• Non ci sono risultati.

Lateral   displacement   of   a   thermally   weakened   pluton   overburden   (Campiglia  Mari<ma,  Tuscany)

N/A
N/A
Protected

Academic year: 2021

Condividi "Lateral   displacement   of   a   thermally   weakened   pluton   overburden   (Campiglia  Mari<ma,  Tuscany)"

Copied!
22
0
0

Testo completo

(1)

Lateral   displacement   of   a   thermally   weakened   pluton   overburden   (Campiglia  Mari<ma,  Tuscany)

Abstract

Extensional  tectonics  commonly   generates  regional-­‐scale  structures  that   o4en  hinders   local   varia7ons   in   the   overall   extensional   regime   that,   if   appropriately   described   and   interpreted,  could  shed  light  on  second-­‐order  processes  leading  to  genera7on  of  anomalous   structures,   mass   displacement,   rock   fracturing,   hydrothermal   mineraliza7ons.   In   the   Campiglia  MariBma  area,   a  detailed   field   mapping,   coupled   with   a  detailed   survey   and   mapping   of   20   km   of   abandoned   mining   tunnels   led   to   the   reconstruc7on   of   a   local   deforma7on   history   that   overlaps   with   regional   extension.   This   local   deforma7on   was   triggered   at   the  Miocene-­‐Pliocene  transi7on   by   the  intrusion   of   a   monzograni7c   pluton   below   a  carbona7c  sedimentary   sequence.   The  carbonates  were  thermally   weakened  and   did  flow  laterally,   accumula7ng  downslope  of  the  pluton  contact   towards  the  east.   As  the   thermal  anomaly   was  decaying,   the  briLle-­‐duc7le  boundary   was  approaching   the  pluton,   and   the  ongoing   briLle   deforma7on   led   to   the  genera7on  of   large  tension   gash-­‐shaped   volumes   of   fractured   marble.   These   fractured   volumes   were   exploited   by   rising   fluids   genera7ng   skarn  bodies  that   ul7mately   took   sigmoid   shapes.   Further   fluids  rising   in   the   residual  skarn   porosity   led   to   the  genesis   of   Zn-­‐Pb   followed   by   small  volumes   of   mafic   magma,  Fe-­‐Cu  ore  and  felsic  melts  emplaced  as  dykes  marking  the  waning  stage  of  the  local,   magma-­‐induced  deforma7on.  All  these  processes  occurred  in  a  corridor  bounded  by  SW-­‐NE   fault  arrays,  that  can  be  defined  as  transfer  zone  accommoda7ng  different  extension  rates,   generated  by  concurrence  of  regional  extension  and  local  displacement  of  the  pluton  cover.  

A  complex   magma7c-­‐tectonic-­‐hydrothermal  history  has  thus  been  unraveled,  with  bearings   on   ore  poten7als  in  seBngs  where   felsic   and   mafic   magmas  are  associated   and   ac7vely   interact  with  local  tectonics.

IntroducBon

The  mobility  of  magmas  and  hydrothermal  fluids  in  the  upper  crust  plays  a  key  role  during   several  geological   processes  as  volcanic   erup7ons,   ore   deposi7on,   and   establishment   of   geothermal  fields.   The  necessary   permeability   in  country   rocks  is  commonly   ac7vated  by   tectonic   ac7vity,   focussing   magmas   and   fluids   in   structural   traps.   However,   the   ac7ve   contribu7on  to  tectonic  ac7vity   by  magma  emplacement  at  local  scale  is  yet  to  be  assessed   in  full.  This  is  also  due  to  the  general  lack  of  evidence  for  the  pathways  followed  by  magmas   and  fluids  remaining  once  emplacement  processes  are  over,  so  that  geometries  and  textures   of  igneous  and  ore  bodies  represent  the  only  witness  to  those  pathways.

Southern  Tuscany   is  well  suited   to   tackle  with   these  issues,   offering  the   possibility   to   inves7gate  the  interplay   between  processes  that,   in  the  late  Miocene-­‐Quaternary   ensialic   back-­‐arc  extensional  seBng,  led  to  the  genera7ons  of  the  Tuscan  Magma7c  Province  (Serri   et  al.,  1993),  different  types  of  ore  deposits  (mainly  Fe-­‐oxides,  pyrite,  base  metals,  and  Sb-­‐Hg   ores;   Tanelli,   1983),   fossil   hydrothermal   systems   (e.g.,   tourmaline   veins;   CavarreLa   &  

Puxeddu,   1990;   Passerini  &   Marcucci,   1992;   Gianelli  &   Ruggeri,   2002;   Dini  et   al.,   2008a;  

Mazzarini  et  al.,  2011),  as  well  as  ac7ve  high-­‐enthalpy  geothermal  fields  (Larderello-­‐Travale   and  Monte  Amiata;   Calamai  et   al.,   1970;   Duchi  et   al.,   1992;   Bellani,   2004).   In  detail,   the   Campiglia  MariBma  study   area  was  affected  by   igneous  ac7vity   during  the  late  Miocene-­‐

early  Pliocene,   linked  with  genera7on  of  metasoma7c   rocks  and  ore  bodies  (Barberi  et  al.,   1967).   Here,   the  mapping  of   outcrops  and   20   km   of  mining   tunnels,   integrated   by   deep  

(2)

boreholes  and  geophysical  data,  allowed  us  to  reconstruct  the  tridimensional  morphologies   and   textures   of   the   magma7c   rocks   and   ore   bodies.   The   evolu7on   of   the   magma7c-­‐

hydrothermal   system   has   thus   been   reconstructed,   indica7ng   that   magmas   and   hydrothermal  fluids  followed  similar  structural  paLerns  in  the  upper  crust.  But  overall,   the   migra7on  and  emplacement  of  fluids  and  magmas  were  ruled  by  the  lateral  displacement  of   the  thermally  weakened  carbonate  overburden  of  a  pluton,  a  process  which  interacted  with   regional  extension  working  on  transfer  zones.

Geological  outline

Tuscany  and  the  Northern  Apennines

The  geological  seBng  of  Tuscany   results  from  the  evolu7on  of  the  rela7ve  movements   between  Adria  (Africa)  and  Sardinia-­‐Corsica  (Europe)  plates,  whose  convergence  started  in   Late  Cretaceous  leading   to  Oligocene-­‐Miocene  con7nental  collision   with  forma7on  of   the   Apennine  mobile  belt   (PlaL,   200;   Molli,   2008).   The  Apennine  tectonic   units,  stacked  on  a   metamorphic   Paleozoic-­‐Triassic  basement   are,   from  boLom   to  top:   (i)   the  Tuscan  Nappe,   formed  onto  the  Tuscan  con7nental  margin,  and  consis7ng  of  late  Triassic  syn-­‐ri4  evaporites   and   carbonates,   early   Jurassic   to   early   Cretaceous   deepening   con7nental   plahorm   carbona7c-­‐siliceous  sequence,  and  a  Cretaceous  to  late  Oligocene/early   Miocene  foredeep   detrital  clayey-­‐turbidi7c  succession;  (ii)  the  Sub-­‐Ligurian  units,  deposited  onto  the  transi7on   zone  between  the  oceanic  and  con7nental  crust;  (iii)  the  Ligurian  units,  consis7ng  of  Jurassic   oceanic  lithosphere  and  its  Jurassic-­‐Eocene  sedimentary  cover.

A4er   the   early   Miocene   collision,   the   Adria   slab   rollback   coupled   with   the  eastward   retreat   of  the  subduc7on  zone  drove  the  eastward  migra7on  of  the  compressional  front,   genera7ng  an  extensional  ensialic  back-­‐arc  basin  with  strongly   thinned  con7nental  crust  in   southern   Tuscany   (20   to   25   km,   Piana   Agos7neB   &   Amato,   2009;   Fig.   1).   This   crustal   extension   went   through  two  main  phases:   (1)   a  late  Oligocene-­‐late  Tortonian  stage  with   extension  exceeding  120  %  on  low-­‐angle  faults,  and  leading  in  southern  Tuscany  to  elision  of   parts   of   the  Tuscan   Nappe   stra7graphic   sequence   (Brogi,   2008a);   (2)   a   late   Miocene   to   Present   stage,   characterised  by   high-­‐angle   NNW-­‐SSE   and   N-­‐S   normal  faul7ng,   producing   horst-­‐and-­‐graben  structures,  with  a  total  extension  less  than  10%  (Carmignani  et  al.,  1994;  

Decandia  et   al.,   2001).   These  structures  are  cut   by   strike-­‐slip  faults  oriented  SW-­‐NE   (e.g.,   Livorno-­‐Sillaro   Line).   This   overall   extensiaìonal   seBng   is   challenged   by   the   view   of   a   compressional  tectonics  ac7ve  un7l  Pliocene-­‐Pleistocene  7mes  (FineB  et  al.,  2001;  Bonini  &  

Sani,   2002;   Musumeci  et   al.,  2008),  possibly   only   at  a  deep  crustal  level  (BoccaleB   et   al.,   2011).

