• Non ci sono risultati.

Localization of the 5-hydroxytryptamine2C receptor protein in human and rat brain using specific antisera

N/A
N/A
Protected

Academic year: 2021

Condividi "Localization of the 5-hydroxytryptamine2C receptor protein in human and rat brain using specific antisera"

Copied!
22
0
0

Testo completo

(1)

REFERENCES

Abramowski, D., Rigo, M., Duc, D., Hoyer, D. and Staufenbiel, M. (1995).

Localization of the 5-hydroxytryptamine2C receptor protein in human and rat brain using specific antisera. Neuropharmacology 34, 635-645.

Alenina, N., Kikic, D., Todiras, M., Mosienko, V., Qadri, F., Plehm, R., Boye, P., Vilianovitch, L., Sohr, R., Tenner, K. et al. (2009). Growth retardation and altered autonomic control in mice lacking brain serotonin.

Proc Natl Acad Sci U S A 106, 10332-10337.

Ansorge, M.S., Hen, R., Gingrich, J.A. (2007). Neurodevelopmental origins of depressive disorders. Curr Opin Pharmacol. 7, 8-17.

Ase, A. R., Reader, T. A., Hen, R., Riad, M. and Descarries, L. (2001).

Regional changes in density of serotonin transporter in the brain of 5- HT1A and 5-HT1B knockout mice, and of serotonin innervation in the 5- HT1B knockout. J Neurochem 78, 619-630.

Azmitia, E.C. (1999). Serotonin neurons, neuroplasticity, and homeostasis of neural tissue. Neuropsychopharmacology 21, 33-45.

Bagri, A., Marín, O., Plump, A.S., Mak, J., Pleasure, S.J., Rubenstein, J.L., Tessier-Lavigne, M. (2002). Slit proteins prevent midline crossing and determine the dorsoventral position of major axonal pathways in the mammalian forebrain. Neuron. 33, 233-248.

Barnes, N.M., Sharp, T. (1999). A review of central 5-HT receptors and their function. Neuropharmacology. 38, 1083-1152.

Beaulieu, J. M., Zhang, X., Rodriguiz, R. M., Sotnikova, T. D., Cools, M.

J., Wetsel, W. C., Gainetdinov, R. R. and Caron, M. G. (2008). Role of GSK3beta in behavioral abnormalities induced by serotonin deficiency.

Proc. Natl. Acad. Sci. USA 29, 1333-1338.

Berg, T., Kalsaas, A.H., Buechner, J., Busund, L.T. (2009). Ewing sarcoma-peripheral neuroectodermal tumor of the kidney with a FUS- ERG fusion transcript. Cancer Genet Cytogenet. 194, 53-57.

Bockaert, J., Claeysen, S., Bécamel, C., Dumuis, A., Marin, P. (2006).

Neuronal 5-HT metabotropic receptors: fine-tuning of their structure, signaling, and roles in synaptic modulation. Cell Tissue Res. 326, 553- 372.

Bonnin, A., Golden, N., Chen, K., Wilson, M.L., King, J., Shih, J.C., Blakely, R.D., Deneris, E.S., Levitt, P. (2011). A transient placental source of serotonin for the fetal forebrain. Nature. 472, 347-350.

Bonnin, A., Peng, W., Hewlett, W. and Levitt, P. (2006). Expression mapping of 5-HT1 serotonin receptor subtypes during fetal and early postnatal mouse forebrain development. Neuroscience 141, 781-794.

(2)

Bonnin, A., Torii, M., Wang, L., Rakic, P., Levitt, P. (2007). Serotonin modulates the response of embryonic thalamocortical axons to netrin-1.

Nat Neurosci. 10, 588-597.

Bouchard, M. (2004).Transcriptional control of kidney development.

Differentiation 72, 295-306.

Briscoe, J., Sussel, L., Serup, P., Hartigan-O'Connor, D., Jessell, T.M., Rubenstein, J. L. and Ericson, J. (1999). Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic hedgehog signalling.

Nature 398, 622-627.

Brodski, C., Weisenhorn, D. M., Signore, M., Sillaber, I., Oesterheld, M., Broccoli, V., Acampora, D., Simeone, A. And Wurst W. (2003).

Location and size of dopaminergic and serotonergic cell populations are controlled by the position of the midbrain-hindbrain organizer. J. Neurosci.

23, 4199-4207.

Bruinvels, A.T., Landwehrmeyer, B., Gustafson, E.L., Durkin, M.M., Mengod, G., Branchek, T.A., Hoyer, D., Palacios, J.M. (1994).

Localization of 5-HT1B, 5-HT1D alpha, 5-HT1E and 5-HT1F receptor messenger RNA in rodent and primate brain. Neuropharmacology. 33, 367-386.

Budnik, V., Wu, C. F. and White, K. (1989). Altered branching of serotonin- containing neurons in Drosophila mutants unable to synthesize serotonin and dopamine. J Neurosci 9, 2866-2877.

Burns, C.M., Chu, H., Rueter, S.M., Hutchinson, L.K., Canton, H., Sanders-Bush, E., Emeson, R.B. (1997). Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature. 387, 303-308.

Calizo, L.H., Akanwa, A., Ma, X., Pan, Y.Z., Lemos, J.C., Craige, C., Heemstra, L.A., Beck, S.G. (2011). Raphe serotonin neurons are not homogenous: electrophysiological, morphological and neurochemical evidence. Neuropharmacology. 61, 524-543.

Cases, O., Lebrand, C., Giros, B., Vitalis, T., De Maeyer, E., Caron, M.G., Price, D.J., Gaspar, P., Seif, I. (1998). Plasma membrane transporters of serotonin, dopamine, and norepinephrine mediate serotonin accumulation in atypical locations in the developing brain of monoamine oxidase A knock-outs. J Neurosci. 18, 6914-6927.

Cases. O., Vitalis, T., Seif, I., De Maeyer, E., Sotelo, C. and Gaspar, P.

(1996). Lack of barrels in the somatosensory cortex of monoamine oxidase A-deficient mice: role of a serotonin excess during the critical period. Neuron 16, 297-307.

(3)

Cebrián, C., Borodo, K., Charles, N., Herzlinger, D.A. (2004).

Morphometric index of the developing murine kidney. Dev Dyn. 231, 601- 8.

Chamas, F. and Sabban, E. L. (2002). Role of the 5' untranslated region (UTR) in the tissue-specific regulation of rat tryptophan hydroxylase gene expression by stress. J. Neurochem. 82, 645-654.

Chamberlain, S. R., Müller, U., Robbins, T. W. and Sahakian, B. J.

(2006). Neuropharmacological modulation of cognition. Curr. Opin.

Neurol. 19, 607-612.

Chandler, K.J., Chandler, R.L., Broeckelmann, E.M., Hou, Y., Southard- Smith, E.M., Mortlock, D.P. (2007). Relevance of BAC transgene copy number in mice: transgene copy number variation across multiple transgenic lines and correlations with transgene integrity and expression.

Mamm Genome. 18, 693-708.

Charnay, Y., Léger, L. (2010). Brain serotonergic circuitries. Dialogues Clin Neurosci. 12, 471- 487.

Chen, H., Lun, Y., Ovchinnikov, D., Kokubo, H., Oberg, K.C., Pepicelli, C.V., Gan, L., Lee, B., Johnson, R.L. (1998). Limb and kidney defects in Lmx1b mutant mice suggest an involvement of LMX1B in human nail patella syndrome. Nat Genet. 19, 51-55.

Cheng, C.W., Yan, C.H., Choy, S.W., Hui, M.N., Hui, C.C., Cheng, S.H.

(2007). Zebrafish homologue irx1a is required for the differentiation of serotonergic neurons. Dev Dyn. 236, 2661-2667.

