• Non ci sono risultati.

Jet-like correlations with direct-photon and neutral-pion triggers at s NN =200 GeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Jet-like correlations with direct-photon and neutral-pion triggers at s NN =200 GeV"

Copied!
8
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Jet-like

correlations

with

direct-photon

and

neutral-pion

triggers

at

s

N N

=

200 GeV

STAR

Collaboration

L. Adamczyk

a

,

J.K. Adkins

t

,

G. Agakishiev

r

,

M.M. Aggarwal

af

,

Z. Ahammed

aw

,

I. Alekseev

p

,

D.M. Anderson

aq

,

A. Aparin

r

,

D. Arkhipkin

c

,

E.C. Aschenauer

c

,

M.U. Ashraf

at

,

A. Attri

af

,

G.S. Averichev

r

,

X. Bai

g

,

V. Bairathi

ac

,

R. Bellwied

as

,

A. Bhasin

q

,

A.K. Bhati

af

,

P. Bhattarai

ar

,

J. Bielcik

j

,

J. Bielcikova

k

,

L.C. Bland

c

,

I.G. Bordyuzhin

p

,

J. Bouchet

s

,

J.D. Brandenburg

ak

,

A.V. Brandin

ab

,

I. Bunzarov

r

,

J. Butterworth

ak

,

H. Caines

ba

,

M. Calderón de la Barca Sánchez

e

,

J.M. Campbell

ad

,

D. Cebra

e

,

I. Chakaberia

c

,

P. Chaloupka

j

,

Z. Chang

aq

,

A. Chatterjee

aw

,

S. Chattopadhyay

aw

,

X. Chen

w

,

J.H. Chen

an

,

J. Cheng

at

,

M. Cherney

i

,

W. Christie

c

,

G. Contin

x

,

H.J. Crawford

d

,

S. Das

m

,

L.C. De Silva

i

,

R.R. Debbe

c

,

T.G. Dedovich

r

,

J. Deng

am

,

A.A. Derevschikov

ah

,

B. di Ruzza

c

,

L. Didenko

c

,

C. Dilks

ag

,

X. Dong

x

,

J.L. Drachenberg

v

,

J.E. Draper

e

,

C.M. Du

w

,

L.E. Dunkelberger

f

,

J.C. Dunlop

c

,

L.G. Efimov

r

,

J. Engelage

d

,

G. Eppley

ak

,

R. Esha

f

,

O. Evdokimov

h

,

O. Eyser

c

,

R. Fatemi

t

,

S. Fazio

c

,

P. Federic

k

,

J. Fedorisin

r

,

Z. Feng

g

,

P. Filip

r

,

Y. Fisyak

c

,

C.E. Flores

e

,

L. Fulek

a

,

C.A. Gagliardi

aq

,

D. Garand

ai

,

F. Geurts

ak

,

A. Gibson

av

,

M. Girard

ax

,

L. Greiner

x

,

D. Grosnick

av

,

D.S. Gunarathne

ap

,

Y. Guo

al

,

S. Gupta

q

,

A. Gupta

q

,

W. Guryn

c

,

A.I. Hamad

s

,

A. Hamed

aq

,

R. Haque

ac

,

J.W. Harris

ba

,

L. He

ai

,

S. Heppelmann

ag

,

S. Heppelmann

e

,

A. Hirsch

ai

,

G.W. Hoffmann

ar

,

S. Horvat

ba

,

T. Huang

bb

,

B. Huang

h

,

X. Huang

at

,

H.Z. Huang

f

,

P. Huck

g

,

T.J. Humanic

ad

,

G. Igo

f

,

W.W. Jacobs

o

,

H. Jang

u

,

A. Jentsch

ar

,

J. Jia

c

,

K. Jiang

al

,

E.G. Judd

d

,

S. Kabana

s

,

D. Kalinkin

o

,

K. Kang

at

,

K. Kauder

ay

,

H.W. Ke

c

,

D. Keane

s

,

A. Kechechyan

r

,

Z.H. Khan

h

,

D.P. Kikoła

ax

,

I. Kisel

l

,

A. Kisiel

ax

,

L. Kochenda

ab

,

D.D. Koetke

av

,

L.K. Kosarzewski

ax

,

A.F. Kraishan

ap

,

P. Kravtsov

ab

,

K. Krueger

b

,

L. Kumar

af

,

M.A.C. Lamont

c

,

J.M. Landgraf

c

,

K.D. Landry

f

,

J. Lauret

c

,

A. Lebedev

c

,

R. Lednicky

r

,

J.H. Lee

c

,

X. Li

al

,

Y. Li

at

,

C. Li

al

,

W. Li

an

,

X. Li

ap

,

T. Lin

o

,

M.A. Lisa

ad

,

F. Liu

g

,

Y. Liu

aq

,

T. Ljubicic

c

,

W.J. Llope

ay

,

M. Lomnitz

s

,

R.S. Longacre

c

,

X. Luo

g

,

S. Luo

h

,

G.L. Ma

an

,

L. Ma

an

,

Y.G. Ma

an

,

R. Ma

c

,

N. Magdy

ao

,

R. Majka

ba

,

A. Manion

x

,

S. Margetis

s

,

C. Markert

ar

,

H.S. Matis

x

,

D. McDonald

as

,

S. McKinzie

x

,

K. Meehan

e

,

J.C. Mei

am

,

Z.W. Miller

h

,

N.G. Minaev

ah

,

S. Mioduszewski

aq

,

D. Mishra

ac

,

B. Mohanty

ac

,

M.M. Mondal

aq

,

D.A. Morozov

ah

,

M.K. Mustafa

x

,

B.K. Nandi

n

,

Md. Nasim

f

,

T.K. Nayak

aw

,

G. Nigmatkulov

ab

,

T. Niida

ay

,

L.V. Nogach

ah

,

S.Y. Noh

u

,

J. Novak

aa

,

S.B. Nurushev

ah

,

G. Odyniec

x

,

A. Ogawa

c

,

K. Oh

aj

,

V.A. Okorokov

ab

,

D. Olvitt Jr.

ap

,

B.S. Page

c

,

R. Pak

c

,

Y.X. Pan

f

,

Y. Pandit

h

,

Y. Panebratsev

r

,

B. Pawlik

ae

,

H. Pei

g

,

C. Perkins

d

,

P. Pile

c

,

J. Pluta

ax

,

K. Poniatowska

ax

,

J. Porter

x

,

M. Posik

ap

,

A.M. Poskanzer

x

,

N.K. Pruthi

af

,

M. Przybycien

a

,

J. Putschke

ay

,

H. Qiu

x

,

A. Quintero

s

,

*

Correspondingauthor.

