• Non ci sono risultati.

ThesystemstudyofawaterflowmonitoringinpipesbasedonaMEMShot-wireanemometerhasbeenpresented.Moreindetailthe andthentothedesignofanewplatform,theSD4K,abletointerface focusedontheextensionoftheISIFapplicationspacetowaterflow edgeBCDintegratedtechnologythatguara

N/A
N/A
Protected

Academic year: 2021

Condividi "ThesystemstudyofawaterflowmonitoringinpipesbasedonaMEMShot-wireanemometerhasbeenpresented.Moreindetailthe andthentothedesignofanewplatform,theSD4K,abletointerface focusedontheextensionoftheISIFapplicationspacetowaterflow edgeBCDintegratedtechnologythatguara"

Copied!
25
0
0

Testo completo

(1)

This dissertation has carried out a complete analysis of sensor interface development methodologies proposing an evolution of the Platform Based Design Flow with the ISIF platform. This complex mixed-signal System On Chip, developed in collaboration with SensorDynamics AG, features a comprehensive set of high performance and fully programmable analog and digital IPs for interfacing a wide spectrum of sensor typologies. Indeed thanks to its high flexibility and performances, ISIF platform, which is integrated in a 0.35 µm BCD technology, enables a fast prototyping of sensor interfaces, letting designers perform an effective design space exploration and evaluate directly on silicon the system performances avoiding the critical and time consuming analysis required by standard platform based approach, reducing the time-to-market and improving the final ASIC performances.

Despite of its high flexibility and performances, ISIF platform presents some fundamental limits. The platform has been integrated in a leading-edge BCD integrated technology that guarantees reliability, high per-formances over temperature, ESD robustness and above all high gate density together with high-voltage and high-power devices. Anyway the platform has been limited to low voltage applications (3.3/5 V) since it was conceived to interface inertial MEMS sensors and MR sensors, which can be actuated and sensed with low voltage level signals. Nevertheless latest generation of MEMS and MOEMS exploited in many automotive and consumer applications require high-voltage and/or high-current capa-bilities. For these reasons, the Ph.D. research activity has been initially focused on the extension of the ISIF application space to water flow monitoring applications based on hot-wire MEMS anemometers, which require high-current and high-voltage levels to achieve higher sensitivity and then to the design of a new platform, the SD4K, able to interface last generation of MEMS and MOEMS.

The system study of a water flow monitoring in pipes based on a MEMS hot-wire anemometer has been presented. More in detail the design and laboratory test measurements of the voltage and

(2)

high-current PWM driver designed to actuate the hot-wire anemometer have been described. The proposed PWM driver is designed to work in the range of low frequencies (PWM output current up to 100 kHz) and with output currents between 50 mA and 130 mA. The presented topology exploits a feedback loop that allows fixing the output current to the desired value with high precision. Simulation and measurement results performed on a prototype designed and fabricated in a 0.35 µm Bipolar CMOS DMOS technology prove the effectiveness of the proposed solution showing a final error on the current value lower than 1.8% taking into account devices’ mismatch, supply voltage and temperature variation.

The SD4K platform designed is conceived to interface latest generation of MEMS and MOEMS devices and to realize a projection system based on an electrostatically actuated bi-dimensional scanning micromirror and on a laser-source system. Laser based video projection systems are expected to find a wide utilization for the realization of new generation automotive head up displays thanks to the recent advances of MOEMS and visible laser sources. The dissertation has described the state of the art for MOEMS sensors, particularly focusing on electrostatically actuated bi-dimensional raster scanning micromirrors that are far simpler to integrate than magnetic or piezoelectric micromirrors.

The ISIF approach applied to the development of this new platform has enabled a fast and effective evaluation of the whole sensor system achieving an optimal architectural definition. Furthermore, since ISIF platform allows the design space exploration to be carried out directly on silicon, phenomena related to the specific sensor and the optic envi-ronment have been highlighted as well, allowing to study and to apply proper counteractions. A system study has been conducted, starting from the development of an electric equivalent model of the micromirror to represent the interaction between the mechanical and electric world. The development of this model has involved FEM simulations and sev-eral laboratory measurements performed on the micromirror to evaluate its main performance parameters. All simulations have been useful to understand the behaviour of the real micromirror taking into account different actuation voltages, frequencies and temperatures. Then the description of the SD4K architecture has been presented, focusing on the main functionalities of the different sections in which the platform can be subdivided. Firstly, the analog section has been described, high-lighting the performances of the output channels and the flexibility of the input channels. Secondly, the functionality of the ARM9 processor embedded in the system has been described. The powerful embedded processor allows not only a fast execution of the software routines needed by the application, but can also be used to embed an Operating System,

(3)

inserting a more user friendly software layer.

A deeper analysis of the analog section has been carried out, describing the design and simulation results of the scanning micromirror high-voltage actuation driver. The high-voltage driver and all the SD4K platform digital and analog IPs have been integrated in a 0.18 µm BCD technology supplied by STMicroelectronics. The driver output stage has a 25 V supply voltage, which allows to reach the high-voltage level required for the proper deflection of the scanning micromirror. Moreover the circuit features: a low Total Harmonic Distortion (THD) to prevent the excitation of unwanted micromirror’s higher resonating modes that would lead to malfunctions in the mechanical device; the programmability of the output common mode voltage between 5 V and 12.6 V in order to change the electrostatic torque applied to the mechanical structure and thus being able to actuate different micromirror prototypes and achieving different deflection angles. The high-voltage driver features a THD of about 4.7×10−3 as estimated by Monte Carlo simulations performed on the circuit together with the previously described electrical equivalent micromirror model, which has enabled to take into account the micromirror non-linearities.

(4)
(5)

[1] Aksyuk V. A., Pardo F. and Bishop D. J., “Stress-induced curvature engineering in surface-micromachined devices”, in Proc. of SPIE, vol.3680, pp.984–989, 1999.

[2] Alper S.E., Temiz Y., Akin T., “A Compact Angular Rate Sensor System Using a Fully Decoupled Silicon-on-Glass MEMS Gyro-scope”, 2008.

[3] AMBA 3 AHB-Lite Protocol Specification version 1.0, ARM IHI 0033A, www.arm.com.

[4] AMBA 3 APB Protocol Specification version 1.0, ARM IHI 0024B,

www.arm.com.

[5] Amini B. V. and Ayazi F., “A 2.5-V 14-bit Σ∆ CMOS SOI capacitive accelerometer”, IEEE Journal of Solid-State Circuits, vol.39, no.12, pp.2467–2476, 2004.

