%centralAu

+

Aucollisions at

sN N

=

200 GeV[8].

Modelcalculations[9,10]includingQGPandhadronicmedium thermal photons describe the excess yields in Pb

+

Pb collisions at

sN N

=

2

.

76 TeV reasonably well, but fail to simultaneously describe the excess yields and large v2 observed in Au

+

Au at

sN N

=

200 GeV. Thiscalls fornewingredientsinthetheoretical

model calculations andnew measurements from various

experi-mentswhichwillprovidedifferentsystematicsandmayshedlight ontheoriginofdirectphotonsinthiskinematicregion.

There are two methods for measuring direct photons. One is therealphoton methodinwhichone measuresallinclusive pho-tonsandthensubtractsthephotonsfromhadrondecays.Theother

one, used in thisarticle, is the virtual photon method in which onemeasures virtualphotonsviatheir associateddielectronpairs (

γ

e+e−) andthen deduces thedirect photon fromthe rela-tionship between virtual photon anddirect photon yields [6]. In theSTARexperimentitisverychallenging tomeasuredirect pho-tonsfor 1

<

pT

<

3 GeV

/c using

the electromagneticcalorimeter due to limited detectorgranularity, large occupancy, and insuffi-cient energyresolution.However,theSTARdetectorhasexcellent capabilities formeasuring dielectrons both in p

+

p and Au

+

Au collisions [11–14]. The STAR [15] Time-Of-Flight detector (TOF) withfullazimuthal coverage [16]along withahighratedata ac-quisitionsystemallowsdirectvirtualphotonmeasurementsdown to pT of 1GeV/c inAu

+

Aucollisions at

sN N

=

200 GeV.These measurements will provide a direct comparison to the previous measurements in thesame kinematicregion, inorder toaddress theaboveresultsfordirectphotonsat

sN N

=

200 GeV.Inthis ar-ticle,wereportmeasurementsofthedielectroncontinuumand de-rivethedirectvirtualphotoninvariantyieldsfor1

<

pT

<

3 GeV

/c

and5

<

pT

<

10 GeV

/c.

Comparisons tomodel calculationswith thermalcontributionsfromthehadronicmediumandQGPare dis-cussed.

2. Experimentanddataanalysis

The data used in this analysis are from Au

+

Au collisions at

sN N

=

200 GeV collectedbytheSTARdetectorinyear2010(run

10) and 2011 (run 11). There are 258 million and 488 million

minimum-bias (0–80%) events from run 10 and run 11,

respec-tively, passing data quality assurance and vertex selection. The collisionvertexisrequiredtobewithin30 cmofthemeanofthe vertexdistributionalongthebeamline,nominallyatthecenterof theTimeProjectionChamber(TPC)[17].Intheplane perpendicu-lartothebeamline,thecollisionvertexisselectedwithin 2cmof the beamline.To improvethemeasurement athigh pT,we also use39millioneventsfromrun11,triggeredbytheBarrel Electro-MagneticCalorimeter(BEMC)[18],inwhichthetransverseenergy depositedinasingletower,withasizeof



η

× φ =

0

.

05

×

0

.

05, isrequiredtobelargerthan4.3 GeV.TheseBEMCtriggeredevents correspond to 6.5 billion minimum-bias triggered events for the dielectronanalysisathigh pT.The BEMCtrigger significantly en-hancesthecapabilityofSTARforhighpT dielectronmeasurement. The main subsystems used for electron identification are the

(4)

events. With the selection requirements on the particle energy loss (dE

/dx)

measured by the TPC [19,20] and particle veloc-ity (

β

) measured by the TOF [21], high purity electron samples were obtained [22]. The electron purity (fraction of true elec-trons in the identified electron sample) is about 95% in Au

+

Au

minimum-bias collisions on average and is pT dependent from

0.2to2.0GeV/c [13,14].The detailedcutsforelectron identifica-tionarelistedinRef.[13].ForBEMC-triggeredevents,theelectron (positron)identificationforpe

T

>

4

.

5 GeV

/c uses

acombinationof TPCandBEMCinformation[23]whereadditionalrequirementson

the ratioof momentum measured by the TPCto the energy

de-posited in the BEMC are utilized and required to be within 0.3 to 1.5. The electron identification for 0

.

2

<

peT

<

2

.

0 GeV

/c

uti-lizes the information from the TPC and TOF, in the same way

as was done for the minimum-bias events. For peT

>

4

.

5 GeV

/c,

a multiple-Gaussianfunction is usedto fitthe normalizeddE/dx

distribution,witheachGaussiancomponentrepresentinga contri-butionfromeachparticlespecies.Theelectronpurity,obtainedas inRef.[13],is78% at peT

=

4

.

5 GeV

/c,

decreasesas peT increases, andreaches a value of 30% at peT

=

10 GeV

/c.

The electron pu-rityasafunctionofpe

T for4

.