Cheng, L., Chen, C. L., Luo, P., Tan, M., Qiu, M., Johnson, R. and Ma, Q.

(2003). Lmx1b, Pet-1, and Nkx2.2 coordinately specify serotonergic neurotransmitter phenotype. J. Neurosci. 23, 9961-9967.

Chugani, D. C., Muzik, O., Behen, M., Rothermel, R., Janisse, J. J., Lee, J. and Chugani, H. T. (1999). Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children. Ann Neurol 45, 287-295.

Coon, H., Dunn, D., Lainhart, J., Miller, J., Hamil, C., Battaglia, A., Tancredi, R., Leppert, M.F., Weiss, R., McMahon, W. (2005). Possible association between autism and variants in the brain-expressed tryptophan hydroxylase gene (TPH2). Am J Med Genet B Neuropsychiatr Genet. 135B, 42-46.

Coppen, A., Shaw, D. M., Herzberg, B. and Maggs, R. (1967). Tryptophan in the treatment of depression. Lancet. 2, 1178-1180.

Cordes, S.P. (2005). Molecular genetics of the early development of hindbrain serotonergic neurons. Clin Genet. 68, 487-494.

(4)

Côté, F., Fligny, C., Bayard, E., Launay, J. M., Gershon, M. D., Mallet, J.

and Vodjdani G. (2007). Maternal serotonin is crucial for murine embryonic development. Proc. Natl. Acad. Sci. USA 104, 329-334.

Côté, F., Thévenot, E., Fligny, C., Fromes, Y., Darmon, M., Ripoche, M.

A., Bayard, E., Hanoun, N., Saurini, F., Lechat, P., Dandolo, L., Hamon, M., Mallet, J. and Vodjdani, G. (2003). Disruption of the nonneuronal tph1 gene demonstrates the importance of peripheral serotonin in cardiac function. Proc. Natl. Acad. Sci. USA 100, 13525- 13530.

Craig, S. P., Boularand, S., Darmon, M. C., Mallet, J. and Craig, I. W. B.

(1991). Localization of human tryptophan hydroxylase (TPH) to chromosome 11p15.3---- p14 by in situ hybridization. Cytogenet. Cell Genet. 56, 7-9.

Craig, S. P., Buckle, V. J., Lamouroux, A., Mallet, J. and Craig, I. (1986).

Localization of the human tyrosine hydroxylase gene to 11p15: gene duplication and evolution of metabolic pathways. Cytogenet. Cell Genet.

42, 29-32.

Craven, R.J., Lightfoot, H. and Cance, W. G. (2003). A decade of tyrosine kinases: from gene discovery to therapeutics. Surg Oncol. 12, 39-49 Craven, S. E., Lim, K. C., Ye, W., Engel, J. D., de Sauvage, F. and

Rosenthal A. (2004). Gata2 specifies serotonergic neurons downstream of sonic hedgehog. Development 131, 1165-1173.

Dahlström, A., Fuxe, K. (1964). Localization of monoamines in the lower brain stem. Experientia. 20, 398-399.

Daubert, E. A. and Condron, B. G. (2010). Serotonin: a regulator of neuronal morphology and circuitry. Trends Neurosci 33, 424-34.

Davies, J. (1994). Control of calbindin-D28K expression in developing mouse kidney. Dev. Dyn. 199, 45-51.

Deneris, E.S. (2011) Molecular genetics of mouse serotonin neurons across the lifespan. Neuroscience. 197, 17-27.

Descarries, L., Berthelet, F., Garcia, S., Beaudet, A. (1986). Dopaminergic projection from nucleus raphe dorsalis to neostriatum in the rat. J Comp Neurol. 249, 511-520, 484-485.

Di Matteo, V., De Blasi, A., Di Giulio, C. and Esposito, E. (2001). Role of 5-HT(2C) receptors in the control of central dopamine function. Trends Pharmacol. Sci. 22, 229-232.

Diefenbach, T. J., Sloley, B. D. and Goldberg, J. I. (1995). Neurite branch development of an identified serotonergic neuron from embryonic Helisoma: evidence for autoregulation by serotonin. Dev Biol 167, 282- 293.

(5)

Ding, Y. Q., Marklund, U., Yuan, W., Yin, J., Wegman, L., Ericson, J., Deneris, E., Johnson, R. and Chen, Z. F. (2003). Lmx1b is essential for the development of serotonergic neurons. Nat. Neurosci. 6, 933-938.

Donovan, S.L., Mamounas, L.A., Andrews, A.M., Blue, M.E., McCasland, J.S. (2002). GAP-43 is critical for normal development of the serotonergic innervation in forebrain. J Neurosci. 22, 3543-3552.

Dressler, G.R. (2006). The cellular basis of kidney development. Annu Rev Cell Dev Biol. 22, 509-529.

Dreyer, S.D., Zhou, G., Baldini, A., Winterpacht, A., Zabel, B., Cole, W., Johnson, R.L., LeeFhy, B. (1998). Mutations in LMX1B cause abnormal skeletal patterning and renal dysplasia in nail patella syndrome. Nat Genet.19, 47-50.

Dubé, F., Amireault, P. (2007). Local serotonergic signaling in mammalian follicles, oocytes and early embryos. Life Sci.81, 1627-1637.

Dudok, J. J., Groffen, A. J., Witter, M. P., Voorn, P. and Verhage, M.

(2009). Chronic activation of the 5-HT(2) receptor reduces 5-HT neurite density as studied in organotypic slice cultures. Brain Res 1302, 1-9.

Ehret, M., Pevet, P. and Maitre, M. (1991). Tryptophan hydroxylase synthesis is induced by 3',5'-cyclic adenosine monophosphate during circadian rhythm in the rat pineal gland. J. Neurochem. 57, 1516-1521.

Erickson, J. D., Schafer, M. K., Bonner, T. I., Eiden, L. E. and Weihe, E.

(1996). Distinct pharmacological properties and distribution in neurons and endocrine cells of two isoforms of the human vesicular monoamine transporter. Proc. Natl. Acad. Sci. USA 93, 5166-5171.

Erickson, J.T., Shafer, G., Rossetti, M.D., Wilson, C.G., Deneris, E.S.

(2007). Arrest of 5HT neuron differentiation delays respiratory maturation and impairs neonatal homeostatic responses to environmental challenges. Respir Physiol Neurobiol. 159, 85-101.

Erspamer, V. and Vialli, M. (1937). Ricerche sul secreto delle cellule enterocromaffini. Boll d Soc Med-Chir Pavi.a 51, 357-363.

Fenstermaker, A.G., Prasad, A.A., Bechara, A., Adolfs, Y., Tissir, F., Goffinet, A., Zou, Y., Pasterkamp, R.J. (2010). Wnt/planar cell polarity signaling controls the anterior-posterior organization of monoaminergic axons in the brainstem. J Neurosci. 30, 16053-16064

Fitzpatrick, P. F. (1999). Tetrahydropterin-dependent amino acid hydroxylases. Annu. Rev. Biochem. 68, 355-381.

Flames, N., Hobert, O. (2011). Transcriptional control of the terminal fate of monoaminergic neurons. Annu Rev Neurosci. 34, 153-184.

Ford, B., Holmes, C.J., Mainville, L., Jones, B.E . (1995). GABAergic neurons in the rat pontomesencephalic tegmentum: codistribution with

(6)

cholinergic and other tegmental neurons projecting to the posterior lateral hypothalamus. J Comp Neurol. 363, 177-196.

Freitag, C.M. (2007). The genetics of autistic disorders and its clinical relevance: a review of the literature. Mol Psychiatry. 12, 2-22.

