• Non ci sono risultati.

Equivalent POG block schemes

N/A
N/A
Protected

Academic year: 2021

Condividi "Equivalent POG block schemes"

Copied!
22
0
0

Testo completo

(1)

Equivalent POG block schemes

• Let us consider the following inductor connected in series:

V1 V2

I1 I2

I

L

Three mathematically equivalent POG block schemes can be used:

V1

I

- 

?

1 s

?

1 L

?

 -

φ

V2

I

a) Initial condition φ0

V1

I

- 

1 L

1 s

?

?

?

 -

V2

I

b) Initial condition I0

V1

I

- 

1 L s

?

?

 -

V2

I

c) Zero initial condition.

• For linear systems it is always possible to switch the position of two casca- de connected linear blocks without modifying the input-output dynamic behavior of the considered system.

• If the three block schemes were implemented in Simulink, their initial conditions would be φ = φ0, I = I0 and I = 0, respectively.

(2)

Connecting POG block schemes

• Let us consider the following two electric circuits and POG schemes:

Va VA

I1 L IA

R1

Va

I1

- 

? 1 s

?

1 L

?

 -

φ

 -

R1 6

6

- 

P VA

IA

VB V2

IB Ib

C R2

VB

IB P

- 

1 R2

?

?

 -

 -

6 1 s 6

1 C

6

- 

V2

Ib

Va

I1

- 

? 1 s

?

1 L

?

 -

φ

 -

R1 6

6

- 

P

- 

1 R2

?

?

 -

 -

6 1 s 6

1 C

6

- 

V2

Ib

• Two POG block schemes can be “directly connected” only if:

1) the two power sections “are oriented in the same way”;

2) the two power sections “share the same positive power flow”.

(3)

• The following two POG schemes “CANNOT be directly connected” be- cause “they are NOT oriented in the same way”:

Va

I1

- 

? 1 s

?

1 L

?

 -

φ

 

1 R1

?

?

- -

P VA

IA

VB

IB P

- 

1 R2

?

?

 -

 -

6 1 s 6

1 C

6

- 

V2

Ib

• The following two POG schemes “CANNOT be directly connected” be- cause “they do NOT share the same positive power flow”:

Va

I1

(a) Pa

- 

? 1 s

?

1 L

?

 -

φ

 -

R1 6

6

- 

P VA

IA

(A)

VB

IB

(B) P

- 

1 R2

?

?

 -

 -

6 1 s 6

1 C

6

- 

V2

Ib

Pb

(b)

• The two above POG schemes “CAN be directly connected” along sections (a)-(b) because “they share the same orientation and positive power flow”:

VB

IB (B)

P

- 

1 R2

?

?

 -

 -

6 1 s 6

1 C

6

- 

Pa = Pb

(a)=(b)

- 

? 1 s

?

1 L

?

 -

φ

 -

R1 6

6

- 

P VA

IA (A)

(4)

Algebraic loop

• Let us consider the following electric circuit:

Va Vr1 V2

I1 Ib

Ir2 L

C R1

R2

In the corresponding POG block scheme is present an “algebraic loop”:

Va

I1

- 

?

1 s

?

1 L

?

 -

φ

 -

R1

6

6

Vr1

- 

- 

1 R2

?

?

Ir2

 -

 -

6

1 s

6

1 C

6

- 

V2

Ib The corresponding POG state space model can still be determined:

L 0 0 C

  ˙I12



=



R1RR21

R1

R2R21



| {z }

 I1 V2



+ 1 0 0 −1

 Va

Ib



(⋄)

where ∆ is the determinant of the POG scheme without the dynamic blocks:

∆ = 1 + R1 R2.

The coefficient Aij of matric A is the “transfer gain” (computed using the

“Mason formula”) of the path that links the j-th state variable xj with the input of the i-th integrator.

(5)

• The “algebraic loop” can also be eliminated “graphically” as follows:

Va

I1

- 

?

1 s

?

1 L

?

 -

φ

 -

R1

6

6

Vr1

- 

- 

1 R2

?

?

Ir2

 -

 -

6

1 s

6

1 C

6

- 

V2

Ib

Va

I1

- 

?

1 s

?

1 L

?

 -

Vr1

φ

 

R1

6

6

- - - R1

R2 -

 R1 

R2  

1 R2

?

?

