• Non ci sono risultati.

mailto:[email protected] CarmineDiFiore,FrancescoTudisco,PaoloZelliniDipartimentodiMatematica,Universit`adiRoma“TorVergata” LowertriangularToeplitzmatricesandthesequenceofBernoullinumbers

N/A
N/A
Protected

Academic year: 2021

Condividi "mailto:[email protected] CarmineDiFiore,FrancescoTudisco,PaoloZelliniDipartimentodiMatematica,Universit`adiRoma“TorVergata” LowertriangularToeplitzmatricesandthesequenceofBernoullinumbers"

Copied!
19
0
0

Testo completo

(1)

Ramanujan Toeplitz systems satisfied by Bernoulli numbers

Lower triangular Toeplitz matrices and the sequence of Bernoulli numbers

Carmine Di Fiore, Francesco Tudisco, Paolo Zellini Dipartimento di Matematica, Universit` a di Roma “Tor Vergata”

mailto: [email protected]

Conference on Matrix Methods in Mathematics and Applications Skolkovo Institute of Science and Technology, Moscow

August 24–28, 2015

(2)

1

Bernoulli numbers

2

Triangular Toeplitz systems satisfied by Bernoulli numbers

3

Ramanujan Toeplitz systems satisfied by Bernoulli numbers

(3)

Ramanujan Toeplitz systems satisfied by Bernoulli numbers

Bernoulli numbers

B(x + 1) − B(x ) = nx

n−1

, R

1

0

B(x ) dx = 0, B(x ) polynomial ⇒ B

n

(x ) degree n Bernoulli polynomial

Note: B

n0

(x ) = nB

n−1

(x ), B

n

(1 − x ) = (−1)

n

B

n

(x ), B

2j +1

(0) = 0 Bernoulli numbers: B

2j

:= B

2j

(0) = B

2j

(1), j = 0, 1, 2, . . .

1,

16

, −

301

,

421

, −

301

,

665

, −

2730691

,

76

, −

3617510

,

43867798

, −

174611330

,

854513138

, . . . Euler formula P

+∞

k=1 1

k2j

=

(−1)j −12(2j )!B2j(2π)2j

⇒ |B

2j

| ≈

2(2j )!

(2π)2j

. Moreover B

2j

(x )

B

2j

(0)

[0,1]

→ cos(2πx),

k

X

x =1

x

n−1

= 1

n [B

n

(k+1)−B

n

(1)].

B

2j

appear in Euler-Maclaurin summation formula and error in the

trapezoidal quadrature rule, in cyclotomic fields and irregular

primes, . . .

(4)

. . . in power series expansions, in particular te

xt

e

t

− 1 =

+∞

X

n=0

B

n

(x )

n! t

n

⇒ t

e

t

− 1 = − 1 2 t +

+∞

X

k=0

B

2k

(2k)! t

2k

,

t = − 1 2 t +

+∞

X

k=0

B

2k

(2k)! t

2k



+∞

X

r =0

t

r +1

(r + 1)! , . . . ,

− 1 2 j +

[j −12 ]

X

k=0

j

2k B

2k

= 0, j = 2, 3, 4, 5, . . .

For j even and for j odd the latter equations can be rewritten

respectively as follows:

(5)

Ramanujan Toeplitz systems satisfied by Bernoulli numbers

2 0



4 0

 4

2



6 0

 6

2

 6

4



8 0

 8

2

 8

4

 8

6



· · · · ·

 B

0

B

2

B

4

B

6

·

=

 1 2 3 4

·

, (even)

1 0



3 0

 3

2



5 0

 5

2

 5

4



7 0

 7

2

 7

4

 7

6



· · · · ·

 B

0

B

2

B

4

B

6

·

=

 1 3/2 5/2 7/2

·

. (odd )

(6)

Triangular Toeplitz systems satisfied by Bernoulli numbers

(even) is equivalent to a lower triangular Toeplitz (ltT) system:

Z

a2,a3,a4,...

=

 0 a

2

0

a

3

0 a

4

·

· ·

, Z

a22,a3,a4,...

=

 0

0 0

a

2

a

3

0 0 a

3

a

4

0 ·

a

4

a

5

· ·

· ·

 ,

Z

ak2,a3,a4,...

=

 0

· 0

0 · 0

a

2

a

3

· a

1+k

0 · ·

a

3

a

4

· a

2+k

0 · · a

4

a

5

· a

3+k

· ·

· ·

, Z = Z

a2,a3,a4,...