The   extensional  phase  is  characterised   by   magma7c   ac7vity   from   crustal   and   mantle   sources  (Innocen7  et  al.,  1992;  Serri  et  al.,  2001).  The  magma7c  centres  result  distributed  on   SW-­‐NE  lineaments,  on  which  magma7c  ages  decrease  eastward.  These  structures  have  been   interpreted  as  transfer  zones  triggering  extrac7on,  rising  and  emplacement  of  magmas  (Dini   et   al.,   2008b;   Fig.   1).   These   magma7c   centres   drew   the   aLen7on   of   man   thoughout   twentyseven  centuries  for  their  associa7on  with  Fe,   Cu,  Pb,  Zn,   Ag,  Au,  Sb,  Hg  ores,  pyrite   and  industrial  minerals  as  well  as  super-­‐heated  steam  (Dini,  2003).

The  Campiglia  MariBma  area

The  area  of  Campiglia  MariBma  (herea4er  Campiglia)  is  characterized  by  a  N-­‐S  trending   horst   mainly   made   of   carbonate   units   of   the   Tuscan   Nappe,   bounded   by   high-­‐angle   extensional  and  strike-­‐slip  faults  (Acocella  et  al.,  2000;  RosseB  et  al.,  2000)  (Fig.   2).  During   the   Pliocene,   the   Campiglia   area   has   been   repeatedly   affected   by   intrusive   and  

(3)

hydrothermal-­‐metasoma7c  events.  The  first  magma7c  event  led  to  the  emplacement  of  the   Botro   ai  Marmi   monzogranite   pluton   (K/Ar   age   of   5.7±0.16   Ma;   Borsi   et   al.,   1967).   Its   primary   paragenesis   consists   of   quartz,   K-­‐feldspar,   plagioclase   and   bio7te,   along   with   accessory  7tanite,  apa7te,  zircon  and  tourmaline  (Rodolico,  1945;  Barberi  et  al.,  1967).  This   assemblage  is  rarely  preserved  due  to  intense  hydrothermal  K-­‐altera7on,  making  the  pluton   ideal  for  raw  ceramic  materials  (LaLanzi  et  al.,  2001).  The  granite  crops  out  for  as  liLle  as  ca.  

1  km2  near  the  western  border  of  the  Campiglia  horst,  yet  a  larger,  N-­‐S  elongated  pluton  is   known  from  drilling   logs  (Stella,  1955;   Grassi  et   al.,   1990)  and  geophysical  data  (Aquater,   1994).  The  magma  intruded  below  a  Rhae7an  grey  carbonate  unit  at  a  depth  corresponding   to   ca.   0.1   GPa   (Barberi   et   al.,   1967),   producing   an   elongated  thermal   aureole   in   the   carbona7c   succession  of  the  Tuscan   Nappe  (Giannini,   1955;   Stella,   1938).   A  small-­‐volume   exoskarn  is  commonly   found  between  the  granite  and  the  carbona7c  host  rock  (Barberi  et   al.,  1967)  and  endoskarn  veins  cuBng  the  granite  are  connected  with  the  exoskarn.

These   processes   were   followed   by   the   forma7on   of   a   voluminous   skarn   consis7ng   essen7ally  of  clinopyroxene  (hedenbergite  along  with  minor  johannsenite)  and  ilvaite,  along   with   very   minor   garnet   in   associa7on   with   rhodonite-­‐pyroxmangite,   thaumasite,   quartz,   calcite  and  epidote  (Vezzoni  et  al.,  in  prep-­‐b;  Capitani  &  Mellini,  2000;  Corsini  et  al.,  1980).  

The   skarn   host   rock   is   a   white   marble   derived   from   thermal   metamorphism   of   pure,   homogeneous,  massive  HeLangian  reef  limestone  of  the  Tuscan  Nappe.  Sulphides  and  Fe-­‐

oxides   (chalcopyrite,   pyrite,   pyrrothite,   sphalerite,   galena,   magne7te,   hema7te)   are   associated  with  Ca-­‐silicates  and  were  ac7vely   exploited  for   Cu,   Pb,   Zn,   and  Ag  un7l  1979,   mainly  in  the  Temperino  and  Lanzi  mines  (Corsini  et  al.,  1980).  A  low-­‐grade  Sn  deposit  (∼0.4   wt%)  with  cassiterite,  pyrite,  scheelite,  arsenopyrite  and  bismuthinite  is  part  of  a  Sn-­‐W-­‐As-­‐Bi   belt   (Monte  Valerio-­‐Santa  Caterina-­‐Campo  alle  Buche)  on  the  southern  side  of   the  buried   Botro   ai  Marmi  pluton  (Dini  &   Senesi,   2013),   and  was  ac7vely   exploited   un7l  1946   near   Monte  Valerio  (Venerandi-­‐Pirri  &  Zuffardi,  1981;  Stella,  1955).

A4er  the  skarn  forma7on,  a  mafic  magma  intruded  as  small  dykes  or  as  a  skarn  pockets   infill  (Vezzoni  et  al.,  in  prep-­‐a).  This  mafic  magma  solidified  as  the  Temperino  porphyry,  with   phenocrysts  of   plagioclase,   clinopyroxene  and   bio7te,   as  well  as  abundant   xenocrysts  of   sanidine  (up  to  5  cm)  and  quartz.  This  porphyry  is  strongly  altered,  with  par7al  oblitera7on   of  the  primary  mineralogy  and  texture  (Barberi  et  al.,  1967).

A4er  the  mafic  porphyry,  two  types  of  felsic  dykes  emplaced  with  a  primary  paragenesis   consis7ng  of   phenocrysts  of  quartz,   sanidine,   plagioclase,   bio7te,   and  pini7zed  cordierite,   overprinted  by  potassic  altera7on  (Barberi  et  al.,  1967;  Vezzoni  et  al.,  in  prep-­‐b).  The  felsic   Coquand  dykes  are  spa7ally  associated  to  the  main  skarn  bodies  (Vezzoni  et  al.,  in  prep-­‐b).  

The  single  felsic   Ortaccio  dyke,   readily   iden7fied  by   the  occurrence  of   abundant   cm-­‐sized   sanidine   phenocrysts   and   rare  mafic   enclaves,   crosscuts  all   the   other   metasoma7c   and   magma7c   rocks   (e.g.,   Bodechtel,   1967;   Vezzoni   et   al.,   in   prep-­‐b)   cropping   out   almost   con7nuously   for  about  8  km  from  the  Temperino  Valley   to  the  north  of  Santa  Maria  Valley   (Fig.  3;  Giannini,  1955;  Vezzoni  et  al.,  in  prep  b).  A  K-­‐Ar  date  of  4.3±0.13  Ma  on  an  Ortaccio   sample  (Borsi  et  al.,  1967)  was  interpreted  as  the  age  of  the  potassic  altera7on  (Barberi  et   al.,  1967).

The  final  igneous  event   in  the  area  is  the  extrusion  of   rhyoli7c   lavas  characterized  by   phenocrysts  of  quartz,  alkali  feldspar,  plagioclase,  bio7te  and  cordierite  along  with  variable   amounts  of  small  mafic   enclaves  (Giraud  et  al.,   1986;   Ferrara  et   al.,   1989;   Pinarelli  et   al.,   1989;  Feldstein  et  al.,  1994).  The  40Ar/39Ar  emplacement  age  (4.38±0.04  Ma;  Feldstein  et  al.,   1994)  is  similar  to  the  altara7on  age  of  the  felsic  porphyry  dyke,  although  direct  geological   rela7onships  are  not  found.