[6] Amro R., Lutz J. and Lindemann A., “Power Cycling with High Temperature Swing of Discrete Components based on Different Technologies”, Proc. of the 35th IEEE annual Conf. on Power Electronics Specialists, pp.2593–2598, Aachen, Germany, 2004. [7] Ankur J., Kopa A., Yingtian Pan, Fedder G. K. and Huikai Xie, “A

Two-Axis Electrothermal Micromirror for Endoscopic Optical Co-herence Tomography”, IEEE Journal of Selected Topics in Quantum Electronics, vol.10, no.3, 2004.

[8] ARM926EJ-S Technical Reference Manual, rev r0p5, ARM DDI 0198E, www.arm.com.

[9] Arnaud A., Baru M., Picun G. and Silveira F., “Design of a mi-cropower signal conditioning circuit for a piezoresistive acceleration sensor”, Proc. of IEEE Int. Symposium on Circuits and Systems, vol.1, pp.269–272, 1998.

(6)

[10] Ashauer M., Glosch H., Hedrich F., Hey N., Sandmaier H. and Lang W., “Thermal flow sensor for liquids and gases”, Proc. of the 11th Annual Int. Workshop on Micro Electro Mechanical Systems, pp.351–355, 1998.

[11] Ayazi F. and Najafi K., “High aspect-ratio combined poly and single-crystal silicon (HARPSS) MEMS technology”, Journal Micro electromech. Syst., vol.9, no.3, pp.288–294, 2000.

[12] Bacciarelli L., Lucia G., Saponara S., Fanucci L. and Forliti M., “De-sign, testing and prototyping of a software programmable I2C/SPI IP on AMBA bus”, Research in Microelectronics and Electronics 2006, Ph.D. Dissertation, pp.373–376, 2006.

[13] Bacciarelli L., Mostardini L., Fanucci L., Iannuzzi A., Bertini L. and De Marinis M., “A Dynamic Clock Switch for Automotive System on Chip”, Proc. of IEEE Int. Conf. on Electronics, Circuits and Systems, pp.697–700, 2007.

[14] Battini F., Tonarelli M., Fanucci L., Giambastiani A. and De Mari-nis M., “Experiencing with AMR sensor conditioning in automotive field”, Proc. of IEEE PRIME 2007, pp.1–5, Bordeaux, France, 2007. [15] Battini F., Volpi E., Marchetti E., Cecchini T., Sechi F. and Fanucci

L., “A fast developing and low cost characterization and test en-vironment for a double axis resonating micromirror”, IEEE Int. Workshop on Advances in Sensors and Interfaces 2009, Trani (BA), Italy, pp.25–26, 2009.

[16] Bosseboeuf A. and Petitgrand S., “Characterization of the static and dynamic behaviour of M(O)EMS by optical techniques: status and trends”, Journal of Micromechanics and Microengineering, vol.13, no.4, pp.S23–S33, 2003.

[17] Bratland T. and Wan H., “Linear position sensing using magne-toresistive sensors”, Honeywell magnetic sensors, application note A2.4.

[18] Bruschi P., Navarrini D. and Piotto M., “A flow sensor for liquids based on a single temperature sensor operated in pulsed mode”, Sensors and Actuators A: Physical, vol.110, no.1-3, pp.269–275, 2004.

[19] Bruschi P., Navarrini D. and Piotto M., “Measurement and modeling of pulsed mode flow meter for liquids based on a single chip probe”, Sensors and Actuators A: Physical, vol.132, no.1, pp.188–194, 2006.

(7)

[20] Bruun H. H., Khan M. A., Al-Kayiem H. H. and Fardad A. A., “Ve-locity calibration relationships for hot-wire anemometry”, Journal of Physics E: Scientific Instruments, vol.21, pp.225–232, 1998. [21] Bryzek J., Roundy S., Bircumshaw B., Chung C., Castellino K.,

Stetter J.R. and Vestel M. “Marvelous MEMS”, IEEE Journal of Circuits and Devices Magazine, vol.22, no.2, pp.8–28, 2006. [22] Bustillo J. M., Howe R. T. and Muller R. S., “Surface

microma-chining for microelectromechanical systems”, Proc. of IEEE, vol.86, pp.1552–1574, 1998.

[23] Cecchini T., Sechi F., Bacciarelli L., Mostardini L., Battini F., Fanucci L. and De Marinis M., “Pin-limited Frequency Downscaler AHB Bridge for ASIC to FPGA Communication”, Proc. of the 11th EUROMICRO Conf. on Digital System Design Architectures, Methods and Tools, pp.367–372, 2008.

[24] Chan-Kyung K., Jae-Goo L., Young-Hyun J., Chil-Gee L. and Bai-Sun K., “CMOS temperature sensor with ring oscillator for mobile DRMA self-refresh control”, Microelectronics Journal, vol.38, pp.1042–1049, 2007.

[25] Chang H., Charbon E., Choudhury U., Demir A., Felt E., Liu E., Malavasi E., Sangiovanni-Vincentelli A. and Vassiliou I., “A Top-Down, Constraint-Driven Design Methodology for Analog In-tegrated Circuits”, Kluwer Academic Publishers, 1997.

[26] Chang H., Cooke L., Hunt M., Martin G., McNelly A. and Tood L., “Surviving the SoC Revolution: A Guide to Platform Based Design”, Kluwer Academic Publisher, 1999.

[27] Chang-Hyeon J., Moongoo C., Sang-Cheon K., See-Hyung L. and Jong-Uk B., “Performance of a Raster Scanning Laser Display System Using Diamond Shaped Frame Supported Micromirror”, IEEE Photonics Technology Letters, vol.18, no.16, 2006.

[28] Chang-Hyeon J., Moongoo C., Sang-Cheon K., See-Hyung L. and Jong-Uk B., “Electrostatic scanning micromirror with diaphragm mirror plate and diamond shaped reinforcement frame”, Journal Micromech. Microeng., vol.16, pp.1033–1039, 2006.

[29] Chih-Ming S., ChuanWei W., Weileun F., “On the sensitivity im-provement of CMOS capacitive accelerometer”, Sensors and Actua-tors A: Physical, vol.141, no.2, pp.347–352, 2008.

(8)

[30] Conant R. A., Nee J. T., Lau K. Y. and Muller R. S., “A Flat High-Frequency Scanning Micromirror”, Berkeley Sensor & Actuator Center, University of California, 2000.

[31] Courtois B., Kely K. H., Rencz M. and Glesner M., “Design and test of MEMS”, Proc. of the 12th Int. Conf. on VLSI Design - VLSI for the Information Appliance, pp.270–275, 1999.

[32] Cui Z., Chen D. and Xia S., “Modelling and Experiment of a Silicon Resonant Pressure Sensor”, Kluwer Analog Integrated Circuits and Signal Processing, vol.32, no.1, pp.29–35, 2002.