Fu, W., Le Maître, E., Fabre, V., Bernard, J.F., David Xu, Z.Q., Hökfelt, T.

(2010). Chemical neuroanatomy of the dorsal raphe nucleus and adjacent structures of the mouse brain. J Comp Neurol. 518, 3464-3494.

Fyodorov, D., Nelson, T., Deneris, E. (1998). Pet-1, a novel ETS domain factor that can activate neuronal nAchR gene transcription. J Neurobiol.

34, 151-163.

Gaspar, P., Cases, O. and Maroteaux, L. (2003). The developmental role of serotonin: news from mouse molecular genetics. Nat Rev Neurosci. 4, 1002-1012.

Gershon, M.D. (2004). Review article: serotonin receptors and transporters - - roles in normal and abnormal gastrointestinal motility. Aliment Pharmacol Ther. 20, 3-14.

Giraldo, P., Montoliu, L. (2001). Size matters: use of YACs, BACs and PACs in transgenic animals. Transgenic Res. 10, 83-103.

Gobert, A., Rivet, J. M., Lejeune, F., Newman-Tancredi, A., Adhumeau- Auclair, A., Nicolas, J. P., Cistarelli, L., Melon, C. and Millan, M. J.

(2000). Serotonin(2C) receptors tonically suppress the activity of mesocortical dopaminergic and adrenergic, but not serotonergic, pathways: a combined dialysis and electrophysiological analysis in the rat. Synapse 36, 205-221.

Goridis, C. and Rohrer, H. (2002). Specification of catecholaminergic and serotonergic neurons. Nat. Rev. Neurosci. 3, 531-541.

Gross, C., Hen, R. (2004). The developmental origins of anxiety. Nat Rev Neurosci. 5, 545-52.

Gross, C., Zhuang, X., Stark, K., Ramboz, S., Oosting, R., Kirby, L., Santarelli, L., Beck, S. and Hen, R. (2002). Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature 416, 396-400.

Gutknecht, L., Jacob, C., Strobel, A., Kriegebaum, C., Müller, J., Zeng, Y., Markert, C., Escher, A., Wendland, J., Reif, A., Mössner, R., Gross, C., Brocke, B., Lesch, K.P. (2009). Tryptophan hydroxylase-2 gene variation influences personality traits and disorders related to emotional dysregulation. Int J Neuropsychopharmacol. 10, 309-320.

Gutknecht, L., Waider, J., Kraft, S., Kriegebaum, C., Holtmann, B., Reif, A., Schmitt, A., Lesch, K.P. (2008). Deficiency of brain 5-HT synthesis

(7)

but serotonergic neuron formation in Tph2 knockout mice. J Neural Transm. 115, 1127-1132.

Hamblin, M.W., McGuffin, R.W., Metcalf, M.A., Dorsa, D.M., Merchant, K.M. (1992). Distinct 5-HT(1B) and 5-HT(1D) serotonin receptors in rat:

Structural and pharmacological comparison of the two cloned receptors.

Mol Cell Neurosci. 3, 578-587.

Hamel, E. (2007). Serotonin and migraine: biology and clinical implications.Cephalalgia 27, 1293-1300.

Hannon, J., Hoyer, D. (2008). Molecular biology of 5-HT receptors. Behav Brain Res. 195, 198-213.

Harvey, M., Shink, E., Tremblay, M., Gagné, B., Raymond, C., Labbé, M., Walther, D.J., Bader, M., Barden, N. (2004). Support for the involvement of TPH2 gene in affective disorders. Mol Psychiatry. 9, 980-981.

Hasegawa, H. and Ichiyama, A. (1987). Tryptophan 5-monooxygenase from mouse mastocytoma: high-performance liquid chromatography assay. Methods Enzymol. 142, 88-92.

Hasue, R.H., Shammah-Lagnado, S.J. (2002). Origin of the dopaminergic innervation of the central extended amygdala and accumbens shell: a combined retrograde tracing and immunohistochemical study in the rat. J Comp Neurol. 454, 15-33.

Haydon, P. G., McCobb, D. P. and Kater, S. B. (1984). Serotonin selectively inhibits growth cone motility and synaptogenesis of specific identified neurons. Science 226, 561-564.

Hempel, C.M., Sugino, K., Nelson, S.B. (2007). A manual method for the purification of fluorescently labeled neurons from the mammalian brain.

Nat Protoc. 2, 2924-9.

Hendricks, T. J., Francis, N., Fyodorov, D. and Deneris, E. S. (1999). The ETS domain factor Pet-1 is an early and precise marker of central serotonin neurons and interacts with a conserved element in serotonergic genes. J. Neurosci. 19, 10348-10356.

Hendricks, T. J., Fyodorov, D.V., Wegman, L. J., Lelutiu, N. B., Pehek, E.A., Yamamoto, B., Silver, J., Weeber, E. J., Sweatt, J. D. and Deneris, E.S. (2003). Pet-1 ETS gene plays a critical role in 5-HT neuron development and is required for normal anxiety-like and aggressive behavior. Neuron 37, 233-247.

Hensler, (2006) in Siegel - Basic Neurochemistry - Molecular, Cellular and Medical Aspects 7e (Academic).

Hill, R. A., Murray, S. S., Halley, P. G., Binder, M. D., Martin, S. J. and van den Buuse, M. (2011). Brain-derived neurotrophic factor expression

(8)

is increased in the hippocampus of 5-HT(2C) receptor knockout mice.

Hippocampus 21, 434-445.

Hodges, M.R., Tattersall, G.J., Harris, M.B., McEvoy, S.D., Richerson, D.N., Deneris, E.S., Johnson, R.L., Chen, Z.F., Richerson, G.B.

(2008). Defects in breathing and thermoregulation in mice with near- complete absence of central serotonin neurons. J Neurosci. 28, 2495- 2505.

Hollander, E., Phillips, A.T., Yeh, C.C. (2003). Targeted treatments for symptom domains in child and adolescent autism. Lancet.362, 732-734.

Holschneider, D.P., Chen, K., Seif, I., Shih, J.C. (2001). Biochemical, behavioral, physiologic, and neurodevelopmental changes in mice deficient in monoamine oxidase A or B. Brain Res Bull. 56, 453-62.

Hoyer, D. and Martin, G. (1997). 5-HT receptor classification and nomenclature: towards a harmonization with the human genome.

Neuropharmacology 36, 419-428.

Huang, Y.J., Maruyama, Y., Lu, K.S., Pereira, E., Plonsky, I., Baur, J.E., Wu, D., Roper, S.D. (2005). Mouse taste buds use serotonin as a neurotransmitter. J Neurosci. 25, 843-847

Hull, E. M., Muschamp, J. W. and Sato, S. (2004). Dopamine and serotonin: influences on male sexual behavior. Physiol. Behav. 83, 291- 307.

Hynes, M., Rosenthal, A. (1999).Specification of dopaminergic and serotonergic neurons in the vertebrate CNS. Curr Opin Neurobiol. 9, 26- 36.

Hynes, M., Ye, W., Wang, K., Stone, D., Murone, M., Sauvage, F., Rosenthal, A. (2000). The seven-transmembrane receptor smoothened cell-autonomously induces multiple ventral cell types. Nat Neurosci. 3, 41- 46.

Jacob, J., Ferri, A.L., Milton, C., Prin, F., Pla, P., Lin, W., Gavalas, A., Ang, S.L., Briscoe, J. (2007). Transcriptional repression coordinates the temporal switch from motor to serotonergic neurogenesis. Nat Neurosci.

10, 1433-1439.

Jacob, J., Storm, R., Castro, D.S., Milton, C., Pla, P., Guillemot, F., Birchmeier, C., Briscoe, J. (2009). Insm1 (IA-1) is an essential component of the regulatory network that specifies monoaminergic neuronal phenotypes in the vertebrate hindbrain. Development. 136, 2477-2485.