E-mailaddress:nihar@rcf.rhic.bnl.gov(N.R. Sahoo). http://dx.doi.org/10.1016/j.physletb.2016.07.046

(2)

S. Ramachandran

t

,

R.L. Ray

ar

,

R. Reed

y

,

H.G. Ritter

x

,

J.B. Roberts

ak

,

O.V. Rogachevskiy

r

,

J.L. Romero

e

,

L. Ruan

c

,

J. Rusnak

k

,

O. Rusnakova

j

,

N.R. Sahoo

aq

,

,

P.K. Sahu

m

,

I. Sakrejda

x

,

S. Salur

x

,

J. Sandweiss

ba

,

A. Sarkar

n

,

J. Schambach

ar

,

R.P. Scharenberg

ai

,

A.M. Schmah

x

,

W.B. Schmidke

c

,

N. Schmitz

z

,

J. Seger

i

,

P. Seyboth

z

,

N. Shah

an

,

E. Shahaliev

r

,

P.V. Shanmuganathan

s

,

M. Shao

al

,

A. Sharma

q

,

B. Sharma

af

,

M.K. Sharma

q

,

W.Q. Shen

an

,

Z. Shi

x

,

S.S. Shi

g

,

Q.Y. Shou

an

,

E.P. Sichtermann

x

,

R. Sikora

a

,

M. Simko

k

,

S. Singha

s

,

M.J. Skoby

o

,

D. Smirnov

c

,

N. Smirnov

ba

,

W. Solyst

o

,

L. Song

as

,

P. Sorensen

c

,

H.M. Spinka

b

,

B. Srivastava

ai

,

T.D.S. Stanislaus

av

,

M. Stepanov

ai

,

R. Stock

l

,

M. Strikhanov

ab

,

B. Stringfellow

ai

,

M. Sumbera

k

,

B. Summa

ag

,

Y. Sun

al

,

Z. Sun

w

,

X.M. Sun

g

,

B. Surrow

ap

,

D.N. Svirida

p

,

Z. Tang

al

,

A.H. Tang

c

,

T. Tarnowsky

aa

,

A. Tawfik

az

,

J. Thäder

x

,

J.H. Thomas

x

,

A.R. Timmins

as

,

D. Tlusty

ak

,

T. Todoroki

c

,

M. Tokarev

r

,

S. Trentalange

f

,

R.E. Tribble

aq

,

P. Tribedy

c

,

S.K. Tripathy

m

,

O.D. Tsai

f

,

T. Ullrich

c

,

D.G. Underwood

b

,

I. Upsal

ad

,

G. Van Buren

c

,

G. van Nieuwenhuizen

c

,

M. Vandenbroucke

ap

,

R. Varma

n

,

A.N. Vasiliev

ah

,

R. Vertesi

k

,

F. Videbæk

c

,

S. Vokal

r

,

S.A. Voloshin

ay

,

A. Vossen

o

,

H. Wang

c

,

F. Wang

ai

,

Y. Wang

g

,

J.S. Wang

w

,

G. Wang

f

,

Y. Wang

at

,

J.C. Webb

c

,

G. Webb

c

,

L. Wen

f

,

G.D. Westfall

aa

,

H. Wieman

x

,

S.W. Wissink

o

,

R. Witt

au

,

Y. Wu

s

,

Z.G. Xiao

at

,

W. Xie

ai

,

G. Xie

al

,

K. Xin

ak

,

N. Xu

x

,

Q.H. Xu

am

,

Z. Xu

c

,

J. Xu

g

,

H. Xu

w

,

Y.F. Xu

an

,

S. Yang

al

,

Y. Yang

g

,

C. Yang

al

,

Y. Yang

w

,

Y. Yang

bb

,

Q. Yang

al

,

Z. Ye

h

,

Z. Ye

h

,

L. Yi

ba

,

K. Yip

c

,

I.-K. Yoo

aj

,

N. Yu

g

,

H. Zbroszczyk

ax

,

W. Zha

al

,

Z. Zhang

an

,

J.B. Zhang

g

,

S. Zhang

an

,

S. Zhang

al

,

X.P. Zhang

at

,

Y. Zhang

al

,

J. Zhang

w

,

J. Zhang

am

,

J. Zhao

ai

,

C. Zhong

an

,

L. Zhou

al

,

X. Zhu

at

,

Y. Zoulkarneeva

r

,

M. Zyzak

l

aAGHUniversityofScienceandTechnology,FPACS,Cracow30-059,Poland bArgonneNationalLaboratory,Argonne,IL 60439,UnitedStates cBrookhavenNationalLaboratory,Upton,NY 11973,UnitedStates dUniversityofCalifornia,Berkeley,CA 94720,UnitedStates eUniversityofCalifornia,Davis,CA 95616,UnitedStates fUniversityofCalifornia,LosAngeles,CA 90095,UnitedStates gCentralChinaNormalUniversity,Wuhan,Hubei430079,China hUniversityofIllinoisatChicago,Chicago,IL 60607,UnitedStates iCreightonUniversity,Omaha,NE 68178,UnitedStates

jCzechTechnicalUniversityinPrague,FNSPE,Prague 11519,CzechRepublic kNuclearPhysicsInstituteASCR,25068Prague,CzechRepublic

lFrankfurtInstituteforAdvancedStudiesFIAS,Frankfurt60438,Germany mInstituteofPhysics,Bhubaneswar751005,India

nIndianInstituteofTechnology,Mumbai400076,India oIndianaUniversity,Bloomington,IN 47408,UnitedStates

pAlikhanovInstituteforTheoreticalandExperimentalPhysics,Moscow117218,Russia qUniversityofJammu,Jammu180001,India

rJointInstituteforNuclearResearch,Dubna 141980,Russia sKentStateUniversity,Kent,OH 44242,UnitedStates

tUniversityofKentucky,Lexington,KY 40506-0055,UnitedStates

uKoreaInstituteofScienceandTechnologyInformation,Daejeon305-701,RepublicofKorea vLamarUniversity,Beaumont,TX 77710,UnitedStates

wInstituteofModernPhysics,ChineseAcademyofSciences,Lanzhou,Gansu730000,China xLawrenceBerkeleyNationalLaboratory,Berkeley,CA 94720,UnitedStates

yLehighUniversity,Bethlehem,PA 18015,UnitedStates zMax-Planck-InstitutfurPhysik,Munich80805,Germany aaMichiganStateUniversity,EastLansing,MI 48824,UnitedStates abNationalResearchNuclearUniversity MEPhI,Moscow115409,Russia acNationalInstituteofScienceEducationandResearch,Bhubaneswar751005,India adOhioStateUniversity,Columbus,OH 43210,UnitedStates