- -

Ir2

 -

6

1 s

6

1 C

6

- 

V2

Ib

• The same result can also be obtained using the following “mathematical”

approach. Add a “spurious” physical element Cs to the original system

Va Vs V2

I1 Ib

Ir1 L

Cs C R1

R2

such to eliminate the algebraic loop in the corresponding POG scheme:

Va

I1

- 

?

1 s

?

1 L

?

 -

φ

 

1 R1

?

?

Ir1

- -

 -

6

1 s

6

1 Cs

6

Vs

- 

- 

1 R2

?

?

Ir2

 -

 -

6

1 s

6

1 C

6

- 

V2

Ib

(6)

The corresponding POG state space model can now be written easily:

L 0 0

0 Cs 0 0 0 C

˙I1s

2

 =



0 −1 0

1 −R11R12 R12 0 R1

2R12



 I1 Vs

V2

 +

 1 0 0 0 0 −1

Va Ib



When Cs = 0 one obtains the following constraint:

I1 +



− 1

R1 − 1 R2



Vs + 1

R2V2 = 0 which can be rewritten as follows:

Vs = R1R2 R1 + R2

I1 + R1 R1 + R2

V2

Let us consider the following “congruent” state space transformation:

x = Tx where T =



1 0

R1R2

R1+R2

R1

R1+R2

0 1



The transformed and reduced matrices have the following structure:

x= Tx =

 I1 V2



, L= TTLT=

L 0 0 C



A = TTAT =

"

RR11+RR22R1R+R1 2

R1

R1+R2R1+R1 2

#

, B= TTB=1 0 0 −1

 .

One can easily verify that the obtained reduced system is equal to the system (⋄) obtained applying the Mason formula to solve the algebraic loop. One can easily verify that the two matrices A and ˜A are equal:

A=

"

RR11+RR22R1R+R1 2

R1

R1+R2R1+R1 2

#

=

1+RR11 R2

R R1

2(1+R1R2) R1

R2(1+R1R2)1

R2(1+R1R2)

=

"

R1RR21

R1

R2R12

#

= ˜A

(7)

• Example. Electric circuit.

Let us consider the following electric circuit:

Va V3 V4

L1 L2

Ra

Rb

C3 C4 Ib

I1 I2

VKL1 VKL2 VKL3

CKL1 CKL2 CKL3

The corresponding P.O.G. block scheme is:

Va

VKL1 - 

? 1 s

1

1 L1

?

I1

 -

CKL1

 -

Ra

6

6

- 

VKL2 - 

? 1 s

2

1 L2

?

I2

 -

CKL2

 -

6 1 s

6Q3

1 C3

6

V3

- 

VKL3 - 

1 Rb

?

?

 -

CKL3

 -

6 1 s

6Q4

1 C4

6

V4

-  Ib

The POG state space dynamic model has the following structure:







L1 0 0 0 0 L2 0 0 0 0 C3 0 0 0 0 C4







| {z }

L







˙I1

˙I234







|{z}˙x

=









−Ra Ra 0 0

Ra −Ra −1 0 0 1 −R1b R1b

0 0 R1

bR1b









| {z }

A







 I1 I2 V3 V4







|{z}x +







1 0 0 0 0 0 0 −1







| {z } B

"

Va

Ib

#

|{z}u

The connection coefficients appear within matrix A only when one type of energy (i.e. magnetic energy in L) converts to another different type of energy (i.e. electrostatic energy in C).

A dissipative parameter (i.e. Ra and Rb) appears 4 times in a symmetric way within matrix A when the corresponding physical element connect two dynamic elements of the same type.

(8)

• Example. A chain of carriages and snubbers:

The symbolic scheme:

b1 b2 b3

K1 K3 K3

˙x1 ˙x2 ˙x3

M1 M2 M3

F

0

The corresponding POG block scheme:

F - 

1 M1s

?

?

˙x1

 -

R1 F1

- 

6 6

b1

K1

s

6 6

 - - 

1 M2s

?

?

˙x2

 -

R2 F2

- 

6 6

b2

K2

s

6 6

 - - 

1 M3s

?

?