Jacobsen, J.P., Siesser, W.B., Sachs, B.D., Peterson, S., Cools, M.J., Setola, V., Folgering, J.H., Flik, G., Caron, M.G. (2011). Deficient serotonin neurotransmission and depression-like serotonin biomarker

(9)

alterations in tryptophan hydroxylase 2 (Tph2) loss-of-function mice. Mol Psychiatry. 3. [Epub ahead of print]

Jankowski, M.P., Sesack, S.R. (2004). Prefrontal cortical projections to the rat dorsal raphe nucleus: ultrastructural features and associations with serotonin and gamma-aminobutyric acid neurons. J Comp Neurol. 468, 518-529.

Jann, M. W. and Slade, J. H. (2007). Antidepressant agents for the treatment of chronic pain and depression. Pharmacotherapy 27, 1571- 1587.

Jensen, P., Farago, A.F., Awatramani, R.B., Scott, M.M., Deneris, E.S., Dymecki, S.M. (2008). Redefining the serotonergic system by genetic lineage. Nat Neurosci. 11, 417-419.

Ji, S. P., Zhang, Y., van Cleemput, J., Jiang, W., Liao, M., Li, L., Wan, Q., Backstrom, J. R. and Zhang, X. (2006). Disruption of PTEN coupling with 5-HT2C receptors suppresses behavioral responses induced by drugs of abuse. Nat. Med. 12, 324-329.

Johansen, P. A., Jennings, I., Cotton, R. G. and Kuhn, D. M. (1996).

Phosphorylation and activation of tryptophan hydroxylase by exogenous protein kinase A. J. Neurochem. 66, 817-823.

Kato, S., Kumamoto, H., Hirano, M., Akiyama, H. and Kaneko, N. (1999).

Expression of 5-HT2A and 5-HT1B receptor mRNA in blood vessels. Mol Cell Biochem. 199, 57-61.

Katori, S., Hamada, S., Noguchi, Y., Fukuda, E., Yamamoto, T., Yamamoto, H., Hasegawa, S., Yagi, T. (2009). Protocadherin-alpha family is required for serotonergic projections to appropriately innervate target brain areas. J Neurosci. 29, 9137-9147.

Kim, D. Y. and Camilleri, M. (2000). Serotonin: a mediator of the brain-gut connection. Am. J. Gastroenterol. 95, 2698-2709.

Kim, K. S., Wessel, T. C., Stone, D. M., Carver, C. H., Joh, T. H. and Park, D. H. (1991). Molecular cloning and characterization of cDNA encoding tryptophan hydroxylase from rat central serotonergic neurons.

Brain Res Mol Brain Res. 9, 277-283.

Kiss, J., Csáki, A., Bokor, H., Kocsis, K., Kocsis, B. (2002). Possible glutamatergic/aspartatergic projections to the supramammillary nucleus and their origins in the rat studied by selective [(3)H]D-aspartate labelling and immunocytochemistry. Neuroscience. 111, 671-691.

Kiyasova, V., Gaspar, P. (2011). Development of raphe serotonin neurons from specification to guidance. Eur J Neurosci. 34, 1553-1562.

(10)

Kozicz, T., Vigh, S., Arimura, A.(1998). The source of origin of PACAP- and VIP-immunoreactive fibers in the laterodorsal division of the bed nucleus of the stria terminalis in the rat. Brain Res. 810, 211-219.

Kroeze, W.K., Kristiansen, K., Roth, B.L. (2002). Molecular biology of serotonin receptors structure and function at the molecular level. Curr Top Med Chem. 2, 507-528.

Kuhn, D. M., Wolf, W.A. and Lovenberg , W. (1980). Pressor effects of electrical stimulation of the dorsal and median raphe nuclei in anesthetized rats. J Pharmacol Exp Ther. 214, 403-409.

Kulikov, A.V., Osipova, D.V., Naumenko, V.S., Popova, N.K. (2005). The C1473G polymorphism in the tryptophan hydroxylase-2 gene and intermale aggression in mice. Dokl Biol Sci. 402, 208-210.

Lane, H. Y., Liu, Y. C., Huang, C. L., Hsieh, C. L., Chang, Y. L., Chang, L., Chang, Y. C. and Chang, W. H. (2008). Prefrontal executive function and D(1), D(3), 5-HT(2A) and 5-HT(6) receptor gene variations in healthy adults. J. Psychiatry Neurosci. 33, 47-53.

Lauder, J. M. (1993). Neurotransmitters as growth regulatory signals: role of receptors and second messengers. Trends Neurosci. 16, 233-240.

Lauder, J. M. and Krebs, H. (1978). Serotonin as a differentiation signal in early neurogenesis. Dev. Neurosci. 1, 15-30.

Lauder, J. M., Wilkie, M. B., Wu, C. and Singh, S. (2000). Expression of 5- HT(2A), 5-HT(2B) and 5-HT(2C) receptors in the mouse embryo. Int J Dev Neurosci 18, 653-62.

Lauder, J.M., Zimmerman, E.F. (1988). Sites of serotonin uptake in epithelia of the developing mouse palate, oral cavity, and face: possible role in morphogenesis. J Craniofac Genet Dev Biol. 8, 265-276.

Lebrand, C., Cases, O., Adelbrecht, C., Doye, A., Alvarez, C., El Mestikawy, S., Seif, I. and Gaspar, P. (1996). Transient uptake and storage of serotonin in developing thalamic neurons. Neuron 17, 823-835.

Lechner, M.S., Dressler, G.R. (1997). The molecular basis of embryonic kidney development. Mech Dev. 62, 105-20.

Ledley, F. D., Grenett, H.E., Bartos, D. P., van Tuinen, P., Ledbetter, D.

H. and Woo, S. L. (1987). Assignment of human trypt ophan hydroxylase locus to chromosome 11: gene duplication and translocation in evolution of aromatic amino acid hydroxylases. Somat. Cell. Mol. Genet. 13, 575- 580.

Lee, E. C., Yu, D., Martinez de Velasco, J., Tessarollo, L., Swing, D. A., Court, D. L., Jenkins, N. A. and Copeland, N. G. (2001). A highly efficient Escherichia coli-based chromosome engineering system adapted

(11)

for recombinogenic targeting and subcloning of BAC DNA. Genomics 73, 56-65.

Legay, C., Faudon, M., Héry, F., Ternaux, J.P. (1983). 5-HT metabolism in the intestinal wall of the rat-II. The nerves plexuses-interactions between 5-HT containing cells. Neurochem Int. 5,571-577.

Lein, E. S. Hawrylycz, M. J. Ao, N. Ayres, M. Bensinger, A. Bernard, A.

Boe, A. F. Boguski, M. S. Brockway, K. S. Byrnes, E. J. et al. (2007).

Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168-76.

Lein, E. S. Hawrylycz, M. J. Ao, N. Ayres, M. Bensinger, A. Bernard, A.

Boe, A. F. Boguski, M. S. Brockway, K. S. Byrnes, E. J. et al. (2007).

Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168-176.

Lesch, K.P., Gutknecht, L. (2005). Pharmacogenetics of the serotonin transporter. Prog Neuropsychopharmacol Biol Psychiatry. 29, 1062-1073.

Levinson, D.F. (2006). The genetics of depression: a review. Biol Psychiatry. 60, 84-92

Levitt, P. and Rakic, P. (1982).The time of genesis, embryonic origin and differentiation of the brain stem monoamine neurons in the rhesus monkey. Brain Res. 256, 35-57.