aeInstituteofNuclearPhysicsPAN,Cracow31-342,Poland afPanjabUniversity,Chandigarh160014,India

agPennsylvaniaStateUniversity,UniversityPark,PA 16802,UnitedStates ahInstituteofHighEnergyPhysics,Protvino142281,Russia

aiPurdueUniversity,WestLafayette,IN 47907,UnitedStates ajPusanNationalUniversity,Pusan46241,RepublicofKorea akRiceUniversity,Houston,TX 77251,UnitedStates

alUniversityofScienceandTechnologyofChina,Hefei,Anhui230026,China amShandongUniversity,Jinan,Shandong250100,China

anShanghaiInstituteofAppliedPhysics,ChineseAcademyofSciences,Shanghai201800,China aoStateUniversityof NewYork,StonyBrook,NY11794,UnitedStates

(3)

auUnitedStatesNavalAcademy,Annapolis,MD 21402,UnitedStates avValparaisoUniversity,Valparaiso,IN 46383,UnitedStates awVariableEnergyCyclotronCentre,Kolkata700064,India axWarsawUniversityofTechnology,Warsaw00-661,Poland ayWayneStateUniversity,Detroit,MI 48201,UnitedStates

azWorldLaboratoryforCosmologyandParticlePhysics(WLCAPP),Cairo11571,Egypt baYaleUniversity,NewHaven,CT 06520,UnitedStates

bbNationalChengKungUniversity,Tainan70101,Taiwan

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory: Received7April2016 Accepted18July2016 Availableonline22July2016 Editor:V.Metag

Azimuthal correlations of charged hadrons with direct-photon (

γ

dir) and neutral-pion (

π

0) trigger

par-ticles are analyzed in central Au+Au and minimum-bias p+p collisions

at

sN N=200 GeV in the

STAR experiment. The charged-hadron per-trigger yields at mid-rapidity from central Au+Au collisions are compared with p+p collisions

to

quantify the suppression in Au+Au collisions. The suppression of the away-side associated-particle yields per

γ

dir trigger is independent of the transverse momentum

of the trigger particle (ptrig

T ), whereas the suppression is smaller at low transverse momentum of the

associated charged hadrons (passoc

T ). Within uncertainty, similar levels of suppression are observed for

γ

dir and

π

0 triggers as a function of zT (≡passocT /p

trig

T ). The results are compared with

energy-loss-inspired theoretical model predictions. Our studies support previous conclusions that the lost energy reappears predominantly at low transverse momentum, regardless of the trigger energy.

©2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Overthepastdecade,experimentsattheRelativisticHeavyIon Collider (RHIC) at BNL have studied the hot and dense medium createdinheavy-ioncollisions.Thesuppressionofhigh-transverse momentum(pT)inclusivehadrons[1–3],indicativeofjet

quench-ing, corroborates the conclusion that the medium created is

opaqueto coloredenergetic partons[4–7].Thisphenomenon can beunderstoodasaresultofthemedium-inducedradiativeenergy loss of a hard-scattered parton as it traverses the Quark Gluon Plasma(QGP)createdinheavy-ioncollisions[8,9].Theangular cor-relationofchargedhadronswithrespecttoa direct-photon(

γ

dir) trigger was proposed as a promising probe to study the mech-anisms of parton energy loss [10]. The presence of a “trigger” particle,havingpT greaterthansomeselectedvalue,servesaspart oftheselectioncriteriatoanalyzetheeventforahardscattering. Directphotonsareproducedduringtheearlystageofthecollision, throughleading-orderpQCDprocessessuchasquark–gluon Comp-ton scattering (qg

q

γ

) and quark–antiquark pair annihilation (qq

¯

g

γ

).Intheseprocessesthetransverseenergyofthetrigger photonapproximates theinitial pT oftheoutgoing recoilparton, beforetherecoiling(“away-side”)partonlikelylosesenergywhile traversingthemediumandfragmentsintoajet.Thejet-likeyields associatedwithatriggerparticleareestimatedbyintegratingthe correlatedyieldsofchargedhadronsoverazimuthaldistancefrom thetrigger particle(

). Any suppressionof thecharged-hadron per-triggeryieldsintheaway-sidejetsincentralAu

+

Aucollisions isthenquantifiedbycontrastingtotheper-triggeryieldsmeasured in p

+

p collisions, via theratio ofintegratedyields, IA A [11,12] (defined inEq. (8)). When requiring a hadron trigger (suchas a

π

0),the p

T oftherecoilingparton(andhencetheaway-sidejet) isnotaswell approximatedby thetransverseenergyofthe trig-ger.For example, the PYTHIA Monte Carlo simulator [13] shows that, in p

+

p collisions at

sN N

=

200 GeV, a

π

0 trigger with

pT

>

12 GeV

/

c carries, on average, only 80

±

5% ofthe original scatteredparton’s pT. Thispercentage fromPYTHIAis consistent withthevaluesextractedfromthisanalysis,asdescribedbelow.

Despitethiscomplication,itiscompellingtocomparethe sup-pressionfor

γ

dir triggerswiththatfor

π

0 triggersbecauseofthe expecteddifferences ingeometrical biases atRHIC energies [14].

While the

π

0 trigger is likely to have been produced near the

surface ofthe medium, the

γ

dir trigger doesnot sufferthe same bias, since the photon mean free path is much larger than the size ofthe medium. Comparing

γ

dir- and

π

0-triggered yields of-fersfurtheropportunitiestoexplorethegeometricbiasesandtheir interplaywithpartonenergyloss.Anext-to-leadingorder pertur-bativeQCDcalculation[15]suggeststhatproductionofhadronsat different zT is also affectedby differentgeometric biases, where

zT

passocT

/

p trig

T (passocT and p trig

T are transversemomentaof asso-ciatedandtriggeredparticles,respectively)representstheratioof thetransversemomentumcarriedby achargedhadron inthe re-coiljettothatofthetriggerparticle.Thehigh-zT hadronsinajet recoiling from a

γ

dir preferentially originate from a parton scat-teringneartheaway-sidesurfaceofthemedium,sincescatterings deeperinthemedium willresultinastrongerdegradationofthe high-momentumcomponentsofthejet.Thehigh-zT hadronsina jetrecoilingfroma

π

0 preferentiallyemergefromscatterings

tan-gentialto the surface fromthe alreadybiasedsurface-dominated triggerjets(which isconsistent withobservationsin [16]). These two mechanisms turn out to lead to the same level of suppres-sion[15].Onlyatlow zT doesthefullsamplingofthevolumeby

γ

dir triggersshow apredicteddifferencefromthatofthe surface-dominated

π

0triggers.