(4)

DeformaBon  styles  and  geometries

Roof  morphology  of  the  Botro  ai  Marmi  pluton

In   the   Campiglia   area,   the   geometric   characteris7cs   of   the   rock   bodies   and   their   deforma7on  styles  are  clearly   spa7ally   related  to   the  loca7on   and   shape  of   the  Botro  ai   Marmi  pluton  and  its  thermal  metamorphic  aureole.  Intensity  of  deforma7on  decreases  with   distance  from  the  pluton,  and  deforma7on  type  changes  accordingly,  with  records  of  both   duc7le  and  briLle  styles.  Therefore,  reconstruc7on  of  the  3D  morphology  of  the  pluton-­‐host   rock  surface  is  crucial  to  the  understanding  of  local  stress  evolu7on  during  the  development   of  the  magma7c-­‐hydrothermal  system.

The  morphology  of  the  roof  of  the  Botro  ai  Marmi  pluton  (Fig.  3)  has  been  reconstructed   on  the  basis  of  geological  surveys  (this  work;  Giannini,  1955;  Acocella  et  al.,  2000;  RosseB  et   al.,  2000;  Cerrina  Feroni,  2007b),  exploratory  boreholes  (Axerio,  A.M.M.I.  and  RIMIN  internal   reports;   Stella,   1938;   Stella,   1955;   Grassi  et   al.,   1990),   and  reflec7on   seismics-­‐gravimetric   data  (Aquater,  1994),  in  detail:  (i)  field,  boreholes,  and  geophysical  data  has  been  used  in  the   central  area,  around  the  pluton’s  outcrop,  (ii)  geophysical  data  in  the  northern  area,  and  (iii)   borehole  data  in  the  southern  area.  

The  pluton’roof  is  N-­‐S  elongated,  with  length/width  ra7o  of  3  to  6.  In  transversal  sec7on,   the  pluton  has  an  asymmetric   profile,   with  the  western  side  dipping  >   70°   (this  contact  is   interpreted  as  a  fault  by  Acocella  et  al.,  2000:  see  further  on),  opposed  to  an  mean  slope  of   25-­‐30°  on  the  eastern  and  southern  flanks.  The  outcropping  por7on  of  the  pluton  is  at  the   top  of  a  bulge  that  was  mostly  uncovered  by  mining  ac7vity   for  raw  ceramic  materials  (Fig.  

3).

Duc7le  deforma7on

The  early   Jurassic   carbona7c   host-­‐rocks  of   the  Botro  ai  Marmi  pluton  were  thermally   metamorphosed  (Rodolico,  1931;  RosseB  et  al.,  2000)  in  an  aureole  about  5  km  long  in  N-­‐S   direc7on  and  2  km  wide  in  E-­‐W  (Giannini,  1955).  Its  thickness,  which  is  approximately  300  m   to  the  south  (Monte  Valerio;  Stella,  1938),  in  the  eastern  Temperino  mining  area,  reaches  at   least  900  meters,  as  aLested  by  borehole  and  geophysical  data.

The   thermally   metamorphosed   units,   even   those   that   were   originally   massive,   are   pervasively  foliated,  defining  a  broad  an7form  with  a  NE-­‐SW  to  N-­‐S  axial  plane,  accompanied   by   minor  an7forms  and  synforms  (Acocella  et  al.,  2000;  RosseB  et  al.,  2000).  The  aBtudes   of   bedded  units  outside  the  contact  aureole  are  parallel  to  the  folia7on  planes  (Giannini,   1955;   Acocella  et   al.,   2000;   RosseB   et   al.,   2000;   Cerrina  Feroni,   2007b).  As  for   thermal   aureole,   also  the  thickness  of  the  Rhae7an  grey   carbonate  unit   in  direct   contact   with  the   pluton  increases  outward  with  respect  to  the  pluton  outcrop  (Fig.  3):  in  the  south  it  is  450  m   thick,  while  to  the  east  is  about  half  that  thickness  (Fig.   3,  cross-­‐sec7ons  A  and  B).   Similar   variabili7es  are  shown  by  the  overlying  carbonate  units  of  the  Tuscan  Nappe,  with  the  reef   limestone  showing  an  impressive  difference  in  thickness  from  about   150  m  on  top  of   the   pluton’s  center  to  500  m  to  the  south  (Monte  Valerio)  to  about  1000  m  in  the  eastern  side   (Lanzi  mine;  Fig.  3,  sec7ons  A  and  B).

The  pluton’s  thermal  aureole  is  characterized  by   several  folds,   whose  geometry   varies   with  distance  from  the  pluton.  A  narrow  volume  close  to  the  contact  with  the  pluton  (tens  of   m  thick)  is  characterized  by  decametric  folds  with  non-­‐cylindrical  geometry,  small  inter-­‐limb   angle  (7ght  to  isoclinal)  and  disharmonic  folds  with  variably  oriented  axes  (Fig.  4A,  B).  The   axial  planes  are  generally  slightly  dipping  and  sub-­‐parallel  to  the  contact  with  the  pluton.  The   limbs  of  the  main  folds  are  characterized  by   minor   cm-­‐sized  isoclinal  folds.   These  features   are   highlighted   by   the   different   alternate   colors   of   the   beds   in   the   original   Rhae7an  

(5)

carbonate  unit.   Minor   isoclinal  folds  in  the  overlying   metamorphosed  reef  limestone  have   been  also  described  (Acocella  et  al.,  2000).

Further  away  from  the  contact,  the  overlying  carbona7c  forma7ons  of  the  Tuscan  Nappe   show  a  different  style  of  east-­‐verging  folding,  characterized  by  asymmetric  shape  and  close   to   open   inter-­‐limb   angle.   These  features  are  evident   in  the  Temperino   and   Lanzi  mines,   where   metric-­‐sized   lenses   of   red   nodular   limestone,   with   limbs   parallel   to   the   marble   folia7on,  are  embedded  in  the  older  HeLangian  reef  limestone  (Fig.  4C).  The  geological  map   and  sec7ons  1:10,000  of  the  Regione  Toscana  (Cerrina  Feroni,  2007a,  b)  report  similar  fold   structures  in   the  eastern   side  of   the  pluton   aureole.   The   eastern   side  of   the  Campiglia   MariBma  horst   show   different   features  characterized   by   chevron   folds  with   sub-­‐ver7cal   axial  planes  and  sub-­‐horizontal  NW-­‐SE  hinges.

BriLle  deforma7on  and  hydrothermal  bodies

BriLle  deforma7on  overprint  duc7le  deforma7on  features.  The  briLle  structures  are  less   spectacular  than  duc7le  ones,  and  have  to  be  carefully  reconstructed  in  minor  skarn  facies  at   the  pluton  contact,   large  isolated  skarn  bodies,   mafic   and  felsic   dykes,   and  in  areas  distal   from  the  pluton.

Endo-­‐  and  exo-­‐skarn  occur   near   the  contact  between  Botro  ai  Marmi  monzogranite  and   the  metamorphosed  Rhae7an  carbona7c  rock.  Endoskarn  veins  (diopside  and  scapolite)  cut   the   monzogranite   and  are  connected   with   the  exoskarn   (diopside,   phlogopite,   scapolite,   vesuvianite,   and  wollastonite;  Fig.  4).  The  exoskarn  occurs  as  a  massive  metric  zone  at   the   contact   with   the   pluton   or   as   a   selec7ve   replacement   of   folded   beds   of   the   Rhe7an   carbonate,  thus  mimicking  the  geometries  of  the  isoclinal  folds  (Fig.  4A,  B).  

The   tridimensional  characteris7cs  of   the   ore   bodies  (Fig.   5)   allow   dis7nguishing   two   different  groups.  The  first  group  includes  skarn  bodies  with  a  sigmoid-­‐tabular  shape  (akin  to   a  mega-­‐tension  gash),   and  maximum   thickness  in  their   central  part   (>   40   m;   Earle  body),   which  plunge  steeply  to  the  NE  and  is  elongated  in  SE-­‐NW  direc7on.  These  bodies  taper  out   at   the   upper   and   lower   termina7ons   toward   SW   and   NE,   respec7vely   (Fig.   5)   and   are   arranged  in  en-­‐echelon  paLern  in  plan  view.  Lateral  tongues,  gently  dipping  to  the  NE,  are   aLached  to  the  NE   side  of  the  main  sigmoidal  bodies,  and  follow  the  folia7on  of  the  host   marble  (further  details  in  Vezzoni  et  al.,  in  prep-­‐b).

