Ramanujan Toeplitz systems satisfied by Bernoulli numbers
Lower triangular Toeplitz matrices and the sequence of Bernoulli numbers
Carmine Di Fiore, Francesco Tudisco, Paolo Zellini Dipartimento di Matematica, Universit` a di Roma “Tor Vergata”
mailto: [email protected]
Conference on Matrix Methods in Mathematics and Applications Skolkovo Institute of Science and Technology, Moscow
August 24–28, 2015
1
Bernoulli numbers
2
Triangular Toeplitz systems satisfied by Bernoulli numbers
3
Ramanujan Toeplitz systems satisfied by Bernoulli numbers
Ramanujan Toeplitz systems satisfied by Bernoulli numbers
Bernoulli numbers
B(x + 1) − B(x ) = nx
n−1, R
10
B(x ) dx = 0, B(x ) polynomial ⇒ B
n(x ) degree n Bernoulli polynomial
Note: B
n0(x ) = nB
n−1(x ), B
n(1 − x ) = (−1)
nB
n(x ), B
2j +1(0) = 0 Bernoulli numbers: B
2j:= B
2j(0) = B
2j(1), j = 0, 1, 2, . . .
1,
16, −
301,
421, −
301,
665, −
2730691,
76, −
3617510,
43867798, −
174611330,
854513138, . . . Euler formula P
+∞k=1 1
k2j
=
(−1)j −12(2j )!B2j(2π)2j⇒ |B
2j| ≈
2(2j )!(2π)2j
. Moreover B
2j(x )
B
2j(0)
[0,1]→ cos(2πx),
k
X
x =1
x
n−1= 1
n [B
n(k+1)−B
n(1)].
B
2jappear in Euler-Maclaurin summation formula and error in the
trapezoidal quadrature rule, in cyclotomic fields and irregular
primes, . . .
. . . in power series expansions, in particular te
xte
t− 1 =
+∞
X
n=0
B
n(x )
n! t
n⇒ t
e
t− 1 = − 1 2 t +
+∞
X
k=0
B
2k(2k)! t
2k,
t = − 1 2 t +
+∞
X
k=0
B
2k(2k)! t
2k+∞
X
r =0
t
r +1(r + 1)! , . . . ,
− 1 2 j +
[j −12 ]
X
k=0
j
2k B
2k= 0, j = 2, 3, 4, 5, . . .
For j even and for j odd the latter equations can be rewritten
respectively as follows:
Ramanujan Toeplitz systems satisfied by Bernoulli numbers
2 0
4 0
4
2
6 0
6
2
6
4
8 0
8
2
8
4
8
6
· · · · ·
B
0B
2B
4B
6·
=
1 2 3 4
·
, (even)
1 0
3 0
3
2
5 0
5
2
5
4
7 0
7
2
7
4
7
6
· · · · ·
B
0B
2B
4B
6·
=
1 3/2 5/2 7/2
·
. (odd )
Triangular Toeplitz systems satisfied by Bernoulli numbers
(even) is equivalent to a lower triangular Toeplitz (ltT) system:
Z
a2,a3,a4,...=
0 a
20
a
30 a
4·
· ·
, Z
a22,a3,a4,...=
0
0 0
a
2a
30 0 a
3a
40 ·
a
4a
5· ·
· ·
,
Z
ak2,a3,a4,...=
0
· 0
0 · 0
a
2a
3· a
1+k0 · ·
a
3a
4· a
2+k0 · · a
4a
5· a
3+k· ·
· ·
, Z = Z
a2,a3,a4,...⇒
[Z
ak2,a3,a4,...]
ij= a
j +1a
j +2· a
j +kif i = k + j , j = 1, 2, 3, . . .
0 otherwise , [Z
i −j]
ij= a
j +1· · · a
iRamanujan Toeplitz systems satisfied by Bernoulli numbers
Y = Z
1,2,3,...( a
k= k − 1 ) ⇒
+∞
X
k=0
1 k! Y
k=
0 0
1 0
1
1
2 0
2
1
2
2
3
0
3
1
3
2
3
3
4
0
4
1
4
2
4
3
4
4
5
0
5
1
5
2
5
3
5
4
5
5
6
0
6
1
6
2
6
3
6
4
6
5
6
6
· · · · · · · ·
Proof : [
+∞
X
k=0
1
k! Y
k]
ij= 1
(i − j )! [Y
i −j]
ij= 1
(i − j )! j · · · (i − 2)(i − 1) = i − 1
j − 1 .
Φ = Z
2,12,30,56,...( a
k= (2k − 3)(2k − 2) ) ⇒
diag (2, 12, 30, 56, ...)