Anadditionaleffectatlow zT maybetheredistributionofthe parton’slostenergywithinthelow-momentumjetfragments[17], which is not included in the calculation [15] described above. This was studied by the PHENIX Collaboration, which found an enhancement at low zT andlarge angles, fordirect photon trig-gers with ptrigT in the range of 5–9 GeV

/

c at

sN N

=

200 GeV in themost central Au

+

Au collisions [11].Enhancements dueto thismechanismwouldbeexpectedinhadronsrecoilingfromother triggersaswell,suchas

π

0 orjets.ApreviousSTARmeasurement

ofhadronsassociated withareconstructed jet has shownan en-hancementfor pT

<

2 GeV

/

c,fortwoclassesofjetswithbroadly separatedenergyscales,inwhichtheenhancementatlow pT bal-ancesthesuppressionathigh pT [18].

(4)

away-Fig. 1. (Coloronline.)Theazimuthalcorrelationfunctionsofchargedhadronspertriggerforπ0

rich(opencircles)andγrich(filledcircles)triggers,measuredincentral(0–12%)

Au+Aucollisionsandminimum-biasp+p collisions.Panels(a)and(c)areforAu+Auand p

+

p collisions,respectively,in1.2<passoc

T <3 GeV/c andpanels(b)and(d)

arethatfor3<passoc

T <5 GeV/c.Thedashedcurvesindicatethebackground(chargedhadronsnotcorrelatedwiththejet),shownonlyforπrich0 triggers,andthearrows

indicatetherangeoverwhichtheaway-sideisintegrated(greenandvioletcoloredarrowsrepresent

|φ −

π| ≤0.6 and

|φ −

π| ≤1.4 respectively).

sidemainly comesfromgluonjets[21].Thisisincontrasttothe away-side ofa

γ

dir trigger, which mainly comes fromquark jets, since at leading order a photon does not couple with a gluon. Thusit isexpectedthat,onaverage,theaway-side parton associ-atedwitha

π

0 suffersmoreenergylossthanthatofa

γ

dir dueto theadditionalcolorfactorfromgluons.Bycomparingthe suppres-sion ofaway-side associated hadrons for

γ

dir triggers to that for

π

0 triggers, onecangain informationaboutboththepath-length

andthecolor-factordependenceofpartonenergyloss.

Thismanuscriptisorganized asfollows.The detectorsetup of theSTARexperimentisdiscussedinSec.2.Thetransverse shower-shape analysis used to discriminate between

π

0 and

γ

dir, and the procedures to extract the charged-hadron spectra,associated with

π

0 and

γ

dir triggers,arediscussedinSec. 3.Theper-trigger charged-hadronyieldsarepresentedasafunctionofzT,inSec.4. The dependences of the suppression of these yields in central Au

+

Au collisions relative to those in minimum-bias p

+

p

col-lisions on both the trigger energy and the associated transverse momentumare discussed,withcomparisonsto theoreticalmodel predictions.Finally,inSec.5,ourobservationsaresummarized.

2. Experimentalsetup

Thedatawere takenby theSolenoidal TrackeratRHIC (STAR) experimentin2011and2009 forAu

+

Auand p

+

p collisions at

sN N

=

200 GeV, respectively. Using the Barrel Electromagnetic Calorimeter(BEMC) [22] to selecteventscontaining a high-pT

γ

or

π

0,theSTARexperimentcollected anintegratedluminosity of

2

.

8 nb−1ofAu

+

Aucollisionsand23 pb−1ofp

+

p collisions.STAR provides2

π

azimuthalcoverageandwidepseudo-rapidity(

η

) cov-erage. The Time Projection Chamber (TPC) is the main charged-particletrackingdetector[23],providingtrackinformationforthe chargedhadronswith

|

η

|

<

1

.

0. Thecentrality selection is deter-mined from the charged-particle multiplicity in the TPC within

|

η

|

<

0

.

5.TheBEMCisasamplingcalorimeter,andeach calorime-termoduleconsistsofalead-scintillator structureandan embed-dedwirechamber, theBarrelShower MaximumDetector(BSMD). TheBSMDissituatedapproximatelyfiveradiationlengthsfromthe front face of the BEMC. BEMC towers (each covering 0.05 units in

η

and

φ

) provideameasurementoftheenergyof electromag-neticclusters,whereastheBSMD,duetoitshighgranularity(0.007

unitsin

η

and

φ

),provideshighspatialresolutionforthecenterof a cluster andthe transversedevelopment of theshower. Electro-magneticclustersareconstructedfromtheresponseofoneortwo towers, depending on the location ofthe centroidas determined by theBSMD.Thetransverseextentoftheshower isusedto dis-tinguishbetween

γ

dir showersanddecayphotonsfrom

π

0.Details ofthe

π

0

/

γ

discriminationarediscussedinthenextsection.

3. Analysisdetails

Events having a transverse energy in a BEMC cluster ET

>

8 GeV, with

|

η

|

0

.

9, are selected for this analysis. In order to distinguish a

π

0,which athigh p

T predominately decaysto two photonswithasmallopeningangle,fromasingle-photoncluster, a transverse shower-shapeanalysis isperformed. In thismethod, the overall BEMC cluster energy (Ecluster), the individual BSMD stripenergies(ei),andthedistancesofthestrips(ri)fromthe cen-teroftheclusterareusedtoconstructthe“TransverseShower Pro-file” (TSP). The TSPis definedas, TSP

=

Ecluster/



ieir1i.5 [12,24]. The

π

0

rich (nearly pure sample of

π

0) and

γ

rich (enhanced frac-tion of

γ

dir) samples are selected by requiring TSP

<

0

.

08 and 0

.

2

<

TSP

<

0

.

6, respectively, in both p

+

p and Au

+

Au colli-sions. The

π

0

rich sample isestimatedtobe

95% pure

π

0, deter-mined fromstudiesofsimulated

π

0 and

γ

dir embedded intoreal data.The

azimuthalcorrelationsareconstructedwith charged-hadrontrackswithin1

.

2 GeV

/

c

<

passocT

<

ptrigT and

|

η

|

<

1

.

0.Both trigger samples are selected with 12

<

ptrigT

<

20 GeV

/

c (or 8

<

ptrigT

<

20 GeV

/

c for the studyof the

γ

dir ptrigT dependence) and

|

η

|

<

0

.