[33] Das A. N., Jeongsik Sin, Popa D. O. and Stephanou H. E., “On the precision alignment and hybrid assembly aspects in manufacturing of a microspectrometer”, Proc of IEEE Int. Conf. on Automation Science and Engineering, CASE 2008, pp.959–966, 2008.

[34] D’Ascoli F., Tonarelli M., Melani M., De Marinis M., Giambastiani A. and Fanucci L., “Intelligent sensor interface for automotive applications”, Proc. of IEEE Int. Conf. on Electronics, Circuits and Systems, pp.1–4, 2005.

[35] Dauderstädt U., Dürr P. and Doleschal W., “A spatial light mod-ulator (slm) for advanced lithography”, Fraunhofer IMS Annual Report, Dresden, Germany, pp.50–52, 2000.

[36] Davis W. O., Sprague R. and Miller J., “MEMS-based pico projector display”, Proc. of IEEE/LEOS Int. Conf. on Optical MEMS and Nanophotonics, pp.31–32, 2008.

[37] Dechev N., “MECH466, Microelectromechanical Systems, Lecture 22: Optical MEMS”, University of Victoria, Dept. of Mechani-cal Engineering, 2007. URL: http://www.me.uvic.ca/Courses/ mech466.html

[38] Dong Z., Huang D., Zhang D. and Wu W., “An automatic MEMS testing system based on computer microvision”, Proc. of the IEEE Int. Conf. on Mechatronics and Automation, pp.854–858, 2006. [39] Dooyoung Hah, Patterson P. R., Nguyen H. D., Toshiyoshi H. and

Wu M. C., “Theory and experiments of angular vertical comb-drive actuators for scanning micromirrors”, IEEE Journal of Selected Topics in Quantum Electronics, vol.10, no.3, pp.505–513, 2004.

(9)

[40] Douglass M., “DMD reliability: a MEMS success story”, Proceedings of SPIE,-Volume 4980 Reliability, Testing and Characterization of MEMS/MOEMS II, Rajeshuni Ramesham, Danelle M. Tanner, Editors, pp.1–11, 2003.

[41] Dulau L., Pontarollo S., Boimond A., Garnier J. F., Giraudo N. and Terrasse O., “A new gate driver integrated circuit for IGBT devices with advanced protections”, IEEE Trans. on Power Electronics, vol.21, no.1, pp.38–44, 2006.

[42] Dunbar M. and Sager K., “A novel media-compatible pressure sensor for automotive applications”, Sensors Mag., vol.28-34, 2000. [43] Elwenspoek M.,“Thermal Flow Micro Sensors”, Proc. of IEEE Int.

Semiconductor Conf., vol.2, pp.423–435, Sinaia (Romania), 1999. [44] ETM9 Technical ReferenceManual rev. r2p2, ARM DDI 0157G,

www.arm.com.

[45] Fairchild M.R., Snyder R. B., Berlin C. W. and Sarma D. H. R., “Emerging substrate technologies for harsh-environment automotive electronics applications”, SAE Technical Paper Series 2002-01-1052, 2002.

[46] Fanucci L., Giambastiani A., Iozzi F., Marino C. and Rocchi A., “Platform Based Design for Automotive Sensor conditioning”, Proc. of Design, Automation and Test in Europe, vol.3, pp.186–191, 2005. [47] Ferrari A. and Sangiovanni-Vincentelli A., “System design: Tradi-tional concepts and new paradigms”, Proc. of Int. Conf. Computer Design, pp.2–12, 1999.

[48] Fleming W. J., “Overview of automotive sensors”, IEEE Sensors Journal, vol.1, no.4, pp.296–308, 2001.

[49] Fraunhofer Institute for silicium technology Annual Results Journal, 2007.

[50] Gabriel K., “MEMS: Fountain of youth”, EEtimes, http://www. eetimes.com/reshaping/microstructures/OEG20020911S0050. [51] http://www.gaisler.com.

[52] Gajski D. D., Wu A. C.-H., Chaiyakul V., Mori S., Nukiyama T. and Bricaud P., “Essential issues for IP reuse”, Proc. of Design Automation Conference, pp.37–42, 2000.

(10)

[53] Gilbert J. and Dewey R., “Linear hall-effect sensors”, Allegro Mi-croSystems Applications Information AN27701A.

[54] Global MEMS/Microsystems Markets and Opportunities, a com-prehensive new market research from SEMI and Yole July 18, 2007. [55] Golfarelli A., Zagnoni M., Proli P., Callegari S., Talamelli A., Sangiorgi E. and Tartagni M., “Acquisition system for pressure sensor network”, Proc. of IEEE Sensors 2004, vol.2, pp.579–582, 2004.

[56] Grimpe E. and Oppenheimer F., “Object-oriented high level syn-thesis based on SystemC”, Proc. of IEEE Int. Conf. on Electronics, Circuits and Systems, vol.1, pp.529–534, 2001.

[57] Grötker T., Liao S., Martin G. and Swan S., “System Design with SystemC”, Kluwer Academic Publisher, 2002.

[58] Gwiy-Sang C., “Fabrication and characterization of micro-heaters with low-power consumption using SOI membrane and trench struc-tures”, Sensors and Actuators A: Physical, vol.112, no.1, pp.55–60, 2000.

[59] Hagelin P. M. and Solgaard O., “Optical raster-scanning displays based on surface-micromachined polysilicon mirrors”, IEEE Journal of Selected Topics Quantum Electronics, vol.5, no.1, pp.67–74, 1999. [60] Hofmann U., Oldsen M., Quenzer H.-J., Janes J., Heller M., Weiss

M., Fakas G., Ratzmann L., Marchetti E., D’Ascoli F., Melani M., Bacciarelli L., Volpi E., Battini F., Mostardini L., Sechi F., De Marinis M. and Wagner B., “Wafer-level vacuum packaged micro-scanning mirrors for compact laser projection displays”, Proc. of SPIE, invited paper, vol.6887, pp.100–114, San Jose (USA), 2008. [61] Honeywell sensor products, “Application of magnetic position

sen-sors”, application note AN211.

[62] Hongwei Q., Deyou F. and Huikai X., “A Monolithic CMOS-MEMS 3-Axis Accelerometer With a Low-Noise, Low-Power Dual-Chopper Amplifier”, IEEE Sensors Journal, vol.8, no.9 pp.1511–1518, 2008. [63] Huelsman L. P. and Allen P. E., “Introduction to the theory and design of active filters”, McGraw-Hill Book Company, pp.103, 1980. [64] Iozzi F., Fanucci L. and Giambastiani A., “Fast Prototyping Flow

for Sensor Interfaces”, Proc. of IEEE PRIME 2006, pp.393–396, 2006.