The  second  group  includes  two  skarn  bodies,  exploited  by   the  Lanzi  mine,  that  share  an   overall  SSW-­‐NNE  elonga7on,  but  differs  in  their  ver7cal  development.  The  main  Lanzi  body  is   made  of  a  partly  coalescing  cluster  of  small  sigmoid-­‐tabular  bodies,  collec7vely  building  up  a   tabular  body   striking  040N  and  steeply  (70-­‐80°)  dipping  to  the  SE  (Vezzoni  et  al.,  in  prep-­‐b).  

The   northeastern   side   of   the   Lanzi   main   skarn   body   is   characterized   by   several   sub-­‐

horizontal  small  tongues.   At   Lanzi  mine,  numerous  and  well-­‐developed  skarn  veins  branch   off   the   skarn   mass,   tapering   out   in   some   meters.   The   marble   host-­‐rock   shows   a   well-­‐

developed   and   closely   spaced   (few   cm)   array   of   subver7cal,   parallel   fractures   with   preferen7al   025N   strike.   Fractures   and   skarn   veins   share   the   same   aBtude,   yet   only   fractures  intersec7ng  skarn  bodies  contain  skarn  veins.  The  minor  Lanzi  skarn  body  is  made   of  several  bodies  with  decimetric  to  metric  thickness,  striking  around  N030  gently  dipping  to   the  NW,  and  interconnected  by  SW-­‐NE  sub-­‐ver7cal  veins.  Also  sub-­‐horizontal  tongues  have   been  observed  at  Lanzi  mine  following  the  folia7on  in  the  marble  host-­‐rock  (Vezzoni  et  al.,  in   prep-­‐b).  In  summary,  all  the  skarn  bodies  were  formed  by  fluids  exploi7ng  a  sigmoid-­‐shaped   volume  of  briLle  subver7cal  fractures.

Three   intrusive   events   followed   the   forma7on   of   skarn.   First,   the   mafic   Temperino   porphyry  magma  formed  dykes  and  filled  pockets  in  both  sigmoid-­‐shaped  and  sub-­‐horizontal   skarn  bodies  at  Temperino  mine.  In  the  second  event,  the  felsic  Coquand  porphyry   formed  

(6)

two  dykes  cropping  out   in  the  middle  of  sub-­‐ver7cal  skarn  bodies.   The  main  dyke  can  be   followed  discon7nuously   for  2  km,  cuBng  three  different  sigmoid  skarn  bodies.  The  minor   dyke  is  partly  intruded  in  the  southern  part  of  the  Le  Marchand  skarn  body  (Figs.  3  and  5).  

The  third  event   led  to  the  emplacement  of  the  felsic  Ortaccio  porphyry   dyke,  which  crops   out  for  8  km  (Fig.  3),  and  is  characterized  by  steps  and  bridges.  It  is  worth  no7ng  that   the   steps  and  the   bridges  are  systema7cally   arranged   in   a  NNW-­‐SSE   right-­‐lateral  en-­‐echelon   paLern  in  the  southern  half  of  the  dyke,  while  in  the  northern  half  they  arranged  in  a  N-­‐S   le4-­‐lateral  en-­‐echelon  (Fig.  3).

BriLle  structures  also  occur  at  the  eastern  border  of  Campiglia  MariBma  horst  as  (i)  small   thrust-­‐ramp   structure   in   pelagic   limestones   of   the   Tuscan   Nappe   and   (ii)   normal   faults   displacing  reef  and  nodular  early  Jurassic  limestones.

Discussion

Kinema7cs  of  duc7le  deforma7on

The  morphology  of  the  pluton’s  roof  is  N-­‐S  elongated  with  strong  asymmetry  between  the   western,   steeply   dipping   contact,   and   the   eastern-­‐southern,   gently   dipping   contact.  

Carbonate   rocks   in   direct   contact   with   the   pluton   are   characterized   by   isoclinal   non-­‐

cylindrical,  disharmonic  folds  with  gently  dipping  axial  planes,  sub-­‐parallel  to  the  pluton  roof.  

The  asymmetry   of   fold   limbs  indicate  a  vergence  of   the  displacement   outward  from   the   highest  zone  of  the  pluton  roof.   Moving  away   from  the  contact,  open  folds  and  sigmoidal   lenses  of  red  limestone  embedded  in  the  older  metamorphosed  white  limestone  (observed   in  mining  tunnels  and  reported  in  geological  maps  as  well:  Cerrina  Feroni,  2007b)  invariably   have  top-­‐to-­‐the-­‐east  vergence:  overall,  this  is  inferred  to  be  the  main  direc7on  of  transport   during  fold  development  (Figs.  3  and  4).  

These  duc7le  structures  tes7fy  for  decreasing  deforma7on  with  distance  from  the  pluton,   as  well  as  an  outward  vergence  of  the  structures,  thus  poin7ng  out  a  main  role  of  the  pluton   in  ruling  the  duc7le  deforma7on.  The  anomalous  thickness  of  thermal  aureole  and  the  reef   limestone   (now   marble)   in   the   eastern   side   of   the   pluton   (Fig.   3),   coupled   with   the   occurrence   of  lenses  of  red   limestone  within  the  older   reef   limestone,   suggests  that   the   carbonate   sequence   in   the   east   has   been   thickened   by   duc7le   sliding/accumula7on   of   thermally  weakened  carbona7c  material.  These  deforma7on  effects  are  focussed  in  a  ca.  1.5   km-­‐wide,  SW-­‐NE  belt.

Kinema7cs  of  briLle  deforma7on

Overprin7ng   of   duc7le  structures  by   briLle  deforma7on  is  common  occurrence  in  the   Botro  ai  Marmi  thermal  aureole.  During  the  briLle  phase,  the  metasoma7c  and  magma7c   rocks  did  emplace  recording   the  local  stress  field.  In  fact,  exoskarn  bodies  cut   the  marble   folia7on   and  replaced  the  duc7lely   folded   carbonate   host-­‐rocks  (Fig.   6A,   B,   C).   Also,   the   endoskarn  veins  that  fed  the  exoskarn  are  observed  to  follow  briLle  fractures  in  the  Botro  ai   Marmi  pluton.

The  sigmoidal  Temperino  skarn  bodies  were  generated  by   drawing  hydrothermal  fluids   into  tension  gash-­‐shaped  volumes  of   marble  fractured   in  briLle  regime  (Vezzoni  et  al.,   in   prep-­‐b).  The  geometries  of  these  skarn  bodies  indicate  a  top-­‐to-­‐NE  sense  of  shear.  Also  the   skarn  veins  developed  in  a  briLle  regime:  they  indeed  cut  the  marble  folia7on,  filling  the  pre-­‐

(7)

exis7ng  briLle  fractures  in  the  host  marble.  These  skarns  are  located  within  the  main  SW-­‐NE   deforma7on  belt   and  are  arranged  in  a  right-­‐lateral  en-­‐echelon  paLern  that,   in  3D,   has  a   top-­‐to-­‐the-­‐NE  sense  of  shear.

The  Lanzi  skarn  bodies  also  have  sigmoidal  shapes,  yet  with  different   orienta7ons.   The   main   Lanzi   body   is   made   of   coalescing   minor   sigmoid-­‐shaped   bodies   with   a   SSW-­‐NNE   elonga7on  and  steeply  plunging  to  the  SE  (Vezzoni  et  al.,  in  prep-­‐b).  The  minor  Lanzi  body   consists  of  small  sub-­‐horizontal  bodies  slightly  plunging  (<30°)  toward  SE,  interconnected  by   sub-­‐ver7cal  SW-­‐NE  skarn  veins.

Overall,   these   geometries   are   located   along   the   northern   boundary   of   the   main   deforma7on   belt,   arranged   in   a   le4-­‐lateral   en-­‐echelon   paLern   that,   in   3D,   indicate   a   transtensional  top-­‐to-­‐the-­‐E  sense  of  shear.

A4er  skarn  development,  different  magmas  were  emplaced  in  sequence  (Vezzoni  et  al.,  in   prep-­‐a).   First,   a  mafic   magma  formed   dykelets   and   filled  pockets  in  the   sigmoidal   skarn   bodies  (Temperino  mine;  Vezzoni  et   al.,   in  prep-­‐a).  The  second  magma  batch  emplaced  as   the  Coquand  dykes,   intruding  in  the  middle  of  sub-­‐ver7cal  sigmoidal  skarn  bodies  (Fig.  5).  