5

<

peT

<

10 GeV

/c can

bedescribed by a fourth-order polynomial function

6

.

57

+

4

.

69x

1

.

06x2

+

0

.

10x3

0

.

0034x4,inwhichx

=

peT

/(

GeV

/c)

.

The dielectron invariant mass spectra are obtained separately forrun 10and run 11 minimum-bias andcentral triggered data sets after background subtraction and efficiency correction. The analysisdetails fordielectron measurements fromminimum-bias and central triggered events are presented in Ref. [13]. The fi-nalresults are thencombined bin-by-bin accordingto their rela-tivestatisticaluncertainties. Inthemassregion weare interested in, the point-to-point systematic uncertainties are dominated by theacceptancecorrectionforthelike-signbackgroundsubtraction. Due to the sector structure of the TPC, and the different bend-ing directions of positive andnegative charged particle tracks in the transverse plane, like-sign and unlike-sign pairs have differ-ent acceptances. A mixed-event technique is used to obtain the acceptancecorrectionfactorwhich isappliedeitherasafunction ofpairinvariant mass(Mee) andpT orasafunctionof Mee only. Thedifferencesbetweentheresultsfromthetwocorrection meth-odsaretakenassystematicuncertaintieswhicharethesameand correlated in run 10 and run 11. The acceptance correction fac-tor, whichis a few percentbelow unityat Mee

=

0, increasesas afunctionofMee,peaksatMee

=

0

.

25 GeV

/c

2,andreachesunity atMee

=

0

.

4 GeV

/c

2.TheMee andpT dependencesaredetailedin Ref.[13].Inaddition,aglobalsystematicuncertaintyfromthe ef-ficiencycorrection(14%)isalsotakenintoaccount.Itisfoundthat thesystematic uncertainties ofthe dielectroncontinua inrun 10 andrun 11arecomparable. Therefore,the finalsystematic uncer-taintiesfrom thecombineddata sets aretaken astheaverage of thosefrombothdatasets.

FortheBEMC-triggeredeventsthe dielectronpairsareformed fromone electron (positron)candidateidentified by the TPCand BEMCandtheotherpositron(electron)candidateidentifiedbythe

TOF and TPC. The same procedures used for the minimum-bias

data set are applied to obtain the dielectron continuum signals. The details of the efficiency correction procedures are the same asreportedin Ref.[13].Twomethods are usedto obtain the

ef-ficiency.Inthe firstmethodwe useknownhadroniccomponents

as input into a Monte-Carlo simulation. In the second approach weusevirtualphotonsasinput.Theresultingdifferencesbetween

these two methods are 4% and are assigned as systematic

un-certainties [13]. The efficiency uncertainties in the TPC tracking, theTOFmatching,andtheBEMCtriggeringcontribute toaglobal systematic uncertainty of13% for the dielectron continuum. The

Fig. 1. (Coloronline.) Dielectroninvariantmassspectrainthelowmassrangefor 0–80%Au+Aucollisionsat√sN N=200 GeV.Thespectrainvarious pT rangesas indicatedinthefigurearescaledbydifferentfactorsforclarity.Theerrorbarsand theshadedbandsrepresentthestatisticalandsystematicuncertainties,respectively. triggerenhancementfactorisalsocorrectedforanditsuncertainty is 1%.

Toestimate thehadron contaminationeffecton thedielectron continuum,wefirstselectpurehadronsampleswithstringentcuts

on the mass squared distributions measured from the TPC and

TOF, and then create a hadron contamination candidate pool by randomly putting in hadronsfrom thesepure samples according to the estimated hadron contamination levels in both the total amounts andthe pT differential yields. We then obtain the dis-tributions fromelectron–hadronandhadron–hadron contributions utilizing the same procedures as implemented in the dielectron continuumanalysis.Wedonotcorrectfortheelectron–hadronand hadron–hadron contributions butquotethesecontamination con-tributions as systematicuncertainties. The hadron contamination effectresultsina pT dependentsystematicuncertaintyof(2–8)%. In the mass region Mee

<

0

.

14 GeV

/c

2 the uncertainty on the photon conversion rejection contributes 3% additional systematic uncertainty forthe dielectron continuum. The photon conversion rejection also removes lessthan 5% ofthe dielectron continuum signal for 0

.

10

<

Mee

<

0

.

14 GeV

/c

2 andthis effect is corrected for[13].

We use two approaches to estimate the efficiency correction

factorfromthephotonconversionrejectionforthedielectron con-tinuum. Inone approach, we use the

π

0 and

η

Dalitz decaysas an input and get the efficiency for the dielectron signals from theDalitzdecayswiththephotonconversionrejectioncut.Inthe other approach,weusethevirtual photonasan inputandobtain the efficiencyforthedielectrons fromvirtual photon decays.The resultingdifference forthe dielectroncontinuum intheefficiency correction difference (3%) from the two approaches is quoted as part of the systematic uncertainties. The total systematic uncer-tainty ofmeasured yieldsis15–16%whichisindependentofMee andhasaslightpT dependence.