(11)

[65] Jaecklin V. P., Lindner C., Brugger J., Moret J.-M., Vuilleumier R. and de Rooij N. F., “Mechanical and optical properties of sur-face micromachined torsional mirrors in silicon, polysilicon, and aluminum”, Sensors and Actuators A: Physical, vol.43, no.1–3, pp.269–275, 1994.

[66] Jiang F.-K., Tai Y.-C., Gupta B., Goodman R., Tung S., Huang J. and Ho C.-M., “A surface micromachined shear stress imager”, Proc. of Int. Workshop on MEMS, pp.110–115, 1996.

[67] Jiangfeng W., Fedder G. K. and L.R. Carley; “A low-noise low-offset capacitive sensing amplifier for a 50-µg/√Hz monolithic CMOS MEMS accelerometer”, IEEE Journal of Solid-State Circuits, vol.39, no.5, pp.722–730, 2004.

[68] Jichun Zhang, Kun Zhang, Zhigang Wang and Mason A., “A Uni-versal Micro-Sensor Interface chip with network communications bus and highly programmable sensor readout”, the 45th Midwest Symposium on Circuits and Systems, vol.2, pp.II-246–II-249, 2002. [69] Jichun Zhang, Junwei Zhou, Balasundaram P. and Mason A., “A highly programmable sensor network interface with multiple sensor readout circuits”, Proc. of IEEE Sensors, vol.2, pp.748–752, 2003. [70] Johnson J. D., Zarabadi S. R., Christenson J. C. and Noll T. A.,

“Single Crystal Silicon Low-g Acceleration Sensor”, SAE Technical Paper Series 2002-01-1080, 2002.

[71] Jordana J. and Pallàs-Areny R., “A simple, efficient interface cir-cuit for piezoresistive pressure sensors” Sensors and Actuators A: Physical, vol.127, no.1, pp.69–73, 2006.

[72] Junseok C., Kulah H. and Najafi K., “An in-plane high-sensitivity, low-noise micro-g silicon accelerometer with CMOS readout cir-cuitry”, Journal of Microelectromechanical Systems, vol.13, no.4, pp.628–635, 2004.

[73] Kälvesten E., Vieider C., Lofdahl L. and Stemme G., “An integrated pressure-flow sensor for correlation measurements in turbulent gas flows”, Sensors and Actuators A: Physical, vol.52, no.1–3, pp.51–58, 1996.

[74] Kegerise M. A. and Spina E. F., “A comparative study of constant-voltage and constant-temperature hot-wire anemometers. Part 1: The static response”, Journal of Experiments in fluids, vol.29, no.2, pp.154–164, 2000.

(12)

[75] Kegerise M. A. and Spina E. F., “A comparative study of constant-voltage and constant-temperature hot-wire anemometers. Part 2: The dynamic response”, Journal of Experiments in fluids, vol.29, no.2, pp.165–177, 2000.

[76] Kerkhoff H. G., “Testing of mems-based microsystems”, Proc. of the 10th IEEE European Symposium on Test, pp.223–228, 2005. [77] Kiang M.-H., Solgaard O., Muller R. S. and Lau K. Y.,

“Micro-machined polysilicon microscanners for barcode readers”, IEEE Photon. Technol. Lett., vol.8, no.12, pp.1707–1709, 1996.

[78] Kirstein K.-U., Sedivy J., Salo T., Hagleitner C., Vancura T. and Hierlemann A., “A CMOS-based tactile sensor for continuous blood pressure monitoring”, Proc. of Design, Automation and Test in Europe, vol.3, pp.210–214, 2005.

[79] Kohl F., Jachimowicz A., Steurer J., Glatz R., Kuttner J., Biacovsky D., Olcaytug F. and Urban G., “A micromachined flow sensor for liquid and gaseous fluids”, Sensors and Actuators A: Physical, vol.41, no.1–3, pp.293–299, 1994.

[80] Kovacs G. T. A., Maluf N. I. and Petersen K. E., “Bulk micro-machining of silicon”, Proc. of IEEE, vol.86, no.8, pp.1536–1551, 1998.

[81] Kraft M., Lewis C., Hesketh T. and Szymkowiak S., “A novel micromachined accelerometer capacitive interface”, Sensors and Actuators A: Physical, vol.68, no.1–3, pp.466–473, 1998.

[82] Kraver K. L., Guthaus M. R., Strong T. D., Bird P. L., Sig Cha G., Höld W. and Brown R. B., “A mixed-signal sensor interface microinstrument”, Sensors and Actuators A: Physical, vol.91. no.3, pp.266–277, 2001.

[83] Kundert K., Chang H., Jefferies D., Lamant G., Malavasi E. and Sendig F., “Design of Mixed-Signal Systems on Chip”, IEEE Transac-tions on Computer-Aided Design of Integrated Circuits and Systems, vol.19, no.12, pp.1561–1571, 2000.

[84] Kurkowski M., Biernacki Z. and Zloto T., “Measurements of flow intensity by means of a thermoanemometric method with the use of thermistor sensors”, Proc. of IEEE Int. Conf. on the Experience of Designing and Application of CAD Systems in Microelectronics, pp.151–152, 2001.

(13)

[85] Kurth S., Kaufmann C., Hahn R., Mehner J., Dötzel W. and Gessner T., “A novel 24 kHz resonant scanner for high resolution laser display”, Proc. of SPIE, vol.5721, MOEMS Display and Imaging Systems III, 2005.

[86] Lammerink T. S. J., Elwenspoek M. and Fluitman J. H. J., “In-tegrated Micro-Liquid Dosing System”, pp.254–259, Proc. IEEE Micro Electro Mechanical Systems Workshop, Fort Lauderdale, Florida, 1993.

[87] Lammerink T. S. J., Tas N. R., Elwenspoek M. and Fluitman J. H. J., “Micro-liquid flow sensor”, Sensors and Actuators A: Physical, vol.37–38, pp.45–50, 1993.

[88] Lewis D. H. Jr., Janson S. W., Cohen R. B. and Antonsson E. K, “Digital MicroPropulsion”, Proc. of the 12th IEEE Int. Conf. on Micro Electro Mechanical Systems, MEMS ’99, pp.517–522, 1999. [89] Liang-Chia C., Yao-Ting H. and Kuang-Chao F., “A dynamic 3-D surface profilometer with nanoscale measurement resolution and MH bandwidth for MEMS characterization”, IEEE/ASME Trans. on Mechatronics, vol.12, no.3, pp.299–307, 2007.

[90] Lin H., Yong X. P. and Palaniapan M., “A CMOS Readout Circuit for SOI Resonant Accelerometer With 4-µg Bias Stability and 20-µg/√Hz Resolution”, IEEE Journal of Solid-State Circuits, vol.43, no.6, 2008.