9. There is an additional requirement that no track with momentum greaterthan3 GeV/c is pointingtothe triggertower. This track-rejection cut prevents significant contamination of the measuredBEMCenergyofthetriggerparticle.ThepT thresholdof thetrack-rejectioncutwasvariedbetween1and4 GeV/c,asapart ofthesystematicstudies,andthevariationsshowednosignificant differenceintheaway-sidecharged-hadronyields.

The correlation functionsrepresent the number of associated charged hadrons (Nassoc) per trigger particle,

(

1

/

Ntrig)(dNassoc/

(5)

oftheazimuthalcorrelationfunctionsfor

γ

rich- and

π

rich0 -triggered associated chargedhadrons, for different passocT ranges, is shown for the 12% most central Au

+

Au and minimum-bias p

+

p

col-lisions. In the lower passocT bins, the uncorrelated background (shownin Fig. 1as dashed curves) ishigher than that inhigher

passocT bins, especiallyinAu

+

Aucollisions, whereasin p

+

p

col-lisions, this uncorrelated background is small in all passocT bins. On the near-side (

0) the

π

0

rich-triggered correlated yields arelargerthan thosefor

γ

rich triggers,asexpected. Thenon-zero near-side

γ

rich-triggered yields are dueto the backgroundin the

γ

richtriggersampleandareusedtodeterminetheamountof back-ground,asfurtherdiscussedbelow.Inthehigherpassoc

T range,itis alsoobserved that the away-side (

π

)

γ

rich-triggered yields aresmaller thanthose ofthe

π

0

rich triggers, whichcanbe under-stood since the

π

0 triggers originate from the fragmentation of

partonsgenerallyhaving a higherenergythan the corresponding direct-photontriggers.

Thebackgroundsubtractionandthepair-acceptancecorrection (in

)havebeenperformedusingamixed-eventtechnique (see

e.g.[16])foreachzT bin.Eventmixingisperformedamongevents havingsimilarvertexpositionandcentralityclass.In Au

+

Au col-lisions, the background (i.e. what is not correlated with the jet) may still contain azimuthal correlations due to flow. The distri-butions of background pairs for different zT bins are therefore modulatedwiththesecond Fourier(elliptic flow)coefficient (v2)

oftheparticleazimuthaldistributionmeasuredwithrespecttothe eventplane. It is given by B

[

1

+

2



vtrig2



vassoc2

cos

(

2

φ)

]

, where B representsthelevel ofbackgroundpairs andisdetermined as-sumingapplicabilityofthe“Zero-Yieldat1radian”(ZYA1)method, avariationon the“Zero-YieldatMinimum”(ZYAM) method[25]. The



vtrig2

(



v2assoc

) istheaveragevalueofthesecond-order flow coefficient [26] of the trigger (associated) particle at the mean

ptrigT (passocT )ineachzT bin.Theflowterminthebackground sub-tractiononlyhasasignificanteffectforAu

+

AucollisionsatlowzT, andthehigherorderflowcomponentsareignoredastheir magni-tudesaresmallinthemostcentralAu

+

Aucollisions.In p

+

p

col-lisions,B isdeterminedassumingaflat(uncorrelated)background. The trigger-associated charged-hadron yields are determined from the azimuthal correlation functions, per trigger particle (

π

0

richand

γ

richsamples),per

,bothonthenearside(

0) andthe away side (

π

). In this analysis, the near-side and away-sideyieldsareextractedbyintegratingthecorrelation func-tions, for given zT bins, over

|φ|

1

.

4 and

|φ −

π

|

1

.

4, respectively.Therawnear-sideandaway-side associated charged-hadronyields arecorrected fortheassociated-particleefficiencies

determined by embedding simulated charged hadrons into real

events.Theaveragetrackingefficienciesforchargedhadrons(with

passocT

>

1

.

2 GeV

/

c) aredeterminedvia detectorsimulations tobe around70% and90% forcentralAu

+

Auandminimum-bias p

+

p

collisions,respectively.The

π

0-triggeredyieldsarecalculatedfrom

the

π

0

rich-triggered correlation functions, with no further correc-tion forthe contamination inthe trigger sample, becauseof the highpurityinthe

π

0

richsample.

Away-side charged-hadron yields for

γ

dir triggers are deter-minedbyassumingzeronear-sideyieldfor

γ

dirtriggers,andusing thefollowingexpression

Yγdir+h

=

Yγaway rich+h

RY away π0 rich+h 1

R

.

(1) Here Yγaway rich+h (Y away π0 rich+h

) represents the away-side yield of

γ

rich (

π

0

rich),andR isgivenby

R

=

Ynear γrich+h Ynear π0 rich+h

,

(2)

the ratio of the near-side yield in the

γ

rich-triggered correlation function to the near-side yield in the

π

0

rich-triggered correlation function.Thismeans

1

R

=

N

γdir

Nγrich

,

(3)

whereNγdir (Nγrich) isthenumberof

γ

dir (

γ

rich) triggers.The val-uesof1

R,representingthefractionsofsignalinthe

γ

richtrigger

sample, are found to be 40% and 70% for p

+

p and the

cen-tralAu

+

Aucollisions,respectively.Usingthistechnique,almostall sourcesofbackground(includingphotonsfromasymmetrichadron decaysandfragmentationphotons)canberemoved,assumingthat theircorrelationsaresimilartothosefor

π

0 triggers.This

assump-tionwas testedusingPYTHIAsimulations,withdecayphotonsas thetriggerparticles,anditwasfoundtobevalidtowithinatleast 15%(thestatisticalprecisionofthePYTHIAstudy).

Systematicuncertainties includetheeffectsoftrack-quality se-lectioncriteria,neutral-clusterselectioncriteria,

π

0

/

γ

discrimina-tion(TSP)cutsforthe

π

0

richand

γ

richsamples,thesizeoftheZYA1 normalization region, the v2 uncertainty range, and the

yield-integrationwindows.All ofthesesources ofuncertaintyare eval-uated foreachdata pointindividually.Forgroupsofsources that arenot independent,such asdifferentyield-extractionconditions, themaximumdeviationamongthedifferentconditionsistakenas thecontributiontothesystematicerror.Thesystematic uncertain-tiesfromsourcesthatareconsideredtobeindependentareadded inquadrature.The

π

0

/

γ

discrimination uncertaintydominatesin

most zT bins, varying between10and25%. Thetrack-quality se-lection criteria typically contributes a 5–10% uncertainty. In the lowest zT bin in Au

+

Au collisions for

π

0 triggers, the yield ex-traction uncertainty dominateswith asmuch as 50% uncertainty in the near-side yield. The variation ofthe pT threshold for the track-rejectioncutfortheneutral-towertriggerselectiontypically hasanegligibleeffect.