˙x3

 -

R3 F3

- 

6 6

b3

K3

s

6 6

 -

0 The POG state space dynamic model is:







M1 1 K1

M2 1 K2

M3 1 K3













¨ x1

R˙1

¨ x2

R˙2

¨ x3

R˙3







=







−b1 −1 b1 0 0 0

1 0 −1 0 0 0

b1 1 −b1−b2 −1 b2 0

0 0 1 0 −1 0

0 0 b2 1 −b2−b3 −1

0 0 0 0 1 0











˙x1

R1

˙x2 R2

˙x3 R3





 +





1 0 0 0 0 0





 F

(9)

• The “across” dynamic elements De connected “in parallel” can be graphi- cally represented only by the following particular POG scheme:

Electrical Mech. Tras. Mech. Rot. Hydraulic

Capacitor Mass Inertia Hyd. Capacitor

ElementDe

V V

I1 I2

C

x˙ x˙

F1 F2

M

ω ω

τ1 τ2

J

P P

Q1 Q2

Ci

POGscheme

I1

V

- 

? 1 s

?Q

1 C

?

 -

I2

V

F1

x˙

- 

? 1 s

?p

1 M

?

 -

F2

x˙

τ1

ω

- 

? 1 s

?pr

1 J

?

 -

τ2

ω

Q1

P

- 

? 1 s

?V

1 Ci

?

 -

Q2

P

• The “through” dynamic elements Df connected “in series” can be graphi- cally represented by only one particular POG scheme:

Electrical Mech. Tras. Mech. Rot. Hydraulic Inductor Spring Rot. Spring Hyd. Inductor

ElementDf

V1 V2

I L I

x˙1 x˙2

F E F

ω1 ω2

τ τ

Er

P1 P2

Q Li Q

POGscheme

V1

I

- 

? 1 s

1 L

?

 -

V2

I

x˙1

F

- 

? 1 s

?x

1 E

?

 -

x˙2

F

ω1

τ

- 

? 1 s

1 Er

?

 -

ω2

τ

P1

Q

- 

? 1 s

i

1 Li

?

 -

P2

Q

(10)

• The “across” dynamic elements De connected “in series” can be graphi- cally represented by the following two different POG schemes:

Electrical Mech. Tras. Mech. Rot. Hydraulic

Capacitor Mass Inertia Hyd. Capacitor

ElementDe

V1 V2

I C I

x˙1 x˙2

F M F

ω1 ω2

τ J τ

P1 P2

Q Ci Q

POGscheme1

V1

I

 

6 1 s

6Q

1 C

6

- -

V2

I

x˙1

F

 

6 1 s

6p

1 M

6

- -

x˙2

F

ω1

τ

 

6 1 s

6pr

1 J

6

- -

ω2

τ

P1

Q

 

6 1 s

6V

1 Ci

6

- -

P2

Q

POGscheme2

V1

I

- -

6 1 s

6Q

1 C

6

 

V2

I

x˙1

F

- -

6 1 s

6p

1 M

6

 

x˙2

F

ω1

τ

- -

6 1 s

6pr

1 J

6

 

ω2

τ

P1

Q

- -

6 1 s

6V

1 Ci

6

 

P2

Q

• The two POG schemes have opposite input/output power variables. The choice between the two POG block schemes depends on

(11)

• The “through” dynamic elements Df connected “in parallel” can be gra- phically represented by the following two different POG schemes:

Electrical Mech. Tras. Mech. Rot. Hydraulic Inductor Spring Rot. Spring Hyd. Inductor

ElementDf

V V

I1 I2

L x˙ x˙

F1 F2

E ω ω

τ1 τ2

Er P P

Q1 Q2

Li

POGscheme1

I1

V

 

6 1 s

6Q

1 L

6

- -

I2

V

F

x˙

 

6 1 s

6p

1 E

6

- -

F

x˙

τ1

ω

 

6 1 s

6pr

1 Er

6

- -

τ2

ω

Q1

P

 

6 1 s

6V

1 Li

6

- -

Q2

P

POGscheme2

I1

V

- -

6 1 s

6Q

1 L

6

 

I2

V

F1

x˙

- -

6 1 s

6p

1 E

6

 

F2

x˙

τ1

ω

- -

6 1 s

6pr

1 Er

6

 

τ2

ω

Q1

P

- -

6 1 s

6V

1 Li

6

 

Q2

P

• The two POG schemes have opposite input/output power variables. The choice between the two POG block schemes depends on

(12)

• “Across-variable” generators:

Eletttrico Mecc. Tras. Mecc. Rot. Idraulico

Generator

V1

V1

I1

x˙e

x˙e

F1

ω1

ω1

τ1

P1

P1

Q1

POG

V1

I1 P

˙xe

F1 P

ω1

τ1 P

P1

Q1 P

• “Through-variable” generators:

Eletttrico Mecc. Tras. Mecc. Rot. Idraulico

Generator V

1

I1

I1

x˙e

F1

F1

ω1

τ1

τ1

P1 Q1

Q1

POG

V1

I1 P

˙xe

F1 P

ω1

τ1 P

P1

Q1 P

(13)

• Example. Let us consider the following electric circuit:

Va Vr1 Vr2 Vr3

I1 I2 I3

Ib

L1 L2 L3

R1 R2 R3

The corresponding POG block scheme:

Va - 

?