[91] Lo J. F., Shih-Jui Chen, Hongyu Yu, Chi D., Chuang-Yuan Lee, Marcu L., Eun Sok Kim and Gundersen M., “Multi-Cantilever-Driven Rotational Micrograting for MOEMS Spectrometer”, Proc of IEEE Int. Conf. on Solid-State Sensors, Actuators and Microsys-tems, pp.2421–2424, 2007.

[92] Lobur M. and Holovatyy A., “Overview and analysis of readout circuits for capacitive sensing in MEMS gyroscopes (MEMS angular velocity sensors)”, Proc. of MEMSTECH 2009, pp.161–163, 2009. [93] Lòpez T., Sauerlaender G., Duerbaum T. and Tolle T., “A detailed

analysis of a resonant gate driver for PWM applications”, IEEE APEC 2003, vol.2, pp.873–878, 2003.

[94] Luh L., Choma J. Jr. and Draper J., “A continuous-time common-mode feedback circuit (CMFB) for high impedance current common-mode application”, Proc of IEEE Int. Conf. on Electronics, Circuits and Systems, vol.3, pp.347–350, Lisboa, Portugal, 1998.

(14)

[95] Lyons C., Friedberger A., Welser W., Muller G., Krotz G. and Rasing R., “A high-speed mass flow sensor with heated silicon carbide bridges”, Proc. of Int. Workshop on MEMS, Heidelberg, Germany, pp.356–360, 1998.

[96] Madni A. M., Vuong J. B. and Wells R. F., “The Next Generation of Position Sensing Technology”, Sensors, Advanstar publication, vol.18, no.3, pp,42–45, 2001.

[97] Maillefer D., van Lintel H., Rey-Mermet G. and Hirschi R., “A High-Performance Silicon Micropump for an Implantable Drug Delivery System”, Proc. of the 12th IEEE Int. Conf. on Micro Electro Mechanical Systems, Orlando, Florida, 1999.

[98] Makinwa K. A. A. and Huijsing J. H., “A smart wind sensor using thermal sigma-delta modulation techniques”, Sensors and Actuators A: Physical, vol.97–98, pp.15–20, 2002.

[99] Makinwa K. A. A. and Huijsing H. J., “Constant power operation of a two-dimensional flow sensor”, IEEE Trans. on Instrumentation and Measurement, vol.51, no.4, pp.840–844, 2002.

[100] Marchetti E., Volpi E., Battini F., Bacciarelli F., Fanucci L., De Marinis M. and Hofmann U., “Modeling of an Electrostatic Torsional Micromirror for Laser Projection System”, Proc. of DTIP 2009, pp.182–186, Rome, Italy, 2009.

[101] Market research from Yole, 2006, www.yole.fr.

[102] Matsudo H., Ishihara M., Kawasaki S., Yukawa J. and Hatanaka M., “Quartz crystal element for angular rate sensor”, Proc. of IEEE/EIA Int. Frequency Control Symposium and Exhibition, pp.91–95, 2000. [103] Matsumoto Y. and Esashi M., “Low drift integrated capacitive

accelerometer with PLL servo techniques”, Proc. of IEEE Int. Conf. on Solid-State Sensors, Actuators and Microsystems, pp.826–829, Yokohama, Japan, 1993.

[104] McCorquodale M. S., Gebara F. H., Kraver K. L., Marsman E. D., Senger R. M., and Brown R. B., “A Top-Down Microsystems Design Methodology and Associated Challenges”, Proc. of DATE, pp.292–296, 2003.

[105] Mcmillan Jr. R. D., “Turbine wheel flow measuring transducer,” Patent 4467660, 1984.

(15)

[106] Meijer G.C.M. and Xiujun Li, “Smart sensor interface electronics”, Proc. of the 23rd IEEE Int. Conf. on Microelectronics, vol.1 , pp.67– 74, 2002.

[107] Melani M., D’Ascoli F., Fanucci L., Iozzi F., Giambastiani A., Rocchi A. and De Marinis M., “Inertial sensors rapid prototyping for automotive application”, Proc. of IEEE Int. Workshop on Advances in Sensors and Interface, pp.1–5, 2007.

[108] Melani M. Bertini L., De Marinis M., Lange P., D’Ascoli F. and Fanucci L., “Hot wire anemometric MEMS sensor for water flow monitoring”, DATE 2008, Munich, Germany, 2008.

[109] Merino J. L., Bota S.A., Herms A., Samitier J., Cabruja E., Jorda X., Vellvehi M., Bausells J., Ferre A. and Bigorra J., “Smart tem-perature sensor for on-line monitoring in automotive applications”, Proc. of IEEE Int. On-Line Testing Workshop, pp.122–126, 2001. [110] Merz P., Quenzer H. J., Bernt H., Wagner B. and Zoberbier M., “A

novel micromachining technology for structuring borosilicate glass substrates”, 12th Int. Conf. on Solid-State Sensors, Actuators and Microsystems, Boston (USA), vol.1, p.258–261, 2003.

[111] Mochida Y., Tamura M. and Ohwada K., “A micromachined vi-brating rate gyroscope with independent beams for the drive and detection modes”, Proc. of IEEE Int. Conf. on Micro Electro Me-chanical Systems, pp.618–623, 1999.

[112] Moscatelli A., Merlini A., Croce G., Galbiati P. and Contiero C., “LDMOS implementation in a 0.35 µm BCD technology (BCD6)”, Proc. of Power Semiconductor Devices and ICs, pp.323–326, 2000. [113] Moser Y. and Gijs M. A. M., “Miniaturized Flexible Temperature

Sensor”, Journal of Microelectromechanical Systems, vol.16, no.6, pp.1349–1354, 2007.

[114] Mota D., “Fundamentals of Fully Differential Op-Amps and CMFB Circuit Design”, Term Paper, University of Toronto Department of Electrical and Computer Engineering, 2001.

[115] Msv-400 micro scanning vibrometer.

URL: http://www.vibrometry.co.kr/MSV-400_2004_09_E(2) .pdf

(16)

[116] Murabayashi F., Matsumoto M., Hanzawa K., Yamauchi T., Saku-rai K., Yamada H., Shimada S. and Miyazaki A., “A programmable sensor signal conditioning LSI”, Proc. of IEEE Asia Pacific Confer-ence on ASICs, pp.107–110, 2000.

[117] Nathansona H. C., Newell W. E., Wickstrom R. A. and Davis J. R., “The resonant gate transistor”, IEEE Trans. on Electron Devices, vol.14, no.3, pp.117–133, 1967.

[118] Neda T., Nakamura K. and Takumi T., “A Polysilicon Flow Sensor For Gas Flowmeters”, Proc. of Int. Conf. on Solid-State Sensors and Actuators, Eurosensor, vol.1, pp.548–551, 1995.