4. Resultsanddiscussion

In this measurement, both

π

0 and

γ

dir triggers are required to be within a range of 12

<

ptrigT

<

20 GeV

/

c, or 8

<

ptrigT

<

20 GeV

/

c for the study of the ptrigT dependence. In contrast to a

γ

dir trigger, a

π

0 trigger carries a fraction of the initial par-ton energy of the hard-scattered parton. In this case, the zT for a trigger

+

associated-particle pair is only a loose approximation of the fractional parton energy carried by the jet constituent. Theintegratedaway-sideandnear-sidecharged-hadronyieldsper

π

0 trigger, D

(

z

T

)

,areplottedasafunctionofzT,bothforAu

+

Au (0–12% centrality) and p

+

p collisions, in Fig. 2. Yields of the away-side associated chargedhadrons are suppressed, in Au

+

Au relative to p

+

p, at all zT except in the low zT region. On the otherhand,nosuppressionisobservedonthenear-sideinAu

+

Au, relativetop

+

p collisions,duetothesurfacebiasimposedby trig-geringonahigh-pT

π

0.

Fig. 3showstheaway-side D

(

zT

)

for

γ

dir triggers,asextracted fromEq.(1),asafunctionofzT forcentralAu

+

Auand minimum-bias p

+

p collisions.The

π

0-triggered away-side charged-hadron

yieldscannotbedirectlycomparedtothoseof

γ

dir triggers,asthe

π

0 trigger isa fragment of a higherenergy parton. Onecan

(6)

Fig. 2. (Coloronline.)ThezT dependenceofπ0-h±away-side(a)andnear-side(b)

associatedcharged-hadronyieldspertriggerforAu+Auat0–12% centrality(filled symbols)and p

+

p (opensymbols)collisionsat √sN N=200 GeV.Verticallines

representthestatisticalerrors,andtheverticalextentoftheboxesrepresents sys-tematicuncertainties.

Fig. 3. (Coloronline.)ThezT dependenceofγdir-h±away-sideassociated

charged-hadronyieldspertriggerforAu+Auat0–12% centrality(filleddiamonds)andp+p (opendiamonds)collisions.Verticallinesrepresentstatisticalerrors,andthe verti-calextentoftheboxesrepresentssystematicuncertainties.



passocT

ptrigT

=

0

.

17

±

0

.

04

.

(4) From that, thefraction ofenergy carriedby the

π

0 trigger, with ptrigT

=

12–20 GeV

/

c,isestimatedtobe

ptrigT

pTjet-charged

=

85

±

3%

,

(5)

wherepTjet-charged isequaltotheptrigT plusthetotal pT carriedby the near-sideassociated chargedhadrons. Thisis consistent with whatisobtainedwhenapplyingthesameanalysison

π

0-triggered

charged-hadroncorrelationsfromaPYTHIAsimulation.InPYTHIA, the neutral associated energy can also be accounted for, giving usanestimate ofthefractional energycarriedby the

π

0 trigger,

whenaccountingforallassociatedparticles(chargedandneutral), ptrigT

pTjet

=

80

±

5%

.

(6)

Fig. 4. (Coloronline.)ThezT=passocT /p

γdir

T dependencesofγdir-h± away-side

as-sociatedcharged-hadronyieldspertriggerfor p

+

p (opencircles)collisionsand thatofzcorrT =p

assoc

T /p

jet

T dependenceoftheπ0-h± away-sideassociated

charged-hadronyields(opendiamonds)areshown.Verticallinesrepresentstatisticalerrors bars,andtheverticalextentoftheboxesrepresentssystematicuncertainties.

Applying thisratioas acorrection factor to the zT valuesof the away-side D

(

zT

)

for

π

0 triggers in p

+

p collisions resultsinthe

D

(

zcorr T

)

distribution,where zcorrT

=

p assoc T pTjet

.

(7)

Since zcorrT represents thefractional momentumofthejet carried bytheassociatedparticles,itis(totheextentthattheT isagood approximation oftheinitial pT oftherecoilparton)equivalent to thezT measuredwhenusing

γ

dirtriggers.D

(

zcorrT

)

isdirectly com-pared to the fragmentation function measured via direct-photon triggersin

Fig. 4

andshowsreasonableagreement.

In order to quantify the medium modification for

γ

dir- and

π

0-triggered recoil jet production as a function of z

T, the ratio, definedas IA A

=

D

(

zT

)

Au Au D

(

zT

)

pp

,

(8)

of the per-triggerconditional yields in Au

+

Au tothose in p

+

p

collisions is calculated. In the absence of medium modifications,

IA A isexpected to beequal to unity. Fig. 5 showstheaway-side mediummodificationfactorfor

π

0 triggers(Iπ0

A A)and

γ

dir triggers (Iγdir

A A), as a function of zT.

0

A A and I

γdir

A A show similar suppres-sionwithinuncertainties.AtlowzT (0

.

1

<

zT

<

0

.

2),both

0

A A and

Iγdir

A A showanindicationoflesssuppressionthanathigherzT.This observationisnotsignificantinthezT-dependenceofIA A because the uncertainties in the lowest zT bin are large. However, when

IA A is plottedvs. passocT (shown ina later figure), the conclusion is supported with somewhat more significance. At high zT, both

A A0 andIγdir

A A showafactor

3–5 suppression.

Theoretical modelpredictions, labeledasQin [27] andZOWW

[15,28],usingthesamekinematiccoveragefor

γ

dir triggered away-sidecharged-hadronyields,arecomparedtothedata.Inthemodel by Qin et al., the energy loss mechanism is incorporated into a thermalizedmediumforAu

+

Aucollisionswithimpactparameters of 0–2

.

4 fm byusing afull (3

+

1)-hydrodynamicevolutionmodel description.Althoughthismodelalsoincludesjet-mediumphotons (photons coming from the interaction of hard partons with the medium [29,30]) and fragmentation photons (photons radiating fromhardpartons[30]),bothofthesecontributetoIγdir

(7)

Fig. 5. (Coloronline.)TheIγdir

A A (redsquares)and 0

A A(bluecircles)triggersare

plot-tedasafunctionofzT.ThepointsforIγdirA A areshiftedby

+

0.03 inzTforvisibility.

Theverticallinesrepresentstatisticalerrorandtheverticalextentoftheboxes rep-resents systematicerrors.Thecurvesrepresenttheoreticalmodelpredictions[15,17, 27,28].