Thedielectroninvariantmassspectruminthisanalysisis con-structed within the STAR acceptance (pe

T

>

0

.

2 GeV

/c,

|

η

e

|

<

1,

|

yee

|

<

1) and corrected for efficiency, where pe

(5)

pT,

η

e isthe electron pseudo-rapidity, and yee is therapidity of electron–positron pairs. The dielectron invariant mass spectra in differentdielectron pT rangesareshownin

Fig. 1

.The resultsfor pT

<

3 GeV

/c are

the combinedresults fromrun 10andrun 11 minimum-biasandcentraltriggered dataasreportedin[13].The resultsfor pT

>

5 GeV

/c are

from the BEMC-triggereddata. The limitationofthedielectronpT reachinthesetwodatasetsisdue toalargehadron contaminationforelectrons atpeT

>

2 GeV

/c in

minimum-biasand central triggered data and a low trigger effi-ciencyforelectronsatpe

T

<

4

.

5 GeV

/c in

theBEMC-triggereddata.

The relation between real photon yield and the associated

e+e− pairproductioncanbedescribedasinEq.(1) [24,25],

d2N ee dMeedpT

=

2

α

3

π

1 Mee L

(

Mee

)

S

(

Mee

,

pT

)

dNγ dpT

.

(1) Here, L(Mee

)

=



1

4m2e Mee2

(

1

+

2m2 e

M2ee

)

,

α

is the fine structure con-stant, Mee is the e+e− pair mass, me is the electron mass, and S(Mee

,

pT

)

is a process-dependent factor accounting for differ-encesbetweenrealandvirtualphotonproduction.Weadoptedthe sameassumptionasinRef.[6],namelythatthefactor S(Mee

,

pT

)

isapproximately1for Mee

<

0

.

3 GeV

/c

2, pT

>

1 GeV

/c.

The un-certainty associated with thisassumption is expected [26] to be insignificant compared to the uncertainty in the data.Therefore, wedo notassign anysystematicuncertaintyforthisassumption. ForMee

>>

me,the factor L(Mee

)

isalso unity.Thus therelation becomes d2Nee dMeedpT

2

α

3

π

1 Mee dNγ dpT

.

(2)

Ifthere is directreal photon production ina given pT bin,then there should be a corresponding electron pair production which behaves like 1

/M

ee in the same pT bin, as indicated by Eq. (2). Thus, thedirect real photon productioncan be derived fromthe yieldoftheexcessdielectronpairs.

Thedirectphotonyieldsare extractedby fittingthedielectron invariant massspectra in the low massregion with two compo-nents.Inthetwo-componentfittingfunction

(

1

r)fcocktail

+

r fdir, fcocktail is the shape of the normalized hadronic cocktail mass distributionwithin theSTAR acceptance, fdir is the shape ofthe normalized,internalconversionmassdistributionfromdirect pho-tons within the STAR acceptance, and r is a fitting parameter. The first term

(

1

r)fcocktail in the fitting function represents

the background, namely the contribution from known hadronic

sources.Theseinclude

π

0,

η

,and

η

 Dalitzdecays:

π

0

γ

e+e,

η

γ

e+e−,and

η



γ

e+e−;vectormesondecays:

ω

π

0e+e

and

φ

η

e+e−; and heavy-flavor hadron semi-leptonic decays:

cc

¯

e+e−. Among those,

π

0 and

η

Dalitz decaysare dominant contributions.The secondtermr fdir represents thesignal, i.e. di-rectphoton internal conversion.The cocktail componentsare the sameasinRef. [13].We normalizeboth fcocktail and fdir todata pointsfor Mee

<

0

.

03 GeV

/c

2,separately.Inthismass regionthe shapesof fcocktail and fdirareidentical,thusthefittingfunctionin thismassregionisindependent ofr.The parameterr can be in-terpretedasthe ratioofdirectphoton toinclusivephoton yields. The range for the two-component fit to data is 0

.

10

<

Mee

<

0

.

28 GeV

/c

2.

Fig. 2 showsan example of the two-component fit for 2

.

0

<

pT

<

2

.

5 GeV

/c.

We note that there isa small peak structureat Mee

=

0

.

02 GeV

/c

2 in the ratio plots as indicated in panels (b) and(c).Thispeakcould beduetoanimperfectdescriptionofthe materialbudgetinthephotonconversionsimulations.Toestimate thiseffectonourresultswevariedtherangefor fcocktail and fdir tobe normalizedto the data from Mee

<

0

.