[119] Negut A., Chiritescu C. and Grosu D., “Temperature sensor, band-gap voltage reference and I2C Interface for CAT75”, Proc. of CAS 2005, vol.2, no.5, pp.397–400, 2005.

[120] Neul R., Gomez U.M., Kehr K., Bauer W., Classen J., Doring C., Esch E., Gotz S., Hauer J., Kuhlmann B., Lang C., Veith M. and Willig R., “Micromachined Angular Rate Sensors for Automotive Applications”, IEEE Sensors Journal, vol.7, no.2, pp.302–309, 2007. [121] Oboe R., Beghi A. and Murari B., “Modeling and control of a dual

stage actuator hard disk drive with piezoelectric secondary actua-tor”, Proc. of IEEE/ASME Int. Conf. on Advanced Mechatronics, Atlanta, USA, pp.138–143, 1999.

[122] Ohadi M. and Jianwei Qi, “Thermal Management of Harsh-Environment Electronics”, Semiconductor Thermal Measurement and Management Symposium, Twentieth Annual IEEE, pp.231–240, 2004.

[123] Oldsen M., Hofmann U., Quenzer H. J., Janes J., Stolte C.,Ites M., Sörensen F. and Wagner B., “A novel fabrication technology for anti-reflex Wafer-Level Vacuum packaged microscanning Mirrors”, Proc. of SPIE, vol.6882, Micromachining and Microfabrication Process Technology XII, vol.6882, no.8, pp.1–11, San Jose (USA), 2008. [124] Okulan N., Henderson H. T. and Ahn C. H., “A pulsed mode

micromachined flow sensor with temperature drift compensation”, IEEE Trans. on Electron Devices, vol.47, no.2, pp.340–347, 2000. [125] Oldsen M., Hofmann U., Quenzer H. -J., and Wagner B., “A Novel

Fabrication Technology for Waferlevel Vacuum Packaged Microscan-ning Mirrors”, Proc. of 9th Electronics Packaging Technology Con-ference, Singapore, 2007.

(17)

[126] Oliveira A., Freire R. C. S., Deep G. S. and Lobo P. C., “An Anemometer with PWM Excitation”, Proc. of Int. Conf. on Indus-trial Electronics, Control, and Instrumentation, vol.2, pp.893–897, 1995.

[127] Pavlik M., Vrba R. and Steffan P., “Electronic interface for dif-ferential pressure sensor”, Networking, Int. Conf. on Systems and Int. Conf. on Mobile Communications and Learning Technologies, pp.191–195, 2006.

[128] Petersen K. E., “Silicon Torsional Scanning Mirror”, IBM Journal of Research and Development, vol.24, no.5, pp.631–637, 1980. [129] Philips Semiconductor, “Contactless Angle Measurement using

KMZ41 and UZZ9001”, application note AN0004.

[130] PrimeCell Vectored Interrupt Controller (PL190) Technical Refer-ence Manual, rev. r1p2, ARM DDI 0181E, www.arm.com.

[131] Qi H., Jiang Z. and Wei J., “IP reusable design methodology”, Proc. of Int. Conf. on ASIC, pp.756–759, 2001.

[132] Riccardi D., Causio A., Filippi I., Paleari A., Pregnolato L. V. A., Galbiati P. and Contiero C., “BCD8 from 7 V to 70 V: a new 0.18 µm Technology Platform to Address the Evolution of Applications towards Smart Power ICs with High Logic Contents”, Proc. of Power Semiconductor Devices and ICs, pp.73–76, 2007. [133] Roumenin Ch. S. and Lozanova S.V., “Linear displacement sensor

using a new CMOS double-hall device”, Sensors and Actuators A: Physical, vol.138, pp.37–43, 2007.

[134] Sabate N., Cerda J., Gracia I., Berganzo J., Cane C. and Morante J. R., “Evaluation of sensitive materials for integrated thermal flow sensors”, IEEE 28th IECON, vol.4, pp.2681–2684, 2002.

[135] Sangiovanni-Vincentelli A. and Martin G., “Platform-based design and software design methodology for embedded systems”, IEEE Journal on Design Test of Computers, vol.18, no.6, pp.23–33, 2001. [136] Saukoski M., Aaltonen L., Salo T. and Halonen K. A. I., “Inter-face and control electronics for a bulk micromachined capacitive gyroscope”, Sensors and Actuators A: Physical, vol.147, no.1, pp.183– 193, 2008.

(18)

[137] Savage W., Chilton J. and Camposano R., “IP reuse in the system on a chip era”, Proc. of the 13th Int. Symposium on System Synthesis, pp.2–7, 2000.

[138] Schenk H., Dürr P., Haase T., Kunze D., Sobe U., Lakner H., Kück H., “Large Deflection Micromechanical Scanning Mirrors for Linear Scans and Pattern Generation”, IEEE Journal of Selected Topics in Quantum Electronics, vol.6, no.5, 2000.

[139] Scholles M., Bräuer A., Frommhagen K., Gerwig C., Lakner H., Schenk H. and Schwarzenberg M., “Ultra compact laser projection systems based on two-dimensional resonant micro scanning mirrors”, Proc. SPIE, vol.6466, MOEMS and Miniaturized Systems VI, 2007. [140] Selvakumar A., Najafi K., Juan W. H. and Pang S., “Vertical Comb

Array Microactuators”. IEEE Journal of microelectromechanical systems, vol.12, no.4, pp.440–449, 2003.

[141] Smartec; “Universal Transducer Interface (UTI) Revolution in Sen-sor Interfacing”, Datasheet, Breda, 1999, URL:www.smartec.nl/ pdf/dsuti.pdf.

[142] Solgaard O., Sandejas F. S. A. and Bloom D. M., “A deformable grating optical modulator”, Opt. Lett., vol.17, no.9, pp.688–690, 1992.

[143] Specht H., Kurth S., Kaufmann C., Gessner T. and Doetzel W., “MEMS based laser display system”, Proc. of Smart System Inte-gration, pp.41–48, Paris, France, 2007.

[144] Sprague R., Montague T. and Brown D., “Bi-axial magnetic drive for Scanned Beam Dispaly mirrors”, Proc. of MOEMS Display and Imagining Systems III, Journal: Proc. of SPIE, vol.5721, pp.1–13. [145] Star A., Han T.-R., Joshi V. and Stetter J., “Sensing with Nafion Coated Carbon Nanotube”, Wiley-VCH Verlag Electroanalysis, vol.16, no.1–2, pp.108–112, 2004.

[146] Steegmueller U., Kuehnelt M., Unold H., Schwarz T., Schulz R. and Singer F., “RGB Laser for Mobile Projection Devices”, SID 07 Digest, 2007.