The  7ght  spa7al/geometric  rela7onships  between  magma7c  and  metasoma7c  rocks  suggest   similar   ascent  mechanisms  for  metasoma7c   fluids  and  magmas.  The  latest  magma7c  event   was  the  emplacement   of  the  Ortaccio  felsic  dyke,  with  completely   different  geometry  (Fig.  

3),  marking  the  last  change  in  the  local  tectonics.

Local  duc7le-­‐briLle  transi7on

A   transi7on   from   duc7le   to   briLle   rheological   regime   is   thus   clearly   recorded   by   structures  in  the  host-­‐rocks  of  the  Botro  ai  Marmi  pluton.  The  deforma7on  regime  reversed   back   to   regionally-­‐controlled   before   the   emplacement   of   the   Ortaccio   felsic   dyke,   constraining   the  duc7le  regime  between  pluton  emplacement   (5.7   Ma)   and   an  age  older   than  the  final  potassic   metasoma7sm  affec7ng  the  dyke  (4.3  Ma).  To  further  constrain  this   7me  interval,  a  comparison  can  be  made  with  the  thermo-­‐rheological  evolu7on  of  the  host-­‐

rocks  modelled  for  the  nearby  Monte  Capanne  pluton,  Elba  Island  (Caggianelli  et  al.,  2014),   sugges7ng  that  the  duc7le-­‐briLle  transi7on  could  have  occurred  in  less  than  500  ka.

A  unifying  model  -­‐  Interac7on  between  extension  and  hydrothermal-­‐magma7c  system At   Campiglia,  the  ac7ve  regional  extensional  tectonic  regime  interplayed  with  the  local   magma-­‐induced   tectonics   and   fluid   transfer.   A   unifying   model  for   all   these   intertwined   events  is  therefore  needed  to  shed  light  on  a  series  of  significant  geological  processes,  that   could  be  difficult  to  be  understood  if  tackled  as  single,  isolated  phenomena.  As  a  whole,  the   evidence  reported  can  be  interpreted  in  a  7me-­‐space  sequence  (Fig.  7).

1. The  triggering   event   of   all  is  the  emplacement   of   the  Botro   ai  Marmi  monzogranite   pluton  at  ca.  5.7  Ma.  This  crustal  melt  was  generated  in  the  extending  ensialic  back-­‐arc  of   the  Northern  Apennines  and  emplaced  exploi7ng  the  tectonic  discon7nuity  at  the  base  of   the  Tuscan  Nappe,  one  of  the  main  tectonic  units  of  the  Apennine  belt.

2. The  host  rocks  of  the  pluton  were  a  Rhae7an  grey   plahorm  carbonate,   overlain  by   a   HeLangian   white   reef   limestone   and   a   Sinemurian   red   nodular   limestone.   These   carbonate  units  were  thermally   metamorphosed  to  marbles,  with  temperatures  reaching   500   °C   (P<   0.1  GPa,   Barberi  et   al.,  1967)   in  the  inner  part   of  the  aureole.  The  effec7ve   viscosity   of  a  marble  at  these  temperatures,   if   coupled  with  high  strain  rates,   could  be   comparable  to  a  crystal-­‐loaded  viscous  felsic  magma  (Pehord  et  al.,  2003,  Zulauf  &  Zulauf,   2004).

3. The  pushing-­‐up  of  the  emplaced  magma,  coupled  with  the  asymmetric   shape  of  the   intrusion  roof,  forced  the  rheologically  weak  marbles  to  “squeeze  out”  mainly  to  the  east,  

(8)

helped   by   gravity-­‐assisted   sliding   on   the  eastward   dipping   slope  of   the   pluton-­‐marble   contact.  Disharmonic,  east  verging  folds  were  formed  in  the  marble  at  the  pluton  contact.  

The  marbles  decreased  their  original  stra7graphic  thickness  above  the  pluton  by  transfer   of  material  to  the  east,  where  anomalous  thickness  of  carbonate  rocks  was  accumulated.  

Disharmonic  transfer  of  material  drove  sigmoid  lenses  of  metamorphosed  red  limestone   to   be  included   within   older   white   HeLangian   limestone,   as  well   as  sigmoids  of   white   limestone  to  be  included  within  younger  red  Sinemurian  limestone.  Such  a  deforma7on  is   focussed  in  a  SW-­‐NE  belt  and  decreases  and  becomes  less  duc7le  with  distance  from  the   heat  source,  to  the  forma7on  of  small  thrust  ramps  in  the  easternmost,  frontal  accre7on   zone.  Here,   chevron  folds  with  sub-­‐horizontal,   NW-­‐SE   hinge  lines  (Acocella  et   al.,   2000)   and   a   thrust   structure   (N139,   67SW)   are   observed,   orthogonal   to   the   displacement   direc7on.  This  scenario  has  been  well  modelled  in  analogic  studies  (Merle  and  Vendeville,   1995),   thus  accoun7ng   for   magma-­‐induced  local  compressional  structures  in  a  regional   extensional   regime.   The   extensional   strain   in   this  belt   is   higher   than   in   the   adjacent   boundary  zones  (Fig.  7),  making  this  corridor  a  transfer  zone.

4. The  eastward  displacement  of  carbonate  material  was  waning  as  the  thermal  anomaly   was  decaying,   so  briLle  deforma7on  progressively   overprinted  towards  the  pluton   the   previous  duc7le  structures.  The  main  effect  of  the  eastward,  gravity-­‐assisted,  disharmonic   displacement  of  carbonate  material  was  the  genera7on  of  sigmoid-­‐shaped  large  volumes   of   fractured   marble   in   an   en-­‐echelon   paLern,   similarly   to   the   dyke   emplacement   described   in   volcanic   seBngs   (Klugel   et   al.   (2005).   These   porous   volumes   acted   as   structural  traps   drawing   in   hydrothermal  fluids,   that   replaced   the   carbonate   host   to   generate   the   sigmoidal  calc-­‐silicate   Temperino   skarn   bodies.   These   skarns   were   thus   formed   in   en-­‐echelon   paLern   within   a   transfer   zone.   The   northern   boundary   of   the   transfer  zone  is  defined  by  the  alignement  of  the  minor  Lanzi  skarn  bodies,  generated  in  a   set   of   minor   tension   gashes   striking   N040   and   arranged   to   indicate   a   le4-­‐lateral   displacement  on  that  boundary.  The  southern  boundary  of  the  transfer  corridor  is  defined   by   the  limit   of  the  eastward  (dextral)  displaced  carbonate  units  (SAMIM,  1980;   Cerrina   Feroni,   2007),   that   explain  the  asymmetric   shape  of   the  carbonate  horst;   hints  to   the   possible  occurrence  of  such  a  lineament  are  also  found  in  Giannini,  (1955);  Barberi  et  al.,   (1967);  Acocella  et  al.,  (2000);  RosseB  et  al.,  (2000);  Tanelli,  (1977).

5. Further  fluid  ac7vity  deposited  the  Zn-­‐Pb,  following  by  mafic  magma  that  emanate  the   Cu-­‐Fe  sulfide  ores  (Vezzoni  et  al.,  in  prep-­‐b).  A  felsic  melt  emplaced  genera7ng  a  porphyry   dyke  (Coquand)  in  the  middle  zone  of  the  main  skarn  bodies,  aLes7ng  a  prolonged  ac7vity   of  the  briLle,  top-­‐to-­‐the-­‐east  displacement  process.

6. Finally,  with  the  end  of  gravity  sliding,  the  Ortaccio  felsic  dyke  was  emplaced  parallel  to   the  western  horst-­‐bounding  fault.  Its  apparently   contradictory  paLern,   with  right-­‐lateral   en-­‐echelon  paLern  in  the  southern  half  and  le4-­‐lateral  en-­‐echelon  paLern  in  the  northern   half,   can  be  reconciled  in  a  normal,   east-­‐dipping   extensional  faul7ng   system  where  the   segment   arrays  are  connected  by   relay   ramps  (Walsh  et   al.,   2003).   Outwards  from   the   igneous-­‐hydrothermal   system,   this   final  extensional   event   is   recorded   by   large-­‐throw,   NW-­‐SE  normal  faults  to  the  east  and  N-­‐S  faults  to  the  west  (Giannini,  1955;  Acocella  et  al.,   2000).