03 GeV

/c

2 to Mee

<

Fig. 2. (Coloronline.) Panel(a):Thetwo-componentfittingfunctionresultsforthe Au+Audielectronspectraat 2.0<pT<2.5 GeV/c.Theuncertaintiesinthe di-electronmass spectrumarethe quadraturesumofstatisticaland point-to-point systematicuncertainties.Thedot-dashedanddashedlinesrepresentthenormalized cocktailandinternalconversionfromdirectphotons,respectively.Thesolidlineis thefittothedataintherange0.10<Mee<0.28 GeV/c2.Thelightdashed-lineis theextrapolationofthefitfunctionoutsidethefitrange.Thedottedlinesrepresent differentcocktailcomponents.Thecc contribution¯ isomittedforclarity.Panel(b): ThedatadividedbythefitmodelasafunctionofMee.Panel(c):Thedatadivided bythecocktailcomponentasafunctionofMee.

0

.

05 GeV

/c

2.Theresultingdifferenceforthevirtualphotonyields comparedtothedefaultcaseis(0.2–1.0)%andisincludedaspart ofthesystematicuncertainties.

Withthe r valuederived foreach pT bin,one can obtain the directvirtualphotoninvariantyield d

2Ndir

γ (pT)

2πpTdpTdy asafunctionofpT. ThedetailedmethodologycanbefoundinRef.[27].FromEq.(2), thedirectvirtual photontermintwo-componentfitcan be writ-tenasEq.(3). Thenthe directvirtual photon invariant yieldasa functionofpT canbewritteninEq.(4):

2

α

dNdirγ

(

pT

)

3

π

MeedpT

=

r Fdir 1 Mee

,

(3) d2Ndir γ

(

pT

)

2

π

pTdpTdy

=

3r Fdir 4

α

pTdy

=

r d 2Ninc γ

(

pT

)

2

π

pTdpTdy

,

(4) in which d 2Ndir γ (pT) 2πpTdpTdy, d2Ninc γ (pT)

2πpTdpTdy, dpT, dy, and Fdir are the direct photon invariant yield, inclusive photon invariant yield, pT bin width, rapidity bin width, and fdir normalization factor, respec-tively.

We fit the dielectron continuum with statistical and system-atic uncertainties. The fit errors contribute to the statistical un-certainties forthe direct virtual photon yields. Systematic uncer-tainties fordirect virtual photonyields are mainlyfromthe

two-component fit, which is dominated by the uncertainties in the

(6)

Table 1

Sourcesandtheircontributionstotherelativesystematicuncertaintiesfordirectvirtualphotonyieldsindifferentcentralities.ThepT dependentuncertaintiesforeach sourcearelistedasarange.The15%overallsystematicuncertainty,labeled as“global”,isdominatedbytheefficiencycorrectionandispTindependent.Contributionsfrom

ηandωarenegligible.Thedifferencebetweenthedielectroncontinuumdistributionsinrun10andrun11resultsinanoverallsystematicuncertaintyforeachcentrality andislabeled as“RunDiff.”Thetotalsystematicuncertaintiesarethequadraticsumsofthedifferentcontributions.

Source Centrality 0–80% Centrality 0–20% Centrality 20–40% Centrality 40–60% Centrality 60–80%

Fit range 14% 13% 15% 9% 16% π0/η 2–43% 2–31% 1–35% 2–71% 1–70% cc¯ 0–6% 0–4% 0–4% 0–6% 0–5% Global 15% 15% 15% 15% 15% Normalization 0.2% 0.2% 0.1% 0.2% 0.1% RunDiff 2.2% 2.7% 0.8% 0.5% 1.2% Total 20–48% 19–37% 21–41% 17–73% 21–74%

byvarying thefitrangefrom0.10–0.28GeV/c2,to0.08–0.28,and to0.12–0.28GeV/c2.Extendingthefitrangeto Mee

<

0

.

36 GeV

/c

2 resultsinanegligiblesystematicuncertainty.Theserangesare se-lectedbasedonthreecriteria: pT

/M

ee



1,Mee farenoughaway fromthenormalizationregion (Mee

<

0

.

03 GeV

/c),

and availabil-ity of the data. The normalization range for fcocktail and fdir in thetwo-componentfitcontributeslessthan1% systematic uncer-tainty,asexplainedintheprevioussectionsandshownin

Table 1

. For the cocktail the uncertainties in the total cross sections for

π

[28] and charm (c

¯

c) [29] are 8% and 45%, respectively, inde-pendentofpT.Forthedefault

η

pT spectrum,aTsallisblast-wave modelprediction,withthefreeze-outparametersobtainedby fit-ting other hadrons simultaneously, is used. We then obtain the ratio of

η

over

π

as a function of pT andmatch it to the

η

/

π

ratiovalue measured by PHENIXat pT

=

5 GeV

/c

[6,30].Forthe systematic uncertainty study, we vary the

η

/

π

ratio by 13% as usedinRef.[6,30].Theuncertaintiesinthecrosssectionsfor com-bined

π

and

η

andcc,

¯

mentionedabove,resultinuncertaintiesof 2–43% and0–6%, respectively,decreasing asa function of pT for the direct virtual photon yields for 0–80% Au