[147] Stephan C.H. and Zanini M., “A micromachined, silicon mass-air-flow sensor for automotive applications”, Proc. of IEEE Int. Conf. on Solid-State Sensors, Actuators and Microsystems, San Francisco, USA, pp.30–33, 1991.

(19)

[148] Su G.-D. J., Toshiyoshi H. and Wu M. C., “Surface micromachined 2-d optical scanners with high performance single crystalline silicon micromirrors”, IEEE Photonics Technoly Letters, vol.13, pp.606– 608, 2001.

[149] Takeda M., “Applications of MEMS to industrial inspection”, Proc. of the 14th IEEE Int. Conf. on Micro Electro Mechanical Systems, pp.182–191, Interlaken, Switzerland, 2001.

[150] Tang W. C., Nguyen T. H. and Howe R. T., “Laterally driven polysilicon resonant microstructures”, Sensors and Actuators, vol.20, pp.25-32, 1989.

[151] Tang T.K, “MEMS for space applications”, Proc. of IEEE Int. SOI Conference, pp.67, Rohnert Park (CA), USA, 1999.

[152] Tuantranont A. Bright V. M., Liew L.-A., Zhang W. and Lee Y. C., “Smart phase-only micromirror array fabricated by standard CMOS process”, Proc. of Int. Conf. on Micro Electro Mechanical Systems, pp.455–460, 2000.

[153] Urey H., Wine D. W. and Osborn T. D., “Optical performance requirements for MEMS-scanner based microdisplays”, Proc. of SPIE, vol.4178, pp.176–185, 2000.

[154] Urey H., Wine D. W. and Osborn T. D., “Optical performance requirements for MEMS-scanner based microdisplays”, Proc. of SPIE, vol.4178, pp.176-185, 2000.

[155] Van Kessel P. F., Hornbeck L. J., Meier R. E. and Douglass M. R., “A MEMS-Based Projection Display”, Proc. of IEEE, vol.86, no.8, pp.1687–1704, 1998.

[156] Van Putten A.F.P. and Middelhoek S., “Integrated silicon anemome-ter”, Electronics Letters, vol.10, no.21, pp.425–426, 1974.

[157] Van Putten A.F.P., “An integrated silicon double bridge anemome-ter”, Sensors and Actuators, vol.4, pp.387–396, 1983.

[158] Vigna B., “Future of MEMS: An industry point of view”, Proc. of th 7th IEEE Int. Conf. on Thermal, Mechanical and Multiphysics Sim-ulation and Experiments in Micro-Electronics and Micro-Systems, pp.1–8, Como, Italy, 2006.

(20)

[160] Vlassis S. and Siskos S., “A Signal Conditioning Circuit for Piezore-sistive Pressure Sensors With Variable Pulse-Rate Output”, Kluwer Analog Integrated Circuits and Signal Processing, vol.23, no.2, pp.153–162, 2000.

[161] Volpi E., Fanucci L., D’ascoli F. and Enrico P., “A high-voltage PWM current driver for hot-wire anemometers”, Proc. of AISEM 2009, pp.53–54, Pavia, 2009.

[162] Volpi E., Sechi F., Cecchini T., Battini F., Bacciarelli L., Fanucci L. and De Marinis M., “System study for a head-up display based on a flexible sensor interface”, Proc. of AISEM 2009, pp.93–94, Pavia, 2009.

[163] Volpi E., Battini F., Marchetti E., Cecchini T., Sechi F., Fanucci L., De Marinis M. and Hofmann U., “Characterization and testing of a double axis scanning micromirror”, Proc. of AISEM 2009, pp.71–72, Pavia, 2009.

[164] Volpi E. and Fanucci L., “Design of a high voltage high side driver with programmable output current”, Proc. of IEEE PRIME 2009, pp.116–119, Cork, Ireland, 2009.

[165] Wang S., Raaijmakers I., Burrow B.J., Suthar S., Redkar S. and Kim K., “Reactively sputtered TiN as a diffusion barrier between Cu and Si”, Journal of Appl. Phys., vol.68, no.10, pp.5176, 1990. [166] Wilson P. D., Brown J. S. and Hopkins S. P., “Universal Sensor

Interface IC (USIC) market requirement and specification”, Proc. of IEE Colloquium on Moving and Flexing Microstructures - their Design Modelling and Production, pp.7/1–7/3, London, UK, 1994. [167] Wilson P. D., Hopkins S. P., Spraggs R. S., Lewis I., Skarda V. and Goodey J., “Applications of a Universal Sensor Interface Chip (USIC) for intelligent sensor applications”, Proc. of IEE Colloquium

on Advances in Sensors, pp.3/1–3/6, 1995.

[168] Xiujun Li, Meijer G.C.M., de Boer R. and van der Lee M., “A High-Performance Universal Sensor Interface”, Proc. of the 1st ISA/IEEE Conf. on Sensor for Industry, pp.19–22, Rosemont, Illinois, USA, 2001.

[169] Xu G. and Embabi S. H. K. “A Systematic Approach in Constructing Fully Differential Amplifiers”, IEEE Trans. on circuits and systems– II. Analog and digital signal processing, vol.47, no.12, 2000.

(21)

[170] Yalcinkaya A. D., Urey H., Brown D., Montague T. and Sprague R., “Two-Axis Electromagnetic Microscanner for High Resolution Displays”, IEEE Journal of Microelectromechanical Systems, vol.15, no.4, pp.786–794, 2006.

[171] Yang C. and Soeberg H., “Monolithic flow sensor for measuring millilitre per minute liquid flow”, Sensors and Actuators A: Physical, vol.33, pp.143–153, 1992.

[172] Yang E.H., Hishinuma Y., Cheng J. G., McKinstry S. T., Bloemhof E. and Martin Levine B., “Thin-Film Piezoelectric Unimorph Actuator-Based Deformable Mirror with a Transferred Silicon Mem-brane”, IEEE Journal of Microelectromechanical Systems, vol.15, pp.1214–1225, 2006.

[173] Yazadi N., Ayazi F. and Najafi K., “Micromachined Inertial Sensors”, Proc. of the IEEE, vol.86, no.8, pp.1640–1659, 1998.

[174] You Zheng, Li Bin, Yu Shijie and Zhang Gaofei, “Applications of MEMS devices in nanosatellite”, Proc. of 2nd Int. Conf. on Recent Advances in Space Technologies, RAST 2005, pp.240–243, 2005. [175] Zhe Peng, Longhua Ma and Feng Xia, “A Low-Cost Embedded

Controller for Complex Control Systems”, Proc. of IEEE/IFIP Int. Conf. on Embedded and Ubiquitous Computing, EUC 2008, vol.1, pp.23–29, 17–20, 2008.