Conclusions  and  implicaBons

Transfer  zones  in  the  Apennines

Transversal  structures  in  the  Northern  Apennines  are  known  since  Signorini  (1935)  and   Sacco   (1935).   However,   their   interpreta7on  as  transfer   zones  is  accumula7ng  only   in   the   latest   years  (e.g.,  Bartolini  et  al.,  1983,  Costan7ni  et  al.,  1993,  Acocella  &  Funiciello,   2006,  

(9)

Dini  et  al.,  2008b;  Brogi  &  Fabbrini,  2009;   Brogi  et  al.,  2010;  Brogi,  2011;   Brogi  et  al.,  2011;  

Brogi  &   Fuligna7,   2012).   All  these  transfer   structures  are  associated  with   igneous  and/or   hydrothermal   ac7vity,   and   transfer   movements   are   interpreted   to   drive   magma   emplacement  in  both  intrusive  (Dini  et  al.,  2008b)  and  volcanic  environments  (e.g.,  Acocella   et  al.,  2006;  Brogi  et  al.,  2010).

Nevertheless   the   way   these   magmas   ascended   from   their   sources   is   s7ll   enigma7c   because   extensional  structures  are   either   (i)   older   than   magma7sm   and   with   low-­‐angle   geometry,  or  (ii)  coeval  with  magma7sm,  but  with  listric  geometries  in  seismic  profiles  (Brogi   et  al.,  2005;  FineB  et  al.,  2001)  and  therefore  not  penetra7ng  the  crust  at  depth.  It  is  thus   temp7ng  to  speculate  that  the  way  magma  rose  from  source  to  shallow  crust  was  via  these   transfer  structures,  that  should  be  deep-­‐reaching  enough  to  tap  magmas  from  their  sources,   even  in  the  mantle.

Gravity-­‐assisted  sliding

The  Campiglia  transfer  zone,  when  compared  to  other  Apennine  transfer  zones,  behaved   in  a  somewhat  different  way:  not  only  it  did  draw  magmas  and  fluids  towards  the  surface,  it   also  defines  a  corridor  where  lateral  displacement  of  thermally  weakened  marble  occurred   at   higher-­‐than-­‐regional   extensional   rates,   thus   determining   a   southern   boundary   characterized   by   right-­‐lateral   movement,   and   a   northern   boundary   with   le4-­‐lateral   movement.

Another,   nearby,   prominent   example   of   eastward   lateral   displacement   of   pluton   overburden  occurred  above  the  7  Ma  Monte  Capanne  intrusion  (Elba  Island,  Westerman  et   al.,  2004).  However,  in  Elba  the  crustal  slice  was  displaced  by  ca.  8  km  as  a  thick,  coherent,   briLle  body,  whereas  in  Campiglia  the  pluton  intrusion  in  carbonate  units  generated  a  lateral   diplacement  in  duc7le  regime  for  the  deeper  parts,  gradually  changing  to  briLle  movements   more  distally.  Thus,  the  resul7ng  displaced  material  in  Elba  preserved  its  tectono-­‐stra7grafic   and   intrusive   layout,   whereas   in   Campiglia   the   deforma7on   structures   formed   in   the   thermally  weakened,  outward  squeezing  aureole.

Addi7onally,  the  proposed  model  simply  explain  the  two  types  of  compressional  features   in  the  Campiglia  area,  that   are  clearly   related  to  the  emplacement   of  the  Botro  ai  Marmi   pluton:   (i)   the  isoclinal  folds  in  the  marble  at   the  pluton   contact,   which  would  otherwise   have  an  anomalous  style  in  the  frame  of  the  Apennine  compressional  features,  and  (ii)  the   small   compressional   thrust   ramps   at   the   easternmost   reach   of   the   tranfer   zone.   This   scenario  thus  points  out  two  of  the  mul7ple  ways  how  local  compressional  structures  can   form  in  presence  of  ac7ve  magma7sm  in  an  overall  extensional  seBng.

Tectonic  traps  for  magmas  and  hydrothermal  fluids

In   southern   Tuscany,   ore   bodies   and   magma7c   rocks   did   generate   exploi7ng   similar   tectonic   traps  (e.g.,   Amiata:   Brogi  et   al.,   2010;   Brogi  et   al.,   2011,   Elba  Island;   Dini  et   al.,   2008b;  Gavorrano;  RosseB  et  al.,  2001;  Roccastrada;  Brogi  &  Fuligna7,  2012).  At  Campiglia,   a  more  specific  inves7ga7on  refines  this  scenario,  poin7ng  out  that  the  forma7on  of  mega-­‐

tension  gash-­‐like  fractured  volumes  was  able  to  enhance  permeability  in  the  shallow  crust   and   draw-­‐in   hydrothermal   fluids   and   magmas   from   deeper   sources.   These   anomalous   tectonic  structures  should  be  taken  into  account  in  ore  and  geothermal  explora7on.

Acknowledgements

This  work  has  been  carried  out   as  part   of  the  PhD  of  SV,  in  the  framework,  of  the  PhD   program   of  the  University   of   Pisa.   Thanks  are  due  to  Marco  Pistolesi  and  Luca  Tinagli  for   their  help  during  field  survey.

(10)

References

Acocella,  V.,  RosseB,   F.,  Faccenna,  C.,   Funiciello,  R.  and  LazzaroLo,   A.  (2000).  Strike-­‐slip   faul7ng   and   pluton   emplacement   in   Southern   Tuscany:   the   Campiglia   MariBma   case.  

BolleBno  Società  Geologica  Italiana  119(10):  22.

Acocella,   V.   and   Funiciello,   R.   (2006).   Transverse   systems   along   the   extensional   Tyrrhenian  margin  of  central  Italy  and  their  influence  on  volcanism.  Tectonics  25(2):  TC2003.

Aquater   (1994).   Area   Campigliese,   Convenzione   Ministero   Industria,   Commercio   e   Ar7gianato  -­‐  ENI.  Relazione  conclusiva  sui  lavori  svol7

Barberi,   F.,   Innocen7,   F.   and  Mazzuoli,   R.   (1967).   Contributo   alla  conoscenza  chimico-­‐

petrografica  e  magmatologica  delle  rocce  intrusive,   vulcaniche  e  filoniane  del  Campigliese   (Toscana).  Memorie  Società  Geologica  Italiana  6:  643-­‐681.

Bartolini,   C.,   Bernini,   M.,   Carloni,   G.   C.,   Costan7ni,   A.,   Federici,   P.   R.,   Gasperi,   G.,   LazzaroLo,   A.,   MarcheB,   G.,   Mazzan7,   R.,   Papani,   G.,   Pranzini,   G.,   Rau,   A.,   Sandrelli,   F.,   Vercesi,   P.   L.,   Castaldini,   D.   and  Francavilla,   F.  (1982).   Carta  neoteLonica  dell'  Appennino   seLentrionale.  Note  illustra7ve.  BolleBno  della  Societa  Geologica  Italiana  101(4):  523-­‐549.

Bellani,   S.,   Brogi,   A.,   LazzaroLo,   A.,   LioLa,   D.   and   Ranalli,   G.   (2004).   Heat   flow,   deep   temperatures   and   extensional   structures   in   the   Larderello   Geothermal   Field   (Italy):  

constraints   on   geothermal   fluid   flow.   Journal   of   Volcanology   and   Geothermal  Research   132(1):  15-­‐29.

Benvenu7,  M.,  Boni,  M.  and  Meinert,  L.  D.  (2004).  Skarn  deposits  in  Southern  Tuscany  and   Elba  Island  (Central  Italy).  Field  Trip  Guide  Book  -­‐  B18  2:  24.

BoccaleB,  M.,  Cor7,  G.  and  Martelli,  L.  (2011).  Recent  and  ac7ve  tectonics  of  the  external   zone   of   the   Northern   Apennines   (Italy).   Interna7onal   Journal   of   Earth   Sciences   100(6):  

1331-­‐1348.

Bodechtel,   J.  (1968).  Die  Paragenesen  der  SkarnlagerstaLen  in  den  Monte  di  Campiglia-­‐

Toskana.  Freiberg.  Forschungshefie  231:  7-­‐20.