+

Au collisions. We note that the PHENIX Collaboration does not use a Tsallis blast-wavemodelpredictiontoconstrainthe

η

pT spectrumatlow pT butuseaso-calledtransversemass(mT)scaling [6].Inour anal-ysis,we alsoobtainthedirectvirtual photonyields usingthemT scalingandcomparethem tothedefaultresultsbasedon a Tsal-lis blast-wavemodelprediction.Contributionsfrom

η

 and

ω

are negligibleforthehadroniccocktail,resultinginanegligible contri-butionforthesystematicuncertainties.Inaddition,the15%overall systematicuncertainty, dominated by the efficiencycorrection to thedielectroncontinuum,is pT independentforthedirectvirtual photonyieldsanddoesnotaffecttheratioofdirectphotonto in-clusivephoton yields.

Table 1

listssourcesandtheircontributions tothesystematicuncertaintiesforthedirectvirtualphotonyields indifferentcentralities.The totalsystematicuncertainties arethe quadraticsumsofthedifferentcontributions.

3. Results

Fig. 3 showsthe r value, the ratio ofdirect photon to inclu-sive photon yields compared with the ratio of TA A scaled Next-to-Leading-Order (NLO) perturbative QCD (pQCD) predictions to inclusivephoton yieldsasa function of pT.The curvesrepresent TA A d2σNLO γ (pT) 2πpTdpTdy

/

d2Ninc γ (pT)

2πpTdpTdy showingthescaledependenceofthe the-ory [31] in which TA A is the nuclear overlap factor,

d2σNLO

γ (pT) 2πpTdpTdy is the pT-differential invariant cross section for direct photons obtained from Ref. [32], and d

2Ninc

γ (pT)

2πpTdpTdy is the inclusive photon

pT-differential invariant yield. The data show consistency with NLO pQCD calculations within uncertainties at pT

>

6 GeV

/c.

A clear enhancement in data compared to the calculation for

Fig. 3. (Coloronline.) Theratioofdirectphotontoinclusivephotonyieldscompared withtheratioofTA AscaledNLOpQCDpredictionstoinclusivephotonyieldsfor 0–80%Au+Aucollisionsat√sN N=200 GeV.Thedatapointsfor1<pT<3 GeV/c and 5<pT<10 GeV/c are from minimum-biasdata and calorimeter-triggered data, respectively.ThethreecurvescorrespondtopQCDcalculationswith differ-ent renormalization(μR)andfactorizationscales(μF),assumingμR=μF=μ. Theerrorbarsandtheboxesrepresentthestatisticalandsystematicuncertainties, respectively.Theshadedbandsonthecurvesrepresentthesystematicuncertainties forinclusivephotonmeasurements,whichareabout15%.

1

<

pT

<

3 GeV

/c is

observed.ThedatapointatpT

=

5

.

5 GeV

/c is

about1.8

σ

higherthanthecalculation.

Fig. 4showscentralitydependenceoftheinvariantyieldsof di-rect photonsinAu

+

Aucollisions at

sN N

=

200 GeV. The p

+

p resultsare parameterizedbyapower-lawfunction [32],thesame one as used in Ref. [7]. The parameterized distribution is then scaled by TA A, and compared to the Au

+

Au results in different centralities, asshown by thesolid curves.The TA A values

calcu-lated from a Glauber model for0–20%, 20–40%, 0–80%, 40–60%,

and 60–80% Au

+

Au collisions at

sN N

=

200 GeV are

(

766

±

28

)/

42 mb,

(

291

±

30

)/

42 mb,

(

292

±

20

)/

42 mb,

(

91

±

20

)/

42 mb, and

(

22

±

8

)/

42 mb, respectively. For 1

<

pT

<

3 GeV

/c,

the Au

+

Auresultsare higherthanTA A scaled p

+

p results,whileat pT

>

6 GeV

/c the

Au

+

Auyieldisconsistentwiththescaled p

+

p expectation. We note that for 1

<

pT

<

2 GeV

/c,

the datapoints in40–60%and60–80%Au

+

Aucollisions havelargeruncertainties and are also consistent withthe scaled p

+

p expectations.Also shown in Fig. 4 are the direct virtual photon yields in different centralities whenweusethemT scalingtoconstrain the

η

/

π

ra-tio.Wenote thattheresultbasedonthemT scalingdiffersmore fromthedefaultcaseincentralcollisionswhilein60–80% periph-eralcollisionstheresultbasedonthemT scalingisidenticaltothe defaultcasesince theflow effectisnegligible onthe

η

pT spec-truminperipheralcollisions.