Lidov, H. G. and Molliver, M. E. (1982). Immunohistochemical study of the development of serotonergic neurons in the rat CNS. Brain Res Bull 9, 559-604.

Lillesaar, C., Tannhäuser, B., Stigloher, C., Kremmer, E., Bally-Cuif, L.

(2007). The serotonergic phenotype is acquired by converging genetic mechanisms within the zebrafish central nervous system. Dev Dyn. 236, 1072-1084.

Liu, C., Maejima, T., Wyler, S.C., Casadesus, G., Herlitze, S., Deneris, E.S. (2010). Pet-1 is required across different stages of life to regulate serotonergic function. Nat Neurosci. 13, 1190-1198.

Liu, J.P., Lauder, J.M. (1992). S-100 beta and insulin-like growth factor-II differentially regulate growth of developing serotonin and dopamine neurons in vitro. J Neurosci Res. 33, 248-256.

Lovenberg, W., Jequier, E., Sjoerdsma, A. (1967). Tryptophan hydroxylation: measurement in pineal gland, brainstem, and carcinoid tumor. Science. 155, 217-219.

Lucki, I. (1998). The spectrum of behaviors influenced by serotonin. Biol.

Psychiatry 44, 151-62.

Lumsden, A. and Keynes, R. (1989). Segmental patterns of neuronal development in the chick hindbrain. Nature 1989 337, 424-428.

(12)

Lyons, W. E., Mamounas, L. A., Ricaurte, G. A., Coppola, V., Reid, S. W., Bora, S. H., Wihler, C., Koliatsos, V. E. and Tessarollo, L. (1999).

Brain-derived neurotrophic factor-deficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities.

Proc Natl Acad Sci U S A 96, 15239-15244.

Makita, Y., Okuno, S. and Fujisawa, H. (1990). Involvement of activator protein in the activation of tryptophan hydroxylase by cAMP-dependent protein kinase. FEBS Lett. 268, 185-188.

Malek, Z.S., Dardente, H., Pevet, P., Raison, S. (2005). Tissue-specific expression of tryptophan hydroxylase mRNAs in the rat midbrain:

anatomical evidence and daily profiles. Eur J Neurosci. 22, 895-901.

Mamounas, L. A., Altar, C. A., Blue, M. E., Kaplan, D. R., Tessarollo, L.

and Lyons, W. E. (2000). BDNF promotes the regenerative sprouting, but not survival, of injured serotonergic axons in the adult rat brain. J Neurosci 20, 771-82.

Mamounas, L. A., Blue, M. E., Siuciak, J. A. and Altar, C. A. (1995).

Brain-derived neurotrophic factor promotes the survival and sprouting of serotonergic axons in rat brain. J Neurosci 15, 7929-39.

Mamounas, L.A., Mullen, C.A., O'Hearn, E., Molliver, M.E. (1991). Dual serotoninergic projections to forebrain in the rat: morphologically distinct 5-HT axon terminals exhibit differential vulnerability to neurotoxic amphetamine derivatives. J Comp Neurol. 314, 558-586.

Mann, J. J., Arango, V. and Underwood, M. D. (1990). Serotonin and suicidal behavior. Ann. N Y Acad. Sci. 600, 476-484.

McDougle, C.J., Naylor, S.T., Cohen, D.J., Aghajanian, G.K., Heninger, G.R., Price, L.H. (1996). Effects of tryptophan depletion in drug-free adults with autistic disorder. Arch Gen Psychiatry. 53, 993-1000.

McIntosh, I., Dreyer, S.D., Clough, M.V., Dunston, J.A., Eyaid, W., Roig, C.M,, Montgomery, T., Ala-Mello, S., Kaitila, I., Winterpacht, A., Zabel, B., Frydman, M., Cole, W.G., Francomano, C.A., Lee, B. (1998).

Mutation analysis of LMX1B gene in nail-patella syndrome patients. Am J Hum Genet. 63, 1651-1658.

McKinney, J., Johansson, S., Halmøy, A., Dramsdahl, M., Winge, I., Knappskog, P.M., Haavik, J. (2008). A loss-of-function mutation in tryptophan hydroxylase 2 segregating with attention-deficit/hyperactivity disorder. Mol Psychiatry. 13, 365-367.

Meltzer, H.Y., Li, Z., Kaneda, Y., Ichikawa, J. (2003). Serotonin receptors:

their key role in drugs to treat schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 27, 1159-1172.

(13)

Meneses, A. and Perez-Garcia, G. (2007). 5-HT(1A) receptors and memory. Neurosci. Biobehav. Rev. 31, 705-727.

Mengod, G., Nguyen, H., Le, H., Waeber, C., Lübbert, H. and Palacios, J.

M. (1990). The distribution and cellular localization of the serotonin 1C receptor mRNA in the rodent brain examined by in situ hybridization histochemistry. Comparison with receptor binding distribution.

Neuroscience 35, 577-591.

Middlemiss, D. N. and Fozard, J. R. (1983). 8-Hydroxy-2-(di-n- propylamino)-tetralin discriminates between subtypes of the 5-HT1 recognition site. Eur. J. Pharmacol. 90, 151-153.

Migliarini, S., Pacini, G. and Pasqualetti, M. (2008). Generation of a Tph2/EGFP knockin mouse line for the study of the role of serotonin during the central nervous system development. Fundam Clin Pharmacol 22 (Suppl. 2), 129.

Migliarini, S., Pacini, G., Pelosi, B., Errico, F., Lunardi, G., Usiello, A.

and Pasqualetti, M. (2009). Tryptophan hydroxylase 2 (Tph2) knockout mice reveal a critical role for brain serotonin (5-HT) in postnatal development and in adult behaviour. Society for Neuroscience, Chicago 61.3/N36.

Millan, M.J. (2006). Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther. 110, 135-370.

Miyata, M., Ito, M., Sasajima, T., Ohira, H., Sato, Y. and Kasukawa, R.

(2000). Development of monocrotaline-induced pulmonary hypertension is attenuated by a serotonin receptor antagonist. Lung. 178, 63-73.

Morin, L.P. (1999). Serotonin and the regulation of mammalian circadian rhythmicity. Ann Med. 31, 12-33.

Mössner, R., Walitza, S., Geller, F., Scherag, A., Gutknecht, L., Jacob, C., Bogusch, L., Remschmidt, H., Simons, M., Herpertz-Dahlmann, B., Fleischhaker, C., Schulz, E., Warnke ,A., Hinney, A., Wewetzer, C., Lesch, K.P. (2006). Transmission disequilibrium of polymorphic variants in the tryptophan hydroxylase-2 gene in children and adolescents with obsessive-compulsive disorder. Int J Neuropsychopharmacol. 9, 437-442.

Moy, S.S., Nadler, J.J., Young, N.B., Nonneman, R.J., Grossman, A.W., Murphy, D.L., D'Ercole, A.J., Crawley, J.N., Magnuson, T.R., Lauder, J.M. (2009). Social approach in genetically engineered mouse lines relevant to autism. Genes Brain Behav. 8, 129-142.

Murphy, D. L. and Lesch, K. P. (2008). Targeting the murine serotonin transporter: insights into human neurobiology. Nat Rev Neurosci. 9, 85- 96.

(14)

Murphy, D. L., Lerner, A., Rudnick, G. and Lesch, K. P. (2004). Serotonin transporter: gene, genetic disorders, and pharmacogenetics. Mol. Interv.

4, 109-123.

Murphy, K. L., Zhang, X., Gainetdinov, R. R. Beaulieu, J. and Caron, M.

G. (2008). A regulatory domain in the N terminus of Tryptophan Hydroxylase 2 controls enzyme expression. J Biol Chem. 283, 13216- 13224.