Bonini,   M.   and  Sani,   F.   (2002).   Extension  and  compression  in  the  Northern  Apennines   (Italy)   hinterland:   Evidence   from   the   late   Miocene-­‐Pliocene   Siena-­‐Radicofani   Basin   and   rela7ons  with  basement  structures.  Tectonics  21(3):  1-­‐1-­‐1-­‐32.

Borsi,  S.,  Ferrara,  G.  and  Tongiorgi,  E.  (1967).  Determinazione  con  il  metodo  K/Ar  delle  età   delle  rocce  magma7che  della  Toscana.  BolleBno  Società  Geologica  Italiana  86:  403-­‐411.

Brogi,  A.,  LazzaroLo,  A.,  LioLa,  D.  and  Group,  C.  W.  (2005).  Structural  features  of  southern   Tuscany   and   geological  interpreta7on   of   the   CROP   18   seismic   Reflec7on   Survey   (Italy).  

BolleBno  Società  Geologica  Italiana(3):  24.

Brogi,   A.   (2008a).   Kinema7cs   and   geometry   of   Miocene   low-­‐angle   detachments   and   exhuma7on  of  the  metamorphic  units  in  the  hinterland  of  the  Northern  Apennines  (Italy).  

Journal  of  Structural  Geology,  30:  2-­‐20.

Brogi,  A.  (2008b).  The  structure  of  the  Monte  Amiata  volcano-­‐geothermal  area  (Northern   Apennines,  Italy):  Neogene-­‐Quaternary  compression  versus  extension.  Interna7onal  Journal   of  Earth  Sciences  97(4):  677-­‐703.

Brogi,   A.  and  Fabbrini,   L.  (2009).  Extensional  and  strike-­‐slip  tectonics  across  the  Monte   Amiata–Monte  Cetona  transect  (Northern  Apennines,  Italy)  and  seismotectonic  implica7ons.  

Tectonophysics  476(1–2):  195-­‐209.

Brogi,   A.,   LioLa,   D.,   Meccheri,   M.   and   Fabbrini,   L.   (2010).   Transtensional   shear   zones   controlling  volcanic   erup7ons:   the  Middle  Pleistocene  Mt   Amiata  volcano  (inner   Northern   Apennines,  Italy).  Terra  Nova  22(2):  137-­‐146.

Brogi,  A.  (2011).  Varia7on  in  fracture  paLerns  in  damage  zones  related  to  strike-­‐slip  faults   interfering  with  pre-­‐exis7ng  fractures  in  sandstone  (Calcione  area,  southern  Tuscany,  Italy).  

Journal  of  Structural  Geology  33(4):  644-­‐661.

Brogi,   A.,   Fabbrini,  L.  and  LioLa,  D.  (2011).  Sb–Hg  ore  deposit  distribu7on  controlled  by   briLle  structures:  The  case  of  the  Selvena  mining  district  (Monte  Amiata,  Tuscany,  Italy).  Ore  

(11)

Geology  Reviews  41(1):  35-­‐48.

Brogi,   A.   and  Fuligna7,  P.  (2012).  Tectonic  control  on  hydrothermal  circula7on  and  fluid   evolu7on  in  the  Pietratonda–Poggio  Peloso  (southern  Tuscany,   Italy)  carbonate-­‐hosted  Sb-­‐

mineraliza7on.  Ore  Geology  Reviews  44(0):  158-­‐171.

Caggianelli,  A.,  Ranalli,  G.,  Lavecchia,  A.,  LioLa,  D.  and  Dini,  A.  (2014).  Post-­‐emplacement   thermo-­‐rheological  history  of  a  granite  intrusion  and  surrounding  rocks:  the  Monte  Capanne   pluton,  Elba  Island,  Italy.  Geological  Society,  London,  Special  Publica7ons  394(1):  129-­‐143.

Calamai,   A.,   Cataldi,   R.,   Squarci,   P.   and   Taffi,   L.   (1970).   Geology,   Geophysics   and   Hydrogeology  of  the  Monte  Amiata  geothermal  field.  .  Geothermics  Vol.  Spec.  1:  1-­‐9.

Capitani,   G.   C.   and   Mellini,   M.   (2000).   The  crystallisa7on   sequence  of   the   Campiglia   MariBma  skarn.  Neues  Jahrbuch  für  Mineralogie  Monatshe4e  3:  97-­‐115.

Carmignani,  L.,  Decandia,  F.  A.,  Fantozzi,  P.  L.,  LazzaroLo,  A.,  LioLa,  D.  and  Meccheri,  M.  

(1994).  Ter7ary  extensional  tectonics  in  Tuscany  (Northern  Apennines,  Italy).  Tectonophysics   238(1–4):  295-­‐315.

CavarreLa,  G.  and  Puxeddu,  M.  (1990).  Schorl-­‐dravite-­‐ferridravite  tourmalines  deposited   by   hydrothermal  magma7c  fluids  during  early  evolu7on  of  the  Larderello  geothermal  field,   Italy.  Economic  Geology  85(6):  1236-­‐1251.

Cerrina  Feroni,   A.   (2007)a.   Carta  Geologica   della  Regione  Toscana  alla   scala  1:10000,   Sezione  305080,  SasseLa.  CNR-­‐Is7tuto  di  Geoscienze  e  Georisorse

Cerrina  Feroni,   A.   (2007)b.   Carta  Geologica   della   Regione  Toscana  alla   scala  1:10000,   Sezione  305120,  Campiglia  MariBma.  CNR-­‐Is7tuto  di  Geoscienze  e  Georisorse

Corsini,  F.,  Cortecci,  G.,  Leone,  G.  and  Tanelli,  G.  (1980).  Sulfur  isotope  study  of  the  skarn-­‐

(Cu-­‐Pb-­‐Zn)   sulfide   deposit   of   Valle   del   Temperino,   Campiglia   MariBma,   Tuscany,   Italy.  

Economic  Geology  75(1):  83-­‐96.

Costan7ni,  A.,  LazzaroLo,  A.,  Maccantelli,  M.,  Mazzan7,  R.,  Sandrelli,  F.  and  Tavarnelli,  E.  

(1993).  Geologia  della  provincia  di  Livorno  a  sud  del  Fiume  Cecina.   Quaderni  del  Museo  di   Storia  Naturale  di  Livorno  13(2):  1-­‐164.

Decandia,   F.   A.,   LazzaroLo,   A.   and   LioLa,   D.   (2001).   Structural   feature   of   Southern   Tuscany,  Italy.  Ofioli7  26  (2a):  14.

Dini,  A.  (2003).   Ore  deposits,   industrial  minerals  and  geothermal  resources.  Periodico  di   Mineralogia  72(Special  issue):  41-­‐52.

Dini,  A.,  Mazzarini,  F.,  Musumeci,  G.  and  Rocchi,  S.  (2008)a.  Mul7ple  hydro-­‐fracturing  by   boron-­‐rich  fluids  in  the  Late  Miocene  contact  aureole  of  eastern  Elba  Island  (Tuscany,  Italy).  

Terra  Nova  20(4):  318-­‐326.

Dini,  A.,  Westerman,  D.  S.,  Innocen7,  F.  and  Rocchi,  S.  (2008)b.  Magma  emplacement  in  a   transfer  zone:  the  Miocene  mafic  Orano  dyke  swarm  of  Elba  Island,  Tuscany,  Italy.  Geological   Society,  London,  Special  Publica7ons  302(1):  131-­‐148.

Dini,   A.   and  Senesi,   F.  (2013).  I  giacimen7  di  Sn-­‐W-­‐As.   Monte  Valerio,   Pozzatello,  Santa   Caterina,   Botro   ai   Marmi  e  Campo   alle   Buche.   Rivista  Mineralogica  Italiana  Campigliese.  

Miniere  e  minerali(1):  84-­‐92.

Duchi,  V.,  Minissale,  A.,  Paolieri,  M.,  Pra7,  F.  and  Valori,  A.  (1992).  Chemical  rela7onship   between  discharging  fluids  in  the  Siena-­‐Radicofani  graben  and  the  deep  fluids  produced  by   the   geothermal  fields  of   Mt   Amiata,   Torre   Alfina  and  Latera  (Central  Italy).   Geothermics   21(3):  401-­‐413.

Feldstein,  S.  N.,  Halliday,  A.  N.,  Davies,  G.  R.  and  Hall,  C.  M.  (1994).  Isotope  and  chemical   microsampling:  Constraints  on  the  history  of  an  S-­‐type  rhyolite,  San  Vincenzo,  Tuscany,  Italy.  