A comparison betweenSTAR Au

+

Audata and model

(7)

Fig. 4. (Coloronline.) Centralitydependenceofthedirectphotoninvariantyieldsas afunctionofpT inAu+Aucollisionsat√sN N=200 GeV.Thesolidcurves repre-sentapower-lawfittoPHENIX200GeVp

+

p results[7,32],scaledbyTA A.The bandsonthecurvesrepresenttheuncertaintiesintheparameterizationandinTA A. ThedashedlinesrepresentthedirectphotoninvariantyieldswhenweusethemT scalingtoconstraintheη/π ratio.Seethetextfordetaileddiscussions.Theerror barsandboxesrepresentthestatisticalandsystematicuncertainties,respectively.

Fig. 5.For thedirect photon productionboth models includethe contributions from QGP thermal radiation, in-medium

ρ

meson andothermesonicinteractionsinthehadronicgas,andprimordial contributions from the initial hard parton scattering. In Refs. [9, 33]anellipticthermalfireballevolutionisemployed forthe bulk medium.Non-thermalprimordialphotonsfromNbin collisionsare estimated from either a pQCD-motivated xT-scaling ansatz or a

parameterization of PHENIX p

+

p data. The sum of the

ther-malmedium and primordialcontributions forthe former caseis shownin Fig. 5. Using a parameterization ofPHENIX p

+

p

ref-erencedatawouldleadto slightlyhigherdirectphoton yields.In addition,a

(

2

+

1

)

-D hydrodynamicevolution (beam-direction in-dependent)isemployed forthebulk medium by Rappet al. and theresultsareconsistentwiththosefromthefireballevolution.In Ref.[34]a

(

2

+

1

)

-Dhydrodynamic evolutionisemployedforthe bulkmedium.Comparisonofthemodelanddatashowsthatinthe

pT range1–3 GeV/c thedominantsourcesarefromthermal radi-ation while,as pTincreases to5–6 GeV/c, theinitial hard-parton scatteringbecomes dominant. The comparisonshowsconsistency betweenbothmodelcalculationsandourmeasurementwithin un-certainties forall theother centralities except 60–80% centrality, wherehydrodynamiccalculationsmightnotbeapplicable.Wenote thatinthecentralitydeterminationthereisalargeuncertaintyin peripheralcollisions,asseenintheNbin uncertainty.

We integrate the direct virtual photon yields in different pT ranges,studytheir centralitydependences,andcomparethedata fromSTARand PHENIXaswell asthetheoretical model

calcula-tions described above. For the STAR measurements, we use two

pT bins: 1–3 GeV/c and 1.5–3 GeV/c. For the PHENIX

measure-mentsinRef.[6],thesamepT binsareusedfor0–20%and20–40% centralitybins.ForthePHENIXmeasurements inRef. [7],weuse 1–3.5 GeV/c and1.4–3.5 GeV/c. Different rangesare selected due totheavailabilityofthedata.Theoreticalmodelcalculationsshow thatthe contributionoftheyield inthe pT range3–3.5 GeV/c is 0.4% to the yield inthe range of 1–3.5 GeV/c. The contributions in the pT ranges 3–3.5 GeV/c and 1.4–1.5 GeV/c are 25% to the yieldin therange 1.4–3.5 GeV/c.Fig. 6shows thecomparisonof

Fig. 5. ThedirectphotoninvariantyieldsasafunctionofpT inAu+Aucollisionsat

sN N=200 GeV comparedtomodelpredictionsfromRappetal.[9,33]andPaquet etal.[34].Thestatisticalandsystematicuncertaintiesareshownbythebarsand boxes,respectively.

Fig. 6. (Color online.) Theexcess[panel(a)] and total[panel(b)] directphoton yields indifferent pT rangesas a functionofthe number ofparticipating nu-cleons(Npart)fromSTAR(circles)andPHENIX(triangles) inAu+Aucollisionsat

(8)

Table 2

Theχ2/N D F andp-valueincentralandmid-centralcollisionsbetweendataand

modelcalculationsfor1<pT<3 GeV/c.

Comparison χ2/N D F p-value

Excess yield

STAR data to Rapp 2.1/2 0.35 STAR data to Paquet 0.49/2 0.78 PHENIX internal conversion[6]to Rapp 15/1 1.1e−04 PHENIX internal conversion[6]to Paquet 20/1 7.7e−06 PHENIX data[7]to Rapp 17/2 2.0e−04 PHENIX data[7]to Paquet 24/2 6.1e−06 Total yield

STAR data to Rapp 1.4/2 0.50 STAR data to Paquet 0.55/2 0.76 PHENIX internal conversion[6]to Rapp 16/1 6.3e−05 PHENIX internal conversion[6]to Paquet 18/1 2.2e−05 PHENIX data[7]to Rapp 19/2 7.5e−05 PHENIX data[7]to Paquet 21/2 2.7e−05

thedataandthetheoreticalmodelcalculations[9,33,34].Panel(a) presentstheexcessyield,whichisthedirectphotonyieldwiththe