ThecalculationbyZOWWalsoincorporatestheparameterized par-ton energy loss into a bulk-medium evolution [28]. It does not includefragmentationorjet-mediumphotons, andalsodescribes theexperimental measurementofIγdir

A A asafunctionof zT forthe topcentralAu

+

Aucollisions. Thecalculated A A0 (alsoby ZOWW) shows a somewhat larger suppression than the Iγdir

A A at low zT. The difference at low zT between the IγA Adir andthe

0

A A (as cal-culated by ZOWW) is likely due to the color factor effect and thedifferences in averagepath lengths between

π

0 triggers and

γ

dir triggers. The calculated difference in the suppression is ap-proximately 50% at zT

=

0

.

1. The data are not sensitive to this difference within the measured uncertainties. These models (Qin andZOWW) donot includearedistribution ofthelost energyto thelower pT jet fragments,in contrasttothe YaJEM model[17]. The YaJEM model is also shown in Fig. 5, although for a some-what lower trigger pT range of9–12 GeV/c. It predicts IγA Adir

=

1 atzT

=

0

.

2 (corresponding to passocT

1

.

8 GeV

/

c) andrising well above1in thezT rangeof0.1–0.2 [17].Thisis calculatedwitha smallintegration window of

π

/

5 around

=

π

. Althoughthis calculation has a different ptrigT cut, such a large rise is not ob-servedinourdata.Incontrasttotheothercalculationsshown(Qin andZOWW),therisein Iγdir

A A atlow zT inYaJEM ispredominantly due to the redistribution of lost energy. In this picture, the

in-mediumshowerismodified bythemediumandasuppressionat

highzT resultsinanenhancementatlower zT.Theauthors com-pare the “medium-modified shower” picture to an “energy loss” picture,wheretheenergyiscarriedthroughthemediumbya sin-gleparton, andthelostenergywouldonlyshowup atextremely low energies andlarge angles.In such a picture,they argue that theriseinIγdir

A A atlow zT wouldbe moremodestand IγA Adir would remainlessthan1.

BecausePHENIXhasreportedanenhancementatlowzT (zT

<

0

.

4) in Iγdir

A A atlarge angles [11],it is interesting to compareour resultsoverthefullintegrationwindowof

|φ −

π

|

<

1

.

4 radians toan Iγdir

A A calculatedwithasmallerwindowof

|φ −

π

|

<

0

.

6 ra-dians in Fig. 6. Within our uncertainties, an enhancement effect is only seen in the lowest zT bin for

π

0 triggers. However, for thePHENIX measurement, zT

<

0

.

4 corresponds to lower pT for theassociated hadrons(



2 GeV/c),since the T was chosen in therange of5–9 GeV/c. In ouranalysis, associated hadronswith

pT

<

2 GeV

/

c areonlypresentatzT

<

0

.

2.Theapparent inconsis-tencybetweenSTARandPHENIX,wheninvestigatingtherecovery ofthelostenergyasafunctionofzT,indicatesthat passocT maybe themorepertinentvariable.The conclusionisthat the“modified

Fig. 6. (Coloronline.)TheratiosofD(zT)obtainedusinganintegrationwindowof

|φ −π| <1.4 radiansoverthatof

|φ −

π| <0.6 radiansforγdirh±(leftpanel)

andπ0h±(rightpanel),areplottedasafunctionofzTforAu+Auat0–12% cen-tralcollisions.Theverticallinesrepresentstatisticalerrorbarsandboxesrepresent systematicerrors.Sincethisisaratioofyieldsfortwooverlappingangular win-dows,muchoftheuncertaintiescancel;andonlythesurvivinguncertaintiesare shown.

Fig. 7. (Coloronline.)ThevaluesofIγdirA A areplottedasafunctionofptrigT (leftpanel) andpassoc

T (rightpanel).Theverticallineandshadedboxesrepresent statisticaland

systematicerrors,respectively.Thecurvesrepresentmodelpredictions[15,27,28].

fragmentationfunction”(constructed fromthein-mediumjet-like yields asa functionof zT) is notuniversal. In particular,the lost energy isnot recovered at a fixed range of zT, butperhaps ata given range of passocT . The conclusion that the lost energy is re-covered atlarger anglesonly for pT

<

2 GeV

/

c,regardlessof the triggerenergy,isconsistentwiththeconclusionoftheSTARpaper onjet-hadroncorrelations[18].

The earlier measurements [12] at low trigger energy (8

<

ptrigT

<

16 GeV

/

c)showthesamelevelofsuppression(factor 3–5) via the medium modification factor (IπA A0 and Iγdir

A A) down to

zT

0

.

3. This suggeststhat IA A doesnot depend on the trigger energyatmidtohighzT for

γ

dir and

π

0-triggeredaway-sidejets withtrigger pT rangingfrom8to20 GeV/c.Thisisfurther inves-tigatedin

Fig. 7

with

γ

dir triggers,sincethephotontriggerenergy closely approximates the initial outgoing parton energy. The left panel shows Iγdir

A A as a function of p trig

T , for 0

.

3

<

zT

<

0

.

4. The per-triggernuclearmodification factorof

γ

dir-triggeredaway-side charged-hadronyieldsisindependentofthetriggerenergyofthe

γ

dir withinour25% systematicuncertainty.Thisindicates thatthe away-side partonenergylossisnotsensitive totheinitial parton energyinthisrangeof8–20 GeV/c,asmeasuredwithourlevelof precision. The ZOWWcalculation alsopredicts Iγdir

A A asafunction of ptrigT tobe approximatelyflat inthisrange.In therightpanel, the valuesof Iγdir

A A are plottedasfunctionof passocT . Itshowsthat thelow-passoc

(8)

thoseathighpassocT .Bothmodelpredictionsshown[15,27],which donotincludetheredistribution oflostenergy,areinagreement withthedata.

5. Summary

In summary, in order to understand the medium

modifica-tion of partons in the QGP, away-side charged-hadron yields for

γ

dir and

π

0 triggersincentral(0–12%)Au

+

Aucollisionsare com-paredwiththoseinminimum-bias p

+

p collisions.Both A A0 and

Iγdir

A A show similar levelsof suppression,withtheexpected differ-ences due to the color-factor effect and the path-length depen-dencenotmanifestingthemselves withinexperimental uncertain-ties. At low zT and low passocT ,the data are consistent with less suppressionthanathigher passoc

T .Thesuppressionshowslittle dif-ferenceforintegrationwindowsof

±

0.6vs.

±

1.4 radiansaround

=

π

, withan enhancement atlarge angles observedonly for

zT

<

0

.