[Z

ak2,a3,a4,...

]

ij

=  a

j +1

a

j +2

· a

j +k

if i = k + j , j = 1, 2, 3, . . .

0 otherwise , [Z

i −j

]

ij

= a

j +1

· · · a

i

(7)

Ramanujan Toeplitz systems satisfied by Bernoulli numbers

Y = Z

1,2,3,...

( a

k

= k − 1 ) ⇒

+∞

X

k=0

1 k! Y

k

=

 0 0

 1 0

 1

1

 2 0

 2

1

 2

2

 3

0

 3

1

 3

2

 3

3

 4

0

 4

1

 4

2

 4

3

 4

4

 5

0

 5

1

 5

2

 5

3

 5

4

 5

5

 6

0

 6

1

 6

2

 6

3

 6

4

 6

5

 6

6



· · · · · · · ·

Proof : [

+∞

X

k=0

1

k! Y

k

]

ij

= 1

(i − j )! [Y

i −j

]

ij

= 1

(i − j )! j · · · (i − 2)(i − 1) = i − 1

j − 1 .

(8)

Φ = Z

2,12,30,56,...

( a

k

= (2k − 3)(2k − 2) ) ⇒

diag (2, 12, 30, 56, ...)

+∞

X

k=0

1

(2k + 2)! Φ

k

=

 2 0

 4 0

 4

2

 6 0

 6

2

 6

4

 8

0

 8

2

 8

4

 8

6



· · · · ·

Proof: [ diag (2, 12, 30, 56, ...) P

+∞

k=0 1

(2k+2)!

Φ

k

]

ij

= 2i (2i − 1)  P

+∞

k=0 1 (2k+2)!

φ

k



ij

= 2i (2i − 1)

(2i −2j +2)!1

i −j

]

ij

= 2i (2i − 1)

(2i −2j +2)!1 (2i −2)!

(2j −2)!

= 2i 2j − 2 .  Thus (even) is equivalent to

+∞

X

k=0

2

(2k + 2)! Φ

k

b = q

e

, b = [B

0

B

2

B

4

B

6

· · · ]

T

, q

e

= [1 1 3

1 5

1

7 · · · ]

T

.

(9)

Ramanujan Toeplitz systems satisfied by Bernoulli numbers

D = diag 1,

2!x

,

x4!2

, · · · ,

(2n−2)!xn−1

, · · · , x ∈ R ⇒

DΦD

−1

= xZ , DΦ

k

D

−1

= (DΦD

−1

)

k

= x

k

Z

k

, Z = Z

1,1,1,...

Thus (even) is equivalent to the following ltT system:

+∞

X

k=0

2x

k

(2k + 2)! Z

k

Db = Dq

e

. (even ltT ) Analogously, (odd) is equivalent to the following ltT system:

+∞

X

k=0

x

k

(2k + 1)! Z

k

Db = Dq

o

, (odd ltT )

q

o

= [1

12 12 12

· · · ]

T

.

(10)

Ramanujan Toeplitz systems satisfied by Bernoulli numbers

 1

0 1

0 0 1

1

3

0 0 1

0

52

0 0 1

0 0 11 0 0 1

1

5

0 0

1434

0 0 1

0 4 0 0

2863

0 0 1

0 0

2045

0 0 221 0 0 1

1

7

0 0

19387

0 0

32307

0 0 1

0

112

0 0

71065

0 0

35534

0 0 1

· · · · · · · · · · · ·

 B

2

B

4

B

6

B

8

B

10

B

12

B

14

B

16

B

18

B

20

B

22

·

=

1 6

301

1 421 45

1321

4 4551 120

3061

3 6651 231

5521

·

 .

R(Z

T

b) = Z

T

f, f = [ f

0

1/6 − 1/30 1/42 1/45 . . .]

T

[S. Ramanujan, Some properties of Bernoulli numbers, J. Indian

Math. Soc., 3 (1911), 219–234]

(11)

Ramanujan Toeplitz systems satisfied by Bernoulli numbers

−1

= Λ

−1

R, Λ = Z ˜

T

DZ = diag x

i

(2i )! : i = 1, 2, 3, . . . 