TA A scaled p

+

p contributionsubtracted,incomparisonwiththe thermalcomponentcontributionsinthemodelcalculations.Since the p

+

p references have a large uncertainty, we also compare the total direct photon yield to the sumof thermaland primor-dialcontributionsinthemodels,asshowninpanel (b).The com-parisonsindicate that our measurements of the excess andtotal yieldsare systematicallylowerthan thePHENIXresultsin0–20%, 20–40%, and 40–60% centrality bins. The model calculations are consistent withour measurements within uncertainties. We note thatthetwomodelcalculationsgivesimilartotalyieldsbut differ-entthermalcontributions.Forthecomparisonsbetweendataand modelcalculations,the

χ

2

/N D F and

p-valuearelistedin

Table 2

. Notethat themodels withthe same physics ingredients [35–38]

describe the dilepton measurements [12,13,39–42]. Models with additional,newphysicsingredients[43],whichattempttodescribe

thePHENIX photon data,should be compared tothe world-wide

photon and dilepton data for a consistency check. In the future, more precise measurements of direct photonsin both heavy ion andp

+

p collisionsareneededtofurtherdistinguishbetween dif-ferentmodelcalculations.

4. Conclusions

Wemeasurede+e− spectraandinferreddirectphoton produc-tionin Au

+

Aucollisions at STARat

sN N

=

200 GeV. The direct

photon measurement based onthe virtual photon method is

ex-tended to pT of 5–10 GeV/c. In the pT range 1–3 GeV/c the

direct photon invariant yield showsa clear excess in 0–20% and 20–40%central Au

+

Au overthe TA A scaled p

+

p results. Inthe pT rangeabove 6GeV/c there isno clearenhancementobserved forall the centralities. Modelpredictions which includethe con-tributions from thermal radiation and initial hard-processes are consistent with our direct photon yield within uncertainties in 0–20%, 20–40%, and 40–60% collisions. In 60–80% centrality bin, the model calculation results are systematically lower than our datafor2

<

pT

<

3 GeV

/c.

Acknowledgements

We thank the RHIC Operations Group and RCF at BNL, the

NERSC Center at LBNL,the KISTI Center in Korea, and the Open ScienceGridconsortiumforprovidingresourcesandsupport.This workwassupportedinpartbytheOfficeofNuclearPhysicswithin

theU.S.DOEOfficeofScience,theU.S.NSF,theMinistryof Educa-tion andScience oftheRussianFederation, NSFC,CAS,MOST and MOE of China, the NationalResearch Foundation of Korea, NCKU (Taiwan), GAandMSMT ofthe Czech Republic, FIASofGermany, DAE,DST,andUGCofIndia,theNationalScienceCentreofPoland, National Research Foundation, the Ministryof Science, Education andSportsoftheRepublicofCroatia,andRosAtomofRussia.We thankC.Gale,J.Paquet,R.Rapp,C.Shen,andH.vanHeesfor valu-ablediscussionsandforprovidingthetheoreticalcalculations. References

[1]G.David,R.Rapp,Z.Xu,Phys.Rep.462(2008)176.

[2]S.Afanasiev,etal.,PHENIXCollaboration,Phys.Rev.Lett.109(2012)152302. [3]S.Chatrchyan,etal.,CMSCollaboration,Phys.Lett.B710(2012)256. [4]J.Adam,etal.,ALICECollaboration,Phys.Lett.B754(2016)235. [5]S.Turbide,C.Gale,E.Frodermann,U.Heinz,Phys.Rev.C77(2008)024909. [6]A.Adare,etal.,PHENIXCollaboration,Phys.Rev.Lett.104(2010)132301. [7]A.Adare,etal.,PHENIXCollaboration,Phys.Rev.C91(2015)064904. [8]A.Adare,etal.,PHENIXCollaboration,Phys.Rev.Lett.109(2012)122302. [9]H.vanHees,C.Gale,R.Rapp,Phys.Rev.C84(2011)054906.

[10]C.Shen,U.Heinz,J.-F.Paquet,C.Gale,Phys.Rev.C89(2014)044910. [11]L.Adamczyk,etal.,STARCollaboration,Phys.Rev.C86(2012)024906. [12]L.Adamczyk,etal.,STARCollaboration,Phys.Rev.Lett.113(2014)022301. [13]L.Adamczyk,etal.,STARCollaboration,Phys.Rev.C92(2015)024912. [14]L.Adamczyk,etal.,STARCollaboration,Phys.Rev.C90(2014)064904. [15]K.H.Ackermann,etal.,Nucl.Instrum.MethodsA499(2003)624. [16]B.Bonner,etal.,Nucl.Instrum.MethodsA508(2003)181;