Geochimica  et  Cosmochimica  Acta  58(2):  943-­‐958.

Ferrara,   G.,   Petrini,   R.,   Serri,   G.   and   Tonarini,   S.   (1989).   Petrology   and   isotope-­‐

geochemistry  of  San  Vincenzo  rhyolites  (Tuscany,  Italy).  Bulle7n  Volcanologique  51:  379-­‐388.

FineB,   I.   R.,   BoccaleB,   M.,   Bonini,   M.,   Del  Ben,   A.,   GeleB,   R.,   Pipan,   M.   and  Sani,   F.  

(2001).  Crustal  sec7on  based  on  CROP   seismic  data  across  the  North  Tyrrhenian–Northern   Apennines–Adria7c  Sea.  Tectonophysics  343(3–4):  135-­‐163.

(12)

Gianelli,  G.  and  Ruggieri,  G.  (2002).  Evidence  of  a  contact  metamorphic  aureole  with  high-­‐

temperature  metasoma7sm  in  the  deepest  part  of  the  ac7ve  geothermal  field  of  Larderello,   Italy.  Geothermics  31(4):  443-­‐474.

Giannini,  E.  (1955).  Geologia  dei  mon7  di  Campiglia  MariBma  (Livorno).  BolleBno  Società   Geologica  Italiana  74:  219-­‐296.

Giraud,  A.,  Dupuy,  C.  and  Dostal,  J.  (1986).  Behaviour  of  trace  elements  during  magma7c   processes   in   the   crust:   applica7on   to   acidic   volcanic   rocks   of   Tuscany   (Italy).   Chemical   Geology  57:  269-­‐288.

Grassi,   S.,   Squarci,   P.,   Cela7,   R.,   Calore,   C.,   Perusini,   P.   and   Taffi,   L.   (1990).   Nuove   conoscenze  sul  sistema  idrotermale  di  Campiglia  MariBma  (Livorno).  BolleBno  della  Societa   Geologica  Italiana  109(4):  693-­‐706.

Innocen7,   F.,   Serri,   G.,   Ferrara,   G.,   ManeB,   P.   and   Tonarini,   S.   (1992).   Genesis  and   classifica7on  of   the  rocks  of   the  Tuscan   Magma7c   Province:   thirty   years  a4er   Marinelli's   model.  Acta  Vulcanologica  2:  247-­‐265.

Klügel,   A.,   Walter,   T.,   Schwarz,   S.   and   Geldmacher,   J.   (2005).   Gravita7onal   spreading   causes   en-­‐echelon   diking   along   a   ri4   zone   of   Madeira   Archipelago:   an   experimental   approach  and  implica7ons  for  magma  transport.  Bulle7n  of  Volcanology  68(1):  37-­‐46.

LaLanzi,  P.,  Benvenu7,  M.,  Costagliola,  P.,  Maineri,  C.,  Mascaro,  I.,  Tanelli,  G.,  Dini,  A.  and   Ruggieri,   G.   (2001).   Magma7c   versus   hydrothermal   processes   in   the   forma7on   of   raw   ceramic  material  deposits  in  southern  Tuscany.  Water-­‐Rock  interac7on:  725-­‐728.

LaLanzi  ,  P.,  Benvenu7,  M.,  Costagliola,  P.  and  Tanelli,  G.  (1994).  An  overview  on  recent   research   on   the   metallogeny   of   Tuscany,   with   special   reference   to   the   Apuane   Alps.  

Memorie  Società  Geologica  Italiana  48:  613-­‐625.

Mazzarini,  F.,  Musumeci,  G.  and  Cruden,  A.  R.  (2011).  Vein  development  during  folding  in   the  upper   briLle  crust:   The  case  of  tourmaline-­‐rich  veins  of   eastern  Elba  Island,  northern   Tyrrhenian  Sea,  Italy.  Journal  of  Structural  Geology  33(10):  1509-­‐1522.

Merle,   O.   and  Vendeville,   B.   (1995).   Experimental  modelling   of  thin-­‐skinned  shortening   around  magma7c  intrusions.  Bulle7n  of  Volcanology  57(1):  33-­‐43.

Molli,   G.  (2008).  Northern  Apennine–Corsica  orogenic   system:   an  updated  overview,   in   Siegesmund,   S.,   Fügenschuh,   B.,   and  Froitheim,   N.,   eds.,   Tectonic   Aspects  of   the  Alpine-­‐

Dinaride-­‐Carpathian  System.  Geological  Society,  London,  Special  Publica7ons,  298:  413–442.

Musumeci,  G.,  Mazzarini,   F.  and  Barsella,  M.   (2008).   Pliocene  crustal  shortening  on  the   Tyrrhenian  side  of  the  northern  Apennines:  evidence  from  the  Gavorrano  an7form  (southern   Tuscany,  Italy).  Journal  of  the  Geological  Society  165(1):  105-­‐114.

Passerini,  P.  and  Marcucci,  M.  (1992).  Mesoscopic  faults  in  the  granite  of  Isola  del  Giglio   (Tuscan  Archipelago).  Tectonophysics  206(3–4):  265-­‐283.

Pehord,  N.,  (2003).  Rheology  of  grani7c  magmas  during  ascent  and  emplacement.  Annual   Revue  of  Earth  and  Planetary  Sciences,  31:  399-­‐427.

Piana  Agos7neB,  N.,   Amato,   A.   (2009).  Moho  depth  and  Vp/Vs  ra7o  in  peninsular   Italy   from  teleseismic  receiver  func7ons.  Journal  of  Geophysical  Research,  114:  B06303.

Pinarelli,   L.,   Poli,   G.   and   Santo,   A.   (1989).   Geochemical   characteriza7on   of   recent   volcanism   from   the   Tuscan   Magma7c   Province  (Central   Italy):   the  Roccastrada  and   San   Vincenzo  centers.  Periodico  di  Mineralogia  58:  67-­‐96.

PlaL,   J.  P.   (2007).   From  orogenic   hinterlands  to   Mediterranean-­‐style  back-­‐arc   basins:   a   compara7ve  analysis.  Journal  of  the  Geological  Society  164(2):  297-­‐311.

Rodolico,  F.  (1945).  Ragguagli  sul  granito  del  Campigliese.  AB  Società  Toscana  di  Scienze   Naturali  52:  125-­‐132.

RosseB,   F.,   Faccenna,   C.,   Acocella,   V.,   Funiciello,   R.,   Jolivet,   L.   and   Salvini,   F.   (2000).  

Pluton  emplacement   in  the  Northern  Tyrrhenian  area,   Italy.  Geological  Society  of   America   Special  Papers  174:  55-­‐77.

RosseB,   F.,  Faccenna,  C.,  Funiciello,  R.,  Pascucci,   V.,  Pietrini,  M.  and  Sandrelli,  F.  (2001).  

Neogene   strike-­‐slip   faul7ng   and   pluton   emplacement   in   the   colline   metallifere   region  

Riferimenti

Documenti correlati

• IL MAR LIGURE: E’ POCO ESTESO, MA PROFONDO; LE SUE COSTE SONO ALTE E ROCCIOSE.. • IL MAR TIRRENO: E’ IL PIU’ ESTESO

circondata a Est, a Sud e ad Ovest dal Mar Mediterraneo, che si suddivide in quattro mari diversi, a seconda della zona che bagna.. Inoltre ci sono

- at the level of the anatomical structure – a significant increase in the thickness of the mes- ophyll, a tendency to decrease the thickness of the tissues of the upper and

At ground level, the shear lag ratio, which is the ratio of the axial force in corner columns to the axial force in columns at the middle of the panel, increased by 30.8%, which

(FATTE SALVE LE VERIFICHE DI COMPETENZA DELL'UFFICIO NAZIONALE PER IL SERVIZIO CIVILE) NAZNZ0179117102942NNAZ. Oltre i mari e

Questo succede anche in tutti i Paesi del Corno d’Africa, ma qui accenniamo uni- camente alle attività delle due Caritas più implicate nel fenomeno della migrazione: la Caritas

Più precisamente, muovendosi secondo l’idea, formulata in base all’unità della persona, che «il lavoro non è una merce», e quindi, intervenendo nella contraddizione che

Più precisamente, muovendosi secondo l’idea, formulata in base all’unità della persona, che «il lavoro non è una merce», e quindi, intervenendo nella contraddizione che