Nanopoulos, D., Belin, M.F., Maitre, M., Vincendon, G., Pujol, J.F.

(1982). Immunocytochemical evidence for the existence of GABAergic neurons in the nucleus raphe dorsalis. Possible existence of neurons containing serotonin and GABA. Brain Res. 232, 375-389.

Nebigil, C. G., Choi, D. S., Dierich, A., Hickel, P., Le Meur, M., Messaddeq, N., Launay, J. M. and Maroteaux, L. (2000). Serotonin 2B receptor is required for heart development. Proc. Natl. Acad. Sci. USA 97, 9508-9513.

Ng, T.L., O'Sullivan, M.J., Pallen, C.J., Hayes, M., Clarkson, P.W., Winstanley, M., Sorensen, P.H., Nielsen, T.O., Horsman, D.E. (2007).

Ewing sarcoma with novel translocation t(2;16) producing an in-frame fusion of FUS and FEV. J Mol Diagn. 9, 459-463.

Nielsen, D. A., Dean, M. and Goldman, D. (1992). Genetic mapping of the human tryptophan hydroxylase gene on chromosome 11, using an intronic conformational polymorphism. Am. J. Hum. Genet. 51, 1366- 1371.

Ohta, Y., Kosaka, Y., Kishimoto, N., Wang, J., Smith, S.B., Honig, G., Kim, H., Gasa, R.M., Neubauer, N., Liou, A., Tecott, L.H., Deneris, E.S., German, M.S. (2011). Convergence of the insulin and serotonin programs in the pancreatic β-cell. Diabetes. 60, 3208-3216.

Olivier, B. (2005). Serotonergic mechanisms in aggression. Novartis Found.

Symp. 268, 171-183.

Pardo, C.A., Eberhart, C.G. (2007). The neurobiology of autism. Brain Pathol. 17, 434-447.

Pasqualetti M, Ori M, Castagna M, Marazziti D, Cassano GB, Nardi I.

(1999). Distribution and cellular localization of the serotonin type 2C receptor messenger RNA in human brain. Neuroscience. 92, 601-611.

Pasqualetti, M., Nardi, I., Ladinsky, H., Marazziti, D., Cassano, G.B.

(1996). Comparative anatomical distribution of serotonin 1A, 1D alpha and 2A receptor mRNAs in human brain postmortem. Brain Res Mol Brain Res. 39, 223-233.

(15)

Pasqualetti, M., Ren, S. Y., Poulet, M., LeMeur, M., Dierich, A. and Rijli F. M. (2002). A Hoxa2 knockin allele that expresses EGFP upon conditional Cre-mediated recombination. Genesis 32, 109-111.

Pattyn, A., Simplicio, N., van Doorninck, J. H., Goridis, C., Guillemot, F.

and Brunet, J. F. (2004). Ascl1/Mash1 is required for the development of central serotonergic neurons. Nat Neurosci. 7, 589-595.

Pattyn, A., Vallstedt, A., Dias, J.M., Samad, O.A., Krumlauf, R., Rijli, F.M., Brunet, J.F. and Ericson, J. (2003). Coordinated temporal and spatial control of motor neuron and serotonergic neuron generation from a common pool of CNS progenitors. Genes Dev 17, 729-737.

Paulmann, N., Grohmann, M., Voigt, J.P., Bert, B., Vowinckel, J., Bader, M., Skelin, M., Jevsek, M., Fink, H., Rupnik, M., Walther, D.J. (2009).

Intracellular serotonin modulates insulin secretion from pancreatic beta- cells by protein serotonylation. PLoS Biol. 7, e1000229

Pauwels, P. J., Tardif, S., Palmier, C., Wurch, T. and Colpaert, F. C.

(1997). How efficacious are 5-HT1B/D receptor ligands: an answer from GTP gamma S binding studies with stably transfected C6-glial cell lines.

Neuropharmacology 36, 499-512.

Pazos, A., Cortés, R. and Palacios, J. M. (1985). Quantitative autoradiographicmapping of serotonin receptors in the rat brain. II.

Serotonin-2 receptors. Brain Res. 346, 231-249.

Pedigo, N. W., Yamamura, H. I. and Nelson, D. L. (1981). Discrimination of multiple [3H]5-hydroxytryptamine binding sites by the neuroleptic spiperone in rat brain. J Neurochem. 36, 220-226.

Persico, A.M., Mengual, E., Moessner, R., Hall, F.S., Revay, R.S., Sora, I., Arellano, J., DeFelipe, J., Gimenez-Amaya, J.M., Conciatori, M., Marino, R., Baldi, A., Cabib, S., Pascucci, T., Uhl, G.R., Murphy, D.L., Lesch, K.P., Keller, F. (2001). Barrel pattern formation requires serotonin uptake by thalamocortical afferents, and not vesicular monoamine release. J Neurosci. 21, 6862-6873.

Peter, D., Liu, Y., Sternini, C., de Giorgio, R., Brecha, N. and Edwards, R. H. (1995). Differential expression of two vesicular monoamine transporters. J. Neurosci. 15, 6179-6188.

Peter, M., Couturier, J., Pacquement, H,, Michon, J., Thomas, G., Magdelenat, H., Delattre, O. (1997). A new member of the ETS family fused to EWS in Ewing tumors. Oncogene. 14, 1159-1164.

Petit, J.M., Luppi, P.H., Peyron, C., Rampon, C., Jouvet, M. (1995). VIP- like immunoreactive projections from the dorsal raphe and caudal linear raphe nuclei to the bed nucleus of the stria terminalis demonstrated by a

(16)

double immunohistochemical method in the rat. Neurosci Lett. 193, 77- 80.

Pfaar, H., von Holst, A., Vogt Weisenhorn, D.M., Brodski, C., Guimera, J., Wurst, W. (2002). mPet-1, a mouse ETS-domain transcription factor, is expressed in central serotonergic neurons. Dev Genes Evol. 212, 43- 46.

Pieri, L., Keller, H. H., Burkard, W. and Da Prada, M. (1978). Effects of lisuride and LSD on cerebral monoamine systems and hallucinosis.

Nature 272, 278-280.

Pohle, W., Ott, T., Müller-Welde, P. (1984). Identification of neurons of origin providing the dopaminergic innervation of the hippocampus. J Hirnforsch. 25, 1-10.

Polleux, F., Lauder, J.M. (2004). Toward a developmental neurobiology of autism. Ment Retard Dev Disabil Res Rev. 10, 303-317.

Pompeiano, M., Palacios, J.M., Mengod, G. (1992). Distribution and cellular localization of mRNA coding for 5-HT1A receptor in the rat brain:

correlation with receptor binding. J Neurosci. 12,440-453.

Ramboz, S., Oosting, R., Amara, D.A., Kung, H.F., Blier, P., Mendelsohn, M., Mann, J.J., Brunner, D., Hen, R. (1998). Serotonin receptor 1A knockout: an animal model of anxiety-related disorder. Proc Natl Acad Sci U S A. 95, 14476-14481.

Rapport, M. M. (1949).Serum vasoconstrictor (serotonin) the presence of creatinine in the complex; a proposed structure of the vasoconstrictor principle. J. Biol. Chem. 180, 961-969.

Rapport, M. M., Green, A. A. and Page, I. H. (1948).Serum vasoconstrictor, serotonin; chemical inactivation. J. Biol. Chem. 176, 1237-1241.

Raymond, J. R., Mukhin, Y. V., Gelasco, A., Turner, J., Collinsworth, G., Gettys, T. W., Grewal, J. S. and Garnovskaya, M. N. (2001).Multiplicity of mechanisms of serotonin receptor signal transduction. Pharmacol.

Ther. 92, 179-212.