2 (passocT

<

2

.

4 GeV

/

c) for

π

0 triggers.There isno trigger-energydependence observed inthe suppression of

γ

dir-triggered yields, suggestinglittle dependenceforenergy loss onthe initial parton energy, in the range of ptrigT

=

8–20 GeV

/

c. The data are consistent with model calculations[15,27,28], in which the sup-pressioniscausedbypartonenergylossinathermalizedmedium. Thesecalculationsdo not includeredistribution of energywithin the shower. The very large Iγdir

A A at low zT predicted by models of in-medium shower modification (including energy redistribu-tion) [17] is not observed for ptrigT

>

12 GeV

/

c. This is in con-trasttothe PHENIXresult[11],wherethe Iγdir

A A exceedsunity, for

ptrigT 5–9 GeV

/

c.However, itisnotclearthat theredistribution of lost energy would scale withthe jet energy. In fact, our studies support previous conclusions that the lost energyreappears pre-dominantly at low pT (approximately pT

<

2 GeV

/

c), regardless ofthetrigger pT.Thisleadstothe importantconclusion thatthe modified fragmentation function is not universal (i.e. it doesnot havethesamezT dependenceforalltrigger pT).

Acknowledgments

We thankX.N. WangandG.-Y Qin forprovidingtheir model predictionsandhelpfuldiscussion.WethanktheRHICOperations

Group andRCFatBNL,theNERSC CenteratLBNL,theKISTI Cen-terinKorea,andtheOpen ScienceGridconsortiumforproviding resourcesandsupport.Thisworkwassupportedinpartbythe Of-fice of Nuclear Physicswithin the U.S.DOE OfficeofScience, the U.S.NSF,theMinistryofEducationandScienceoftheRussian Fed-eration,NSFC,CAS,MOST andMOE ofChina,theNationalResearch Foundation ofKorea, NCKU(Taiwan),GA andMSMTofthe Czech Republic, FIAS ofGermany, DAE, DST, and UGC of India,the Na-tionalScienceCentreofPoland,NationalResearchFoundation,the MinistryofScience,EducationandSportsoftheRepublicof Croa-tia,andRosAtomofRussia.

References

[1]K.Adcox,etal.,PHENIXCollaboration,Phys.Rev.Lett.88(2001)022301. [2]C.Adler,etal.,STARCollaboration,Phys.Rev.Lett.89(2002)202301. [3]C.Adler,etal.,STARCollaboration,Phys.Rev.Lett.90(2003)082302. [4]J.Adams,etal.,STARCollaboration,Nucl.Phys.A757(2005)102. [5]K.Adcox,etal.,PHENIXCollaboration,Nucl.Phys.A757(2005)184. [6]B.B.Back,etal.,PHOBOSCollaboration,Nucl.Phys.A757(2005)28. [7]I.Arsene,etal.,BRAHMSCollaboration,Nucl.Phys.A757(2005)1. [8]M.Gyulassy,P.Levai,I.Vitev,Phys.Rev.Lett.85(2000)5535. [9]M.Gyulassy,P.Levai,I.Vitev,Phys.Lett.B538(2002)282. [10]X.-N.Wang,Z.Huang,I.Sarcevic,Phys.Rev.Lett.77(1996)231. [11]A.Adare,etal.,PHENIXCollaboration,Phys.Rev.Lett.111(2013)032301. [12]B.I.Abelev,etal.,STARCollaboration,Phys.Rev.C82(2010)034909. [13]T.Sjöstrand,S. Mrenna,P.Skands,Comput.Phys. Commun.178(2008)852

(DefaultparametersinPYTHIA8.185,phaseSpace:pTHatMin=4). [14]T.Renk,Phys.Rev.C74(2006)034906.

[15]H.Zhang,J.F.Owens,E.Wang,X.-N.Wang,Phys.Rev.Lett.103(2009)032302. [16]L.Adamczyk,etal.,STARCollaboration,Phys.Rev.C87(2013)044903. [17]T.Renk,Phys.Rev.C80(2009)014901.

[18]L.Adamczyk,etal.,STARCollaboration,Phys.Rev.Lett.112(2014)122301. [19]D.deFlorian,R.Sassot,M.Epele,R.J.Hernandez-Pinto,M.Stratmann,Phys.Rev.

D91(2015)014035.

[20]T.Kaufmann,A.Mukherjee,W.Vogelsang,Phys.Rev.D92(2015)054015. [21]D.deFlorian,R.Sassot,M.Stratmann,Phys.Rev.D75(2007)114010. [22]M.Beddo,etal.,Nucl.Instrum.MethodsA499(2003)725. [23]M.Anderson,etal.,Nucl.Instrum.MethodsA499(2003)659. [24]N.R.Sahoo,fortheSTARCollaboration,arXiv:1512.08782[nucl-ex]. [25]N.N.Ajitanand,etal.,Phys.Rev.C72(2005)011902.

[26]J.Adams,etal.,STARCollaboration,Phys.Rev.C72(2005)014904.

[27]G.-Y.Qin,J.Ruppert,C.Gale,S.Jeon,G.D.Moore,Phys.Rev.C80(2009)054909. [28]X.-F.Chen,C. Greiner,E.Wang,X.-N.Wang,Z.Xu, Phys.Rev.C 81(2010)

064908;

X.-N.Wang,privatecommunication. [29]T.Renk,Phys.Rev.C88(2013)034902.

Riferimenti

Documenti correlati

Questo contenuto fondamentale è ben estrapolabile da quella che può considerarsi la prima vera opera filosofica di Moretti- Costanzi, si tratta di Ragione e Fede, pubblicata nel

Rivelazioni dall'Aldilà - Libro di Mike Dooley - I messaggi dei nostri cari che trasformeranno la nostra vita - Scoprilo sul Giardino dei Libri.. Avevo avuto la felicità di

And when only a couple of years later Giacomo unexpectedly died, Ersilia not only took care of their six children, but dedicated even more time to her studies in her

The power indices of the cumulative size distribution derived for single collections are plotted with respect to the heliocentric distance and to the distance to the nucleus in

In anni successivi, e precisamente a partire dalla seconda metà degli anni Settanta e soprattutto dalla prima metà del decennio successivo, quan- do alcuni giovani scrittori

The aim of the present study was to investigate the capability of tDCS to modulate working memory and underlying neural processes in healthy young and elderly participants,

By using some structural indicators of social capital, the authors describe the contents and the forms of different kinds of social circles (family, work colleagues, members in

First, Question Listing (QL), before the visit with their oncologist, patients have been encouraged to generate their own list of questions 10 about their cancer and