M.Shao,etal.,Nucl.Instrum.MethodsA492(2002)344; J.Wu,etal.,Nucl.Instrum.MethodsA538(2005)243. [17]M.Anderson,etal.,Nucl.Instrum.MethodsA499(2003)659. [18]M.Beddo,etal.,Nucl.Instrum.MethodsA499(2003)725. [19]H.Bichsel,Nucl.Instrum.MethodsA562(2006)154. [20]Y.Xu,etal.,Nucl.Instrum.MethodsA614(2010)28. [21]J.Adam,etal.,STARCollaboration,Phys.Lett.B616(2005)8. [22]M.Shao,etal.,Nucl.Instrum.MethodsA558(2006)419;

J.Adam,etal.,STARCollaboration,Phys.Rev.Lett.94(2005)062301. [23]H.Agakishiev,etal.,STARCollaboration,Phys.Rev.D83(2011)052006. [24]P.Lichard,Phys.Rev.D51(1995)6017.

[25]L.G.Landsberg,Phys.Rep.128(1985)301. [26] C.Gale,J.-F.Paquet,etal.,privatecommunications;

R.Rapp,etal.,privatecommunications.

[27]A.Adare,etal.,PHENIXCollaboration,Phys.Rev.C81(2010)034911. [28]B.I.Abelev,etal.,STARCollaboration,Phys.Rev.Lett.97(2006)152301. [29]L.Adamczyk,etal.,STARCollaboration,Phys.Rev.D86(2012)072013. [30]S.S.Adler,etal.,PHENIXCollaboration,Phys.Rev.C75(2007)024909. [31]L.E.Gordon,W.Vogelsang,Phys.Rev.D48(1993)3136.

[32]S.S.Adler,etal.,PHENIXCollaboration,Phys.Rev.Lett.98(2007)012002. [33]H.vanHees,M.He,R.Rapp,Nucl.Phys.A933(2015)256.

[34]J.-F.Paquet,etal.,Phys.Rev.C93(2016)044906; J.-F.Paquet,etal.,privatecommunications. [35]R.Rapp,Phys.Rev.C63(2001)054907;

H.vanHees,R.Rapp,Phys.Rev.Lett.97(2006)102301. [36]H.vanHees,R.Rapp,Nucl.Phys.A806(2008)339;

R.Rapp,Adv.HighEnergyPhys.2013(2013)148253. [37]O.Linnyk,etal.,Phys.Rev.C84(2011)054917;

O.Linnyk,etal.,Phys.Rev.C85(2012)024910. [38]H.Xu,etal.,Phys.Rev.C85(2012)024906.

[39]A.Adare,etal.,PHENIXCollaboration,Phys.Rev.C93(2016)014904. [40]L.Adamczyk,etal.,STARCollaboration,Phys.Lett.B750(2015)64. [41]R.Arnaldi,etal.,NA60Collaboration,Phys.Rev.Lett.96(2006)162302;

R.Arnaldi,etal.,NA60Collaboration,Phys.Rev.Lett.100(2008)022302; R.Arnaldi,etal.,NA60Collaboration,Eur.Phys.J.C59(2009)607; H.Specht,etal.,AIPConf.Proc.1322(2010)1.

[42]D. Adamova, et al., CERES/NA45 Collaboration, Phys. Rev. Lett. 91 (2003) 042301;

G.Agakichiev,etal.,CERESCollaboration,Eur.Phys.J.C41(2005)475; D.Adamova,etal.,CERES/NA45Collaboration,Phys.Lett.B666(2008)425. [43]G.Basar,D.E.Kharzeev,V.Skokov,Phys.Rev.Lett.109(2012)202303;

Riferimenti

Documenti correlati

For the dielectron excess mass spectrum, additional systematic uncertainties come from the subtraction of the cocktail contribu- tion and the acceptance correction. The

Compared to the hadronic cocktail shown as the dashed line in the figure, the excess yields exhibit a much weaker dependence on collision centrality, suggesting that had-

The STAR Collaboration presents for the first time two-dimensional di-hadron correlations with identified leading hadrons in 200 GeV central Au + Au and minimum-bias d + Au collisions

The primary gamma beams are generated by inverse Compton scattering between a high-brightness electron beam and a high energy laser pulse.. The characteristics of the gamma source

The per-trigger nuclear modification factor of γ dir -triggered away-side charged-hadron yields is independent of the trigger energy of the γ dir within our 25% systematic

Two different techniques were used to extract the polarization signal sin( 1 − φ p ∗ ) : the invariant mass method and the event plane method, both of which are often used in

The main reason to measure phosphonates in grape and wine is linked to the Fosetyl-Al (Fos-Al) residues and their legal definition and chemical determination since phosphonates

1 Being strong supporters of Open Science, we were pleased to provide, under the request of Dr Stróżyk, the complete data sets of two published randomized controlled trials