[176] Zhiliang Z., Zhihua Y., Sheng Y. and Yan-Fei L., “Topology and Analysis of a New Resonant Gate Driver”, Proc. of the 37th IEEE Conf. on Power Electronics Specialists 2006, pp.1–7, 2006.

[177] Zook J. D., Burns D. W., Herb W. R., Guckel H., Joon-Won K. and Yongchul A., “Optically Excited Self-resonant Strain Transducers”, Proc. of IEEE Int. Conf. on Solid-State Sensors, Actuators and Microsystems, vol.2, pp.600–603, Stockholm, Sweden, 1995.

(22)
(23)

The technical contributions of this dissertation have been published on international journals and conference proceedings. The complete list is reported at the end of this document. The list has been generated by University of Pisa “Anagrafe della Ricerca” official database. An up-to-date list can be accessed at the following URL:

(24)

Unimap

Autore

EMILIO VOLPI Dati autore

Dottorando presso Dipartimento di Ingegneria dell' Informazione: Elettronica, Informatica, Telecomunicazioni

Dottorato di Ingegneria dell'Informazione In servizio

Prodotti

lista concisa lista espansa tipo anno

Articolo su rivista scientifica Index Medicus, Science Citation Index

VOLPI EMILIO, FANUCCI LUCA, Giambastiani Adolfo, Rocchi

Alessandro, D'ascoli Francesco, Tonarelli Marco, Melani Massimiliano, Marino Corrado,A Mixed-Signal Embedded Platform for Automotive Sensor Conditioning, EURASIP JOURNAL ON EMBEDDED SYSTEMS,vol. 2010,pp 1,tot.pag 15,tot. autori 8,2010

1.

MARCHETTI ELEONORA, VOLPI EMILIO, BATTINI FRANCESCO, FANUCCI LUCA, Bacciarelli Luca, Hofmann Ulrich,Modeling of an Electrostatic Torsional Micromirror for Laser Projection System, MICROSYSTEM TECHNOLOGIES: MICRO AND NANOSYSTEMS -INFORMATION STORAGE AND PROCESSING SYSTEMS,pp 1,tot.pag 7,tot. autori 6,2010

2.

Atti di convegni nazionale con revisori articolo in extenso

VOLPI EMILIO, BATTINI FRANCESCO, MARCHETTI ELEONORA, CECCHINI TOMMASO, SECHI FRANCESCO, FANUCCI LUCA, De marinis Marco, Hofmann Ulrich,Characterization and testing of a double axis scanning micromirror, AISEM 2009, pp 71-72, Pavia, tot. autori 8,2009

1.

VOLPI EMILIO, FANUCCI LUCA, D'ascoli Francesco,A high-voltage driver for a scanning micromirror, AISEM 2009, pp 67-68, Pavia, tot. autori 3,2009

2.

VOLPI EMILIO, SECHI FRANCESCO, CECCHINI TOMMASO, BATTINI FRANCESCO, BACCIARELLI LUCA, FANUCCI LUCA, De marinis Marco,System study for a head-up display based on a flexible sensor interface, AISEM 2009, pp 93-94, Pavia, tot. autori 7,2009

3.

VOLPI EMILIO, FANUCCI LUCA, D'ascoli Francesco, Pardi Enrico,A high-voltage PWM current driver for hot-wire anemometers, AISEM 2009, pp 53-54, Pavia, tot. autori 4,2009

4.

Atto di convegno internazionale con revisori articolo su invito

Hofmann Ulrich, Oldsen Marten, Quenzer Hans-joachim, Janes Joachim, Heller Martin, Weiss Manfred, Fakas Georgios, Ratzmann Lars,

MARCHETTI ELEONORA, D'ASCOLI FRANCESCO, MELANI MASSIMILIANO, BACCIARELLI LUCA, VOLPI EMILIO, BATTINI FRANCESCO, MOSTARDINI LUCA, SECHI FRANCESCO, De marinis Marco, Wagner Bernd,Wafer-level vacuum packaged micro-scanning mirrors for compact laser projection displays, SPIE Photonics West 2008, pp 100-114, San Jose, California USA,vol. 6887,2008 1.

(25)

VOLPI EMILIO, NIZZA NICOLO', BRUSCHI PAOLO,A non linear ADC for sensor linearization, PRIME 2007, pp 5-8, Bordeaux - France,vol. 1, tot. autori 3,2007

1.

VOLPI EMILIO, FANUCCI LUCA,Design of a high voltage high side driver with programmable output current, PRIME 2009, pp 116-119, Cork, Ireland, tot. autori 2,2009

2.

BATTINI FRANCESCO, VOLPI EMILIO, MARCHETTI ELEONORA, CECCHINI TOMMASO, SECHI FRANCESCO, FANUCCI LUCA, Hofmann Ulrich,A fast-developing and low-cost characterization and test environment for a double axis resonanting micromirror, IWASI, pp 98-103, Trani (Bari), Italy, tot. autori 7,2009

3.

MARCHETTI ELEONORA, VOLPI EMILIO, BATTINI FRANCESCO, BACCIARELLI LUCA, FANUCCI LUCA, De marinis Marco, Hoffman Ulrich,Modeling of an Electrostatic Torsional Micromirror for Laser Projection System, DTIP, pp 182-186, tot. autori 7,2009 4.

VOLPI EMILIO, FANUCCI LUCA, D'ascoli Francesco,Design of a high voltage fully differential driver for a double axis scanning micromirror, PRIME 2009, pp 112-115, Cork, Ireland, tot. autori 3,2009

Riferimenti

Documenti correlati

Si comunica che la prova orale del concorso in epigrafe, già prevista dal bando per il giorno 24 settembre 2020, si svolgerà alle ore 10.30 in modalità remota via Zoom

La prova orale prevista per il giorno 5 novembre 2019 si svolgerà alle ore 12.00 presso la sala Scotto di Carlo della Stazione Zoologica di Napoli, sede di

July 23/August 12 1997 – Theoretical and practical course “Eukaryotic Gene Expression” at Cold Spring Harbor Laboratories (NY)..

Sapienza University of Rome, Stazione Zoologica Anton Dohrn of Naples, Italy. PhD without scholarship (not

Responsabile dell'Autorità di Audit dei Fondi Europei a titolarità Ministero del lavoro e delle politiche sociali.

il maltosio è un disaccaride e non può essere assorbito, quindi a sua volta sarà tagliato dalle beta-amilasi all'estremità non riducente, cioè dalla parte dove non c'è il

• Tuttavia, il calo ponderale è di fficile da ottenere, ed evitare di riprendere peso dopo averlo perso può essere ancora più di fficile.. § Sovrappeso e obesità sono gravi

The trochlear groove alignment was measured in an axial and a coronal view in respect to the posterior condylar plane, the distal condylar plane, and the anatomical axis,