(C ) where R = ˜

+∞

X

k=0

2x

3k

(6k + 2)!(2k + 1) Z

3k

=

 1

0 1

0 0 1

2x3

8!3

0 0 1

0

2x8!33

0 0 1

0 0

2x8!33

0 0 1

2x6

14!5

0 0

2x8!33

0 0 1

0

14!52x6

0 0

2x8!33

0 0 1 0 0

14!52x6

0 0

2x8!33

0 0 1

2x9

20!7

0 0

14!52x6

0 0

2x8!33

0 0 1

0

20!72x9

0 0

14!52x6

0 0

2x8!33

0 0 1

· · · · · · · · · · · ·

(12)

REMARK The 11 × 11 upper left submatrix of RΛ

−1

coincides with the 11 × 11 upper left submatrix of Λ

−1

R. ˜

Assuming that (C) is true, we have the equalities R(Z

T

b) = RΛ

−1

(ΛZ

T

b) = Λ

−1

R(Z ˜

T

Db),

and thus the Ramanujan system R(Z

T

b) = Z

T

f is equivalent to the following ltT system

R(Z ˜

T

Db) = Z

T

Df (Ramanujan ltT ) where, in the coefficient matrix

R = ˜

+∞

X

k=0

2x

3k

(6k + 2)!(2k + 1) Z

3k

,

two null diagonals alternate the nonnull ones.

(13)

Ramanujan Toeplitz systems satisfied by Bernoulli numbers

THEOREM Set b = [B

0

B

2

B

4

· · · ]

T

, and D = diag

(2i )!xi

: i = 0, 1, 2, . . . , x ∈ R. Then

L(a) (Db) = Dq, L(a) =

+∞

X

i =0

a

i

Z

i

where a = (a

i

)

+∞i =0

and q = (q

i

)

+∞i =0

can assume the values:

a

0o

= q

o0

= 1, a

oi

= x

i

(2i + 1)! , q

io

= 1

2 , i = 1, 2, 3, . . . , (o) a

ei

= 2x

i

(2i + 2)! , q

ie

= 1

2i + 1 , i = 0, 1, 2, 3, . . . , (e) a

Ri

= δ

i ≡0

2x

i

(2i + 2)!(

23

i + 1) , q

iR

= 1

(2i + 1)(i + 1) (1−δ

i ≡2

3

2 ), i ≥ 0. (R)

In (R) the symbols i ≡ 2 and i ≡ 0 mean i ≡ 2 mod 3 and i ≡ 0 mod 3,

respectively.

(14)

COROLLARY

We have all coefficients of the (not Toeplitz) Ramanujan system RZ

T

b = Z

T

f, f = [f

0

f

1

f

2

· · · ]

T

:

R

ij

=

(

(2i )!

(2j )!

2

(2i −2j +2)!(23(i −j )+1)

i − j ≡ 0, i ≥ j

0 otherwise , i , j = 1, 2, . . . ,

f

i

=

1 − δ

i ≡2 32

− δ

i ≡0 21 3i +1

(2i + 1)(i + 1) , i = 1, 2, 3, . . . . Example: the 12

th

Ramanujan equation:

506

5 B

6

+ 29716

5 B

12

+ 4807

3 B

18

+ B

24

= 8 2925 ⇒ B

24

= − 236364091

2730 .

(15)

Ramanujan Toeplitz systems satisfied by Bernoulli numbers

Remarks on the parameter x :

For any choice of x , the coefficients a

i

and (Dq)

i

of the ltT systems stated in the Theorem converge to zero as i → +∞.

The rate of convergence of the a

iR

( (Dq

R

)

i

) is greater than the rate of convergence of the a

ei

( (Dq

e

)

i

), which in turn is greater than the rate of convergence of the a

oi

( (Dq

o

)

i

).

Instead, the sequence |(Db)

i

| tends to zero, to 2, or to +∞, depending on the value of x .

For instance, the choice x = (2π)

2

would ensure the sequence (Db)

i

= x

i

B

2i

/(2i )! to be bounded; indeed in this case

|(Db)

i

| → 2 if i → +∞, due to Euler formula.

(16)

Possible application in computing Bernoulli numbers

• The coefficients a

i

, (Dq)

i

of the three ltT systems are easily computable, in fact

O(n) arithmetic operations for the first n diagonal entries of D:

D

00

= 1, D

ii

= x

i

(2i )! = x

2i (2i − 1) D

i −1i −1

, i = 1, 2, 3, . . . ; O(n) arithmetic operations to compute the first n entries of a

o

, a

e

, a

R

, Dq

o

, Dq

e

, Dq

R

:

a

oi

= 1

2i + 1 D

ii

, (Dq

o

)

0

= 1, (Dq

o

)

i

= 1

2 D

ii

, i > 0, a

ei

= 1

(i + 1)(2i + 1) D

ii

, (Dq

e

)

i

= 1 2i + 1 D

ii

, a

Ri

= a

ei

1

2

3

i + 1 δ

i ≡0

, (Dq

R

)

i

= a

oi

1

i + 1 (1 − δ

i ≡2

3

2 ).