+∞
X
k=0
1
(2k + 2)! Φ
k=
2 0
4 0
4
2
6 0
6
2
6
4
8
0
8
2
8
4
8
6
· · · · ·
Proof: [ diag (2, 12, 30, 56, ...) P
+∞k=0 1
(2k+2)!
Φ
k]
ij= 2i (2i − 1) P
+∞k=0 1 (2k+2)!
φ
kij
= 2i (2i − 1)
(2i −2j +2)!1[φ
i −j]
ij= 2i (2i − 1)
(2i −2j +2)!1 (2i −2)!(2j −2)!
= 2i 2j − 2 . Thus (even) is equivalent to
+∞
X
k=0
2
(2k + 2)! Φ
kb = q
e, b = [B
0B
2B
4B
6· · · ]
T, q
e= [1 1 3
1 5
1
7 · · · ]
T.
Ramanujan Toeplitz systems satisfied by Bernoulli numbers
D = diag 1,
2!x,
x4!2, · · · ,
(2n−2)!xn−1, · · · , x ∈ R ⇒
DΦD
−1= xZ , DΦ
kD
−1= (DΦD
−1)
k= x
kZ
k, Z = Z
1,1,1,...Thus (even) is equivalent to the following ltT system:
+∞
X
k=0
2x
k(2k + 2)! Z
kDb = Dq
e. (even ltT ) Analogously, (odd) is equivalent to the following ltT system:
+∞
X
k=0
x
k(2k + 1)! Z
kDb = Dq
o, (odd ltT )
q
o= [1
12 12 12· · · ]
T.
Ramanujan Toeplitz systems satisfied by Bernoulli numbers
1
0 1
0 0 1
1
3
0 0 1
0
520 0 1
0 0 11 0 0 1
1
5
0 0
14340 0 1
0 4 0 0
28630 0 1
0 0
20450 0 221 0 0 1
1
7
0 0
193870 0
323070 0 1
0
1120 0
710650 0
355340 0 1
· · · · · · · · · · · ·
B
2B
4B
6B
8B
10B
12B
14B
16B
18B
20B
22·
=
1 6
−
3011 421 45
−
13214 4551 120
−
30613 6651 231
−
5521·
.
R(Z
Tb) = Z
Tf, f = [ f
01/6 − 1/30 1/42 1/45 . . .]
T[S. Ramanujan, Some properties of Bernoulli numbers, J. Indian
Math. Soc., 3 (1911), 219–234]
Ramanujan Toeplitz systems satisfied by Bernoulli numbers
RΛ
−1= Λ
−1R, Λ = Z ˜
TDZ = diag x
i(2i )! : i = 1, 2, 3, . . .
(C ) where R = ˜
+∞
X
k=0
2x
3k(6k + 2)!(2k + 1) Z
3k=
1
0 1
0 0 1
2x3
8!3
0 0 1
0
2x8!330 0 1
0 0
2x8!330 0 1
2x6
14!5
0 0
2x8!330 0 1
0
14!52x60 0
2x8!330 0 1 0 0
14!52x60 0
2x8!330 0 1
2x9
20!7
0 0
14!52x60 0
2x8!330 0 1
0
20!72x90 0
14!52x60 0
2x8!330 0 1
· · · · · · · · · · · ·
REMARK The 11 × 11 upper left submatrix of RΛ
−1coincides with the 11 × 11 upper left submatrix of Λ
−1R. ˜
Assuming that (C) is true, we have the equalities R(Z
Tb) = RΛ
−1(ΛZ
Tb) = Λ
−1R(Z ˜
TDb),
and thus the Ramanujan system R(Z
Tb) = Z
Tf is equivalent to the following ltT system
R(Z ˜
TDb) = Z
TDf (Ramanujan ltT ) where, in the coefficient matrix
R = ˜
+∞
X
k=0
2x
3k(6k + 2)!(2k + 1) Z
3k,
two null diagonals alternate the nonnull ones.
Ramanujan Toeplitz systems satisfied by Bernoulli numbers
THEOREM Set b = [B
0B
2B
4· · · ]
T, and D = diag
(2i )!xi: i = 0, 1, 2, . . . , x ∈ R. Then
L(a) (Db) = Dq, L(a) =
+∞
X
i =0
a
iZ
iwhere a = (a
i)
+∞i =0and q = (q
i)
+∞i =0can assume the values:
a
0o= q
o0= 1, a
oi= x
i(2i + 1)! , q
io= 1
2 , i = 1, 2, 3, . . . , (o) a
ei= 2x
i(2i + 2)! , q
ie= 1
2i + 1 , i = 0, 1, 2, 3, . . . , (e) a
Ri= δ
i ≡02x
i(2i + 2)!(
23i + 1) , q
iR= 1
(2i + 1)(i + 1) (1−δ
i ≡23
2 ), i ≥ 0. (R)
In (R) the symbols i ≡ 2 and i ≡ 0 mean i ≡ 2 mod 3 and i ≡ 0 mod 3,
respectively.