Riad, M., Garcia, S., Watkins, K. C., Jodoin, N., Doucet, E., Langlois, X., el Mestikawy, S., Hamon, M. and Descarries, L. (2000).

Somatodendritic localization of 5-HT1A and preterminal axonal localization of 5-HT1B serotonin receptors in adult rat brain. J. Comp.

Neurol. 417, 181-194.

Riccio, O., Potter, G., Walzer, C., Vallet, P., Szabo, G., Vutskits, L., Kiss, J. Z. and Dayer, A. G. (2009). Excess of serotonin affects embryonic interneuron migration through activation of the serotonin receptor 6. Mol Psychiatry 14, 280-90.

(17)

Riccio, O., Murthy, S., Szabo, G., Vutskits, L., Kiss, J. Z., Vitalis T, Lebrand, C., Dayer A.G. (2012). New pool of cortical interneuron precursors in the early postnatal dorsal white matter. Cereb Cortex. 22, 86-98.

Rohr, C., Prestel, J., Heidet, L., Hosser, H., Kriz, W., Johnson, R.L., Antignac, C., Witzgall, R. (2002). The LIM-homeodomain transcription factor Lmx1b plays a crucial role in podocytes. J Clin Invest. 109, 1073- 1082.

Ruhé, H. G., Mason, N. S. and Schene, A. H. (2007). Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: a meta-analysis of monoamine depletion studies. Mol. Psychiatry 12, 331- 359.

Sanders-Bush, E., Burris, K. D. and Knoth, K. (1988). Lysergic acid diethylamide and 2,5-dimethoxy-4-methylamphetamine are partial agonists at serotonin receptors linked to phosphoinositide hydrolysis. J.

Pharmacol. Exp. Ther. 246, 924-928.

Sanger, G.J. (2008) 5-hydroxytryptamine and the gastrointestinal tract:

where next? Trends Pharmacol Sci. 29, 465-471.

Santarelli, L., Saxe, M., Gross, C., Surget, A., Battaglia, F., Dulawa, S., Weisstaub, N., Lee, J., Duman, R., Arancio, O, Belzung, C. and Hen, R. (2003). Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301, 805-809.

Sari, Y., Lefèvre, K., Bancila, M., Quignon, M., Miquel, M. C., Langlois, X., Hamon, M. and Vergé, D. (1997). Light and electron microscopic immunocytochemical visualization of 5-HT1B receptors in the rat brain.

Brain Res. 760, 281-286.

Savelieva, K. V., Zhao, S., Pogorelov, V. M., Rajan, I., Yang, Q., Cullinan, E. and Lanthorn, T. H. (2008). Genetic disruption of both tryptophan hydroxylase genes dramatically reduces serotonin and affects behavior in models sensitive to antidepressants. PLoS One 3, e3301.

Schedl, A., Montoliu, L., Kelsey, G., Schütz, G. (1993). A yeast artificial chromosome covering the tyrosinase gene confers copy number- dependent expression in transgenic mice. Nature. 362, 258-261.

Schmidt-Ott, K.M., Yang, J., Chen, X., Wang, H., Paragas, N., Mori, K., Li, J.Y., Lu, B., Costantini, F., Schiffer, M., Bottinger, E., Barasch, J.

(2005). Novel regulators of kidney development from the tips of the ureteric bud. J Am Soc Nephrol. 16, 1993-2002.

Scott, M. M., Krueger, K. C. and Deneris, E. S. (2005b). A differentially autoregulated Pet-1 enhancer region is a critical target of the

(18)

transcriptional cascade that governs serotonin neuron development. J.

Neurosci. 25, 2628-2636.

Scott, M.M., Wylie, C.J., Lerch, J.K., Murphy, R., Lobur, K., Herlitze, S., Jiang, W., Conlon, R.A., Strowbridge, B.W., Deneris, E.S. (2005a) A genetic approach to access serotonin neurons for in vivo and in vitro studies. Proc Natl Acad Sci U S A. 102, 16472-16477.

Seroogy, K., Schalling, M., Brené, S., Dagerlind, A., Chai, S.Y., Hökfelt, T., Persson, H., Brownstein, M., Huan, R., Dixon, J., et al. (1989).

Cholecystokinin and tyrosine hydroxylase messenger RNAs in neurons of rat mesencephalon: peptide/monoamine coexistence studies using in situ hybridization combined with immunocytochemistry. Exp Brain Res. 74, 149-162.

Shuey, D.L., Sadler, T.W., Lauder, J.M. (1992). Serotonin as a regulator of craniofacial morphogenesis: site specific malformations following exposure to serotonin uptake inhibitors.

Simpson, K.L., Waterhouse, B.D., Lin, R.C. (2003). Differential expression of nitric oxide in serotonergic projection neurons: neurochemical identification of dorsal raphe inputs to rodent trigeminal somatosensory targets. J Comp Neurol. 466, 495-512.

Slade, P. D. (1976). An investigation of psychological factors involved in the predisposition to auditory hallucinations. Psychol. Med. 6,123-132.

Sodhi, M. S.and Sanders-Bush, E. (2004). Serotonin and brain development. Int Rev Neurobiol. 59, 111-174.

Soiza-Reilly, M., Commons, K.G. (2011). Glutamatergic drive of the dorsal raphe nucleus. J Chem Neuroanat. 4, 247-255.

Soriano P. (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet. 21, 70-1.

Sotelo, C., Cholley, B., El Mestikawy, S., Gozlan, H. and Hamon, M.

(1990). Direct Immunohistochemical Evidence of the Existence of 5-HT1A Autoreceptors on Serotoninergic Neurons in the Midbrain Raphe Nuclei.

Eur. J. Neurosci. 2, 1144-1154.

Srinivas, S., Watanabe, T., Lin, C.S., William, C.M., Tanabe, Y., Jessell, T.M., Costantini, F. (2001). Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 1,4.

Stamp, J.A., Semba, K. (1995). Extent of colocalization of serotonin and GABA in the neurons of the rat raphe nuclei. Brain Res. 677, 39-49.

Starke, K., Göthert, M. and Kilbinger, H. (1989). Modulation of neurotransmitter release by presynaptic autoreceptors. Physiol. Rev. 69, 864-989.

(19)

Stoll, J. and Goldman D. (1991). Isolation and structural characterization of the murine tryptophan hydroxylase gene. J. Neurosci. Res. 28, 457-465.

Stoll, J., Kozak, C. A. and Goldman, D. (1990). Characterization and chromosomal mapping of a cDNA encoding tryptophan hydroxylase from a mouse mastocytoma cell line. Genomics 7, 88-96.

Stratford, T.R., Wirtshafter, D. (1990). Ascending dopaminergic projections from the dorsal raphe nucleus in the rat. Brain Res. 511, 173-176.

Sykes, P.A., Condron, B.G. (2005). Development and sensitivity to serotonin of Drosophila serotonergic varicosities in the central nervous system. Dev Biol. 286, 207-216.

Tecott, L.H., Sun, L.M., Akana, S.F., Strack, A.M., Lowenstein, D.H., Dallman, M.F., Julius, D. (1995). Eating disorder and epilepsy in mice lacking 5-HT2c serotonin receptors. Nature. 374, 542-546. Teratology.

46, 367-378.

Thomson, R.B., Igarashi, P., Biemesderfer, D., Kim, R., Abu-Alfa, A., Soleimani, M., Aronson, P.S. (1995). Isolation and cDNA cloning of Kspcadherin a novel kidney-specific member of the cadherin multi gene family. J Biol Chem. 270, 17594-17601.

Thomson, R.B., Ward, D.C., Quaggin, S.E., Igarashi, P., Muckler, Z.E., Aronson, P.S. (1998). cDNA cloning and chromosomal localization of the human and mouse isoforms of Ksp-cadherin. Genomics. 51, 45-451.