1 s

?

1 L1

?

I1

 -

| {z }

 -

R1

6

6

Vr1

- 

- 

?

1 s

?

1 L2

?

I2

 -

 -

R2

6

6

Vr2

- 

- 

?

1 s

?

1 L3

?

I3

 -

 -

R3

6

6

Vr3

-  Ib

The POG state space dynamic model is:

L1 0 0 0 L2 0 0 0 L3

˙I1

˙I2

˙I3

=



−R1 R1 0

R1 −R1−R2 R2 0 R2 −R2−R3



 I1 I2 I3

 +

 1 0 0 0 0 R3

Va Ib



 I1 Vr3



=

"

1 0 0

0 0 R3

#

x +  0 0 0 −R3

 Va Ib



Note that, in this case, the power matrix A is symmetric because the system is characterized only by one type of stored energy, in this case the magnetic energy stored in the three inductances L1, L2 and L3.

(14)

• Example. Let us consider the following electric circuit:

Va V1 V2 V3

Vr1 Vr2 Vr3

Ir1 Ir2 Ir3

I1

I1 I2 I3

Ib

L1 L2 L3

R1 R2 R3

The corresponding POG block scheme:

Va - -

R1 6

6

Vr1

 

V1

Ir1

| {z }

- -

1 sL1

?

?

I1

 

- -

R2 6

6

Vr2

 

V2

Ir2

- -

1 sL2

?

?

I2

 

- -

R3 6

6

Vr3

 

V3

Ir3

- -

1 sL3

?

?

I3

  Ib

The POG state space dynamic model is:

L1 0 0 0 L2 0 0 0 L3

˙I1

˙I2

˙I3

=

−R1 −R1 −R1

−R1 −R1−R2 −R1−R2

−R1 −R1−R2 −R1−R2−R3

I1

I2

I3

+

1 −R1 1 −R1−R2 1 −R1−R2−R3

Va Ib



Ir1 V3



=

"

1 1 1

−R1 −R1−R2 −R1−R2−R3

# x+

 0 1

1 −R1−R2−R3

 Va Ib



The power matrix A is symmetric because the system is characterized only by one type of stored energy.

(15)

• Example. Let us consider the following electric circuit:

Va Vc Vd Vb

Vc1 Vl1

Vl2

Vl3 Ic1

I1

I2

I3

Ib C1

L1

L2

L3

R2

The corresponding POG block scheme:

Va

Vl1

- 

1 s L1

?

?

I1

 -

Vc  

1 s C1

6

6

Vc1

- -

 

1 s L2

?

?

I2

- -

Vl2

Ir2

 

R2 6

6

Vr2

- -

I3

Vd

 

sL3 6

6

Vl3

- -

Vb

−Ib

• The system CANNOT be modeled using the “integral causality”: the inductance L3 is graphically represented using “derivative causality”.

• From the physical scheme it is evident that the state variables I1, I2 and I3 are linked by the following constraint:

I1 = I2 + I3

(16)

• The system can be modeled adding a spurious dynamic element C2 in parallel connection between elements R2 and L3:

Va Vc Vb

Vc1 Vl1

Vl2

Vl3 Vr2

Vc2 Ic1

Ic2

Ir2 I1

I2

I3

Ib

C1

C2

L1

L2

L3

R2

The new POG block scheme is:

Va

I1

Vl1

- 

1 s L1

?

?

I1

 -

Vc  

1 s C1

6

6

Vc1

- -

 

1 s L2

?

?

I2

- -

Vl2

Ir2

 

R2 6

6

Vr2

- -

 -

1 s C2

6

6

Vc2

- 

Vl3

- 

1 sL3

?

?