COROLLARY
We have all coefficients of the (not Toeplitz) Ramanujan system RZ
Tb = Z
Tf, f = [f
0f
1f
2· · · ]
T:
R
ij=
(
(2i )!(2j )!
2
(2i −2j +2)!(23(i −j )+1)
i − j ≡ 0, i ≥ j
0 otherwise , i , j = 1, 2, . . . ,
f
i=
1 − δ
i ≡2 32− δ
i ≡0 21 3i +1(2i + 1)(i + 1) , i = 1, 2, 3, . . . . Example: the 12
thRamanujan equation:
506
5 B
6+ 29716
5 B
12+ 4807
3 B
18+ B
24= 8 2925 ⇒ B
24= − 236364091
2730 .
Ramanujan Toeplitz systems satisfied by Bernoulli numbers
Remarks on the parameter x :
For any choice of x , the coefficients a
iand (Dq)
iof the ltT systems stated in the Theorem converge to zero as i → +∞.
The rate of convergence of the a
iR( (Dq
R)
i) is greater than the rate of convergence of the a
ei( (Dq
e)
i), which in turn is greater than the rate of convergence of the a
oi( (Dq
o)
i).
Instead, the sequence |(Db)
i| tends to zero, to 2, or to +∞, depending on the value of x .
For instance, the choice x = (2π)
2would ensure the sequence (Db)
i= x
iB
2i/(2i )! to be bounded; indeed in this case
|(Db)
i| → 2 if i → +∞, due to Euler formula.
Possible application in computing Bernoulli numbers
• The coefficients a
i, (Dq)
iof the three ltT systems are easily computable, in fact
O(n) arithmetic operations for the first n diagonal entries of D:
D
00= 1, D
ii= x
i(2i )! = x
2i (2i − 1) D
i −1i −1, i = 1, 2, 3, . . . ; O(n) arithmetic operations to compute the first n entries of a
o, a
e, a
R, Dq
o, Dq
e, Dq
R:
a
oi= 1
2i + 1 D
ii, (Dq
o)
0= 1, (Dq
o)
i= 1
2 D
ii, i > 0, a
ei= 1
(i + 1)(2i + 1) D
ii, (Dq
e)
i= 1 2i + 1 D
ii, a
Ri= a
ei1
2
3
i + 1 δ
i ≡0, (Dq
R)
i= a
oi1
i + 1 (1 − δ
i ≡23
2 ).
Ramanujan Toeplitz systems satisfied by Bernoulli numbers
• A formula for the nth Bernoulli number:
B
2n−2= (2n − 2)!
x
n−1{Dq}
TnJ{L(a)}
−1ne
1, J =
1
· 1
i.e. O(n log n) arithmetic operations to approximate B
2n−2in R.
A formula for any vector of n consecutive Bernoulli numbers:
{L(a)}
N−nO
{Toe(a)}
n,N−n{L(a)}
n{Db}
up{Db}
down:= {L(a)}
N{Db}
N= {Dq}
N=:
{Dq}
up{Dq}
down, {Db}
down= {L(a)}
−1n{Dq}
down− {Toe(a)}
n,N−n{Db}
upi.e. O(n log n) arithmetic operations to approximate
B
2N−2n, . . . , B
2N−2in R (if the vector {Toe(a)}
n,N−n{Db}
upis
known).
Proof: It is well known that if A ∈ C
n×nis ltT and v ∈ C
n, then O(n log n) a.o. are sufficient to compute z := Av. Thus
O(n log n) a.o. are sufficient to compute c : Ac = e
1(multiply on the left both members of Ac = e
1by log n suitable sparser and sparser ltT matrices so to nullify the sub-diagonals of the coefficient matrix until obtaining c = A
−1e
1. NOTE: Product of ltT matrices is ltT) O(n log n) a.o. are sufficient to compute z : Az = v
(compute c : Ac = e
1, call M the ltT matrix with c as first column, and compute z = Mv. NOTE: Inverse of ltT is ltT)
• Once a sufficiently accurate approximation B
2j∗of B
2jis
available, this approximation and the fact that the denominator of
B
2jis known (it is the product of all primes p such that p − 1
divide 2j ) allow to deduce the numerator of B
2j.
Ramanujan Toeplitz systems satisfied by Bernoulli numbers