(17)

Ramanujan Toeplitz systems satisfied by Bernoulli numbers

• A formula for the nth Bernoulli number:

B

2n−2

= (2n − 2)!

x

n−1

{Dq}

Tn

J{L(a)}

−1n

e

1

, J =

1

· 1

i.e. O(n log n) arithmetic operations to approximate B

2n−2

in R.

A formula for any vector of n consecutive Bernoulli numbers:

 {L(a)}

N−n

O

{Toe(a)}

n,N−n

{L(a)}

n

  {Db}

up

{Db}

down



:= {L(a)}

N

{Db}

N

= {Dq}

N

=:

 {Dq}

up

{Dq}

down

 , {Db}

down

= {L(a)}

−1n



{Dq}

down

− {Toe(a)}

n,N−n

{Db}

up

 i.e. O(n log n) arithmetic operations to approximate

B

2N−2n

, . . . , B

2N−2

in R (if the vector {Toe(a)}

n,N−n

{Db}

up

is

known).

(18)

Proof: It is well known that if A ∈ C

n×n

is ltT and v ∈ C

n

, then O(n log n) a.o. are sufficient to compute z := Av. Thus

O(n log n) a.o. are sufficient to compute c : Ac = e

1

(multiply on the left both members of Ac = e

1

by log n suitable sparser and sparser ltT matrices so to nullify the sub-diagonals of the coefficient matrix until obtaining c = A

−1

e

1

. NOTE: Product of ltT matrices is ltT) O(n log n) a.o. are sufficient to compute z : Az = v

(compute c : Ac = e

1

, call M the ltT matrix with c as first column, and compute z = Mv. NOTE: Inverse of ltT is ltT) 

• Once a sufficiently accurate approximation B

2j

of B

2j

is

available, this approximation and the fact that the denominator of

B

2j

is known (it is the product of all primes p such that p − 1

divide 2j ) allow to deduce the numerator of B

2j

.

(19)

Ramanujan Toeplitz systems satisfied by Bernoulli numbers

References

- S. Ramanujan, Some properties of Bernoulli numbers, J. Indian Math. Soc., 3 (1911), 219–234

- http://www.dima.unige.it/∼dibenede/2gg/home.html

“Due Giorni di Algebra Lineare Numerica 2012” (Genova, 16-17 Febbraio 2012) - http://www.mat.uniroma2.it/∼tvmsscho

http://www.mat.uniroma2.it/∼difiore/perGenova, genova, Bernoulli, RomeMoscow2014, N

Rome-Moscow schools “Matrix Methods and Applied Linear Algebra” 2012 and 2014, Di Fiore lectures

- C. Di Fiore, F. Tudisco, P. Zellini, Lower triangular Toeplitz-Ramanujan

systems whose solution yields the Bernoulli numbers, submitted for publication

- C. Di Fiore, P. Zellini, A matrix formulation of lower triangular Toeplitz

systems solvers, in preparation

Riferimenti

Documenti correlati

Universit` a degli Studi di Roma Tor Vergata.. Corso di Laurea in Ingegneria Civile

Sistemi a chiave pubblica Il metodo di Cesare `e un metodo a chiave privata, cio`e l’informazione grazie alla quale si pu`o sia criptare permette facilmente anche di decifrarlo:

Per determinare una tale base R, determiniamo separatamente una base per ciascun autospazio: la base R sar` a l’unione delle basi degli autospazi. Cerchiamo quindi una

5.1) Considera un insieme X, dotato della topologia cofinita. Esibisci un ricoprimento aperto di S che non ammette sottoricoprimento finito.. 5.3) Sia B una base per la topologia di

7.1) Determina uno spazio topologico X e una famiglia numerabile di compatti la cui unione non sia compatta.. 7.2) Esibisci uno spazio metrico (X, d) ed un sottoinsieme S chiuso

11.3) Determina il gruppo fondamentale dello spazio topolgico X ottenuto togliendo m punti distinti a R

3.13) Determinare una retta che interseca la propria coniugata solo nel punto A(2, −7). Tale piano ` e unico? Determinare inoltre la giacitura del piano α e discutere se tale

Universit` a degli Studi di Roma Tor Vergata.. Corso di Laurea