I3

 -

Vb

−Ib

The corresponding POG state space dynamic model is:

L1

C1

L2

C2

L3

˙I1

V˙c1

˙I2

V˙c2

˙I3

=

−R2 −1 R2 −1 0

1 0 0 0 0

R2 0 −R2 1 0

1 0 −1 0 −1

0 0 0 1 0

I1

Vc1 I2

Vc2 I3

+

1 0 0 0 0 0 0 0 0 −1

Va Vb



 I1

−Ib



=

 1 0 0 0 0 0 0 0 0 1

 x

When C2 = 0from the forth equation one obtains the following constraint:

I1 − I2 − I3 = 0 ⇒ I3 = I1 − I2

Let us consider the following state space “congruent” transformation:

x = Tx ⇔





 I1 Vc1

I2 Vc2

I







=







1 0 0 0 1 0 0 0 1 0 0 0 1 0 −1







 I1 Vc1

I2

(17)

Using the congruent transformation x = Tx one obtains the following transformed and reduced POG dynamic system:

L1 + L3 −L3 0 C1 0

−L3 L2 + L3

˙I1

V˙c1

˙I2

=

−R2 −1 R2

1 0 0

R2 0 −R2

I1

Vc1 I2

+

1 −1 0 0 0 1

Va Vb



 I1

−Ib



=

 1 0 0 1 0 −1

 x

• The state variables Vc2 and I3 are no more present because C2 = 0 and the constraint I3 = I1 − I2.

• The transformed system is NO more decoupled because matrix L = TTLT is not diagonal. The reduced system has still the structure of a POG dynamic model. Matrix L, for example, is still symmetric and definite positive.

• Calculations using Matlab:

-- Matlab commands ---

syms L1 L2 L3 C1 C2 R2 LT =

C2=0;

LM=diag([L1 C1 L2 C2 L3]); [ L1 + L3, 0, -L3]

AM=[-R2 -1 R2 -1 0; [ 0, C1, 0]

1 0 0 0 0; [ -L3, 0, L2 + L3]

R2 0 -R2 1 0;

1 0 -1 0 -1; AT =

0 0 0 1 0];

BM=[1 0; 0 0; 0 0; 0 0; 0 -1]; [ -R2, -1, R2]

CM=[1 0 0 0 0; [ 1, 0, 0]

0 0 0 0 1]; [ R2, 0, -R2]

T1=sym([ 1 0 0;

0 1 0; BT =

0 0 1;

0 0 0; [ 1, -1]

1 0 -1]); [ 0, 0]

LT=T1.’*LM*T1 [ 0, 1]

%%

AT=simplify(T1.’*AM*T1) CT =

BT=T1.’*BM

CT=CM*T1 [ 1, 0, 0]

[ 1, 0, -1]

---

(18)

• Example. Tank with variable section.

Q input volume flow rate P input pressure

V volume of liquid in the tank z height of the liquid

a(z) area of the liquid at height z A area of the base section α slope of the liquid area p0 pressure per unit of height

6

z α

a(z)

Q A

• Two equivalent POG block schemes can be used:

Q

P Φ−1(V )

V

- 

?

1 s

?

p0

A2+2αV−A α

?

 -

0

Q

P

P˙

- 

p2 0 Ap0+αP

1 s

?

?

?

 -

[Ψ(P )]−1 0

• The area of the liquid a(z) at height z and the volume of liquid V are:

a(z) = A + αz, V = Z z

0

a(z)dz = A z + α z2 2

• Since z = pP0, functions V = Φ(P ) and P =Φ−1(V ) are defined as follows:

V = Φ(P ) = A P

p0 + α P2

2p20 , P = Φ−1(V ) = p0

√A2 + 2α V − A

α .

• Functions Ψ(P ) and [Ψ(P )]−1 can be obtained as follows:

Ψ(P ) = ∂Φ(P )

∂P = A

p0 + α P

p20 , [Ψ(P )]−1 = p20 Ap0 + αP

• The energy Es stored in the system is:

Es = Z V

0

Φ−1(V ) dV = p02

h(A2 + 2α V )32 − 3α A V − A3i .

Riferimenti

Documenti correlati

[r]

[r]

Function φ c (θ) of chained rotor flux can be developed in Fourier series of cosines with only odd harmonics, so vector K τ (θ) can be written as:.. Multi-phase

Let us consider the problem of heating steel bars which pass through a oven segmented in n = 5 zones.. , 4,

[r]

Simple Examples of POG

[r]

Figure 3.22: Experimental time series showing the presence of a stable upright position together with a stable large amplitude sub-harmonically resonant roll motion for ITACA in