Thorin, E., Capdeville, C., Trocklé, G., Wiernsperger, N. and Atkinson, J.

(1990). Chronic treatment with naftidrofuryl attenuates the development of vascular hypersensitivity to serotonin in the spontaneously hypertensive rat. J Cardiovasc Pharmacol. 16, 54-7.

Törk, I. (1990). Anatomy of the serotonergic system. Ann N Y Acad Sci. 600, 9-34.

Tsai, F. Y., Keller, G., Kuo, F. C., Weiss, M., Chen, J., Rosenblatt, M., Alt, F. W. and Orkin, S. H. (1994). An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature. 15, 221-226.

Turlejski, K. (1996). Evolutionary ancient roles of serotonin: long-lasting regulation of activity and development. Acta Neurobiol. Exp. 56, 619-36.

Twarog, B. M. and Page, I. H. (1953). Serotonin content of some mammalian tissues and urine and a method for its determination. Am. J.

Physiol. 175, 157-61.

Upton, A.L., Salichon, N., Lebrand, C., Ravary, A., Blakely, R., Seif, I., Gaspar, P. (1999). Excess of serotonin (5-HT) alters the segregation of ispilateral and contralateral retinal projections in monoamine oxidase A knock-out mice: possible role of 5-HT uptake in retinal ganglion cells during development. J Neurosci. 19, 7007-7024.

(20)

Vallstedt, A., Muhr, J., Pattyn, A., Pierani, A., Mendelsohn, M., Sander, M., Jessell, T.M., Ericson, J. (2001). Different levels of repressor activity assign redundant and specific roles to Nkx6 genes in motor neuron and interneuron specification. Neuron. 31, 743-755.

van der Kooy, D., Hunt, S.P., Steinbusch, H.W., Verhofstad, A.A. (1981).

Separate populations of cholecystokinin and 5-hydroxytryptamine- containing neuronal cells in the rat dorsal raphe, and their contribution to the ascending raphe projections. Neurosci Lett. 26, 25-30.

van Doorninck, J. H., van Der Wees, J., Karis, A., Goedknegt, E., Engel, J. D., Coesmans, M., Rutteman, M., Grosveld, F. and De Zeeuw, C. I.

(1999). GATA-3 is involved in the development of serotonergic neurons in the caudal raphe nuclei. J. Neurosci. 19, RC12.

van Hooft, J.A. and Yakel, J.L. (2003). 5-HT3 receptors in the CNS: 3B or not 3B?. Trends Pharmacol Sci. 24, 157-60.

Vaswani, M., Linda, F.K., Ramesh, S. (2003). Role of selective serotonin reuptake inhibitors in psychiatric disorders: a comprehensive review. Prog Neuropsychopharmacol Biol Psychiatry. 27,85-102.

Walitza, S., Renner, T.J., Dempfle, A., Konrad, K., Wewetzer, Ch., Halbach, A., Herpertz-Dahlmann, B., Remschmidt, H., Smidt, J., Linder, M., Flierl, L., Knölker, U., Friedel, S., Schäfer, H., Gross, C., Hebebrand, J., Warnke, A., Lesch, K.P. (2005). Transmission disequilibrium of polymorphic variants in the tryptophan hydroxylase-2 gene in attention-deficit/hyperactivity disorder. Mol Psychiatry. 10, 1126- 1132.

Wallace, J. A. and Lauder J. M. (1983). Development of the serotonergic system in the rat embryo: an immunocytochemical study. Brain Res. Bull.

10, 459-479.

Walther, D. J., Peter, J. U., Bashammakh, S., Hortnagl, H., Voits, M., Fink, H. and Bader, M. (2003). Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 299, 76.

Whitaker-Azmitia, P.M. (1999). The discovery of serotonin and its role in neuroscience. Neuropsychopharmacology. 21,2S-8S.

Whitaker-Azmitia, P.M. (2001). Serotonin and brain development: role in human developmental diseases. Brain Res Bull. 15, 479-485.

Whitaker-Azmitia, P.M., Azmitia, E.C. (1994). Astroglial 5-HT1a receptors and S-100 beta in development and plasticity. Perspect Dev Neurobiol. 2, 233-238.

Whitaker-Azmitia, P.M., Lauder, J.M., Shemmer, A., Azmitia, E.C. (1987).

Postnatal changes in serotonin receptors following prenatal alterations in

(21)

serotonin levels: further evidence for functional fetal serotonin receptors.

Brain Res. 430, 285-289.

Woolley, D.W. (1962). Alterations in Learning Ability Caused by Changes in Cerebral Serotonin or Catechol Amines. Science. 136, 330.

Wylie, C.J., Hendricks, T.J., Zhang, B., Wang, L., Lu, P., Leahy, P., Fox, S., Maeno, H., Deneris, E.S. (2010). Distinct transcriptomes define rostral and caudal serotonin neurons. J Neurosci. 30, 670-684.

Xu, Z.Q., Hökfelt, T. (1997). Expression of galanin and nitric oxide synthase in subpopulations of serotonin neurons of the rat dorsal raphe nucleus. J Chem Neuroanat. 13, 169-187.

Yadav, V. K., Oury, F., Suda, N., Liu, Z. W., Gao, X. B., Confavreux, C., Klemenhagen, K. C., Tanaka, K. F., Gingrich, J. A., Guo, X. E. et al.

(2009). A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell 138, 976-989

Ye, W., Shimamura, K., Rubenstein, J. L., Hynes, M. A. and Rosenthal, A. (1998). FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell 93, 755-766.

Yoshida, M., Shirouzu, M., Tanaka, M., Semba, K., Fibiger, H. C. (1989).

Dopaminergic neurons in the nucleus raphe dorsalis innervate the prefrontal cortex in the rat: a combined retrograde tracing and immunohistochemical study using anti-dopamine serum. Brain Res. 496, 373-376.

Zahniser, N. R. and Doolen, S. (2001). Chronic and acute regulation of Na+/Cl- - dependent neurotransmitter transporters: drugs, substrates, presynaptic receptors, and signaling systems. Pharmacol. Ther. 92, 21- 55.

Zhang, X., Beaulieu, J. M., Sotnikova, T. D., Gainetdinov, R. R. and Caron, M. G. (2004). Tryptophan hydroxylase-2 controls brain serotonin synthesis. Science 305, 217.

Zhang, X., Gainetdinov, R.R., Beaulieu, J.M., Sotnikova, T.D., Burch, L.H., Williams, R.B., Schwartz, D.A., Krishnan, K.R., Caron, M.G.

(2005). Loss-of-function mutation in tryptophan hydroxylase-2 identified in unipolar major depression. Neuron. 45, 11-16.

Zhuang, X., Masson, J., Gingrich, J.A., Rayport, S. and Hen, R. (2005).

Targeted gene expression in dopamine and serotonin neurons of the mouse brain. J Neurosci Methods 143, 27-32.

Zill, P., Baghai, T. C., Zwanzger, P., Schüle, C., Eser, D., Rupprecht, R., Möller, H. J., Bondy, B. and Ackenheil, M. (2004). SNP and haplotype analysis of a novel tryptophan hydroxylase isoform (TPH2) gene provide

(22)

evidence for association with major depression. Mol. Psychiatry 9, 1030- 1036.

Zill, P., Büttner, A., Eisenmenger, W., Möller, H.J., Bondy, B., Ackenheil, M. (2004). Single nucleotide polymorphism and haplotype analysis of a novel tryptophan hydroxylase isoform (TPH2) gene in suicide victims. Biol Psychiatry. 56, 581-586.

Riferimenti

Documenti correlati

F urthermore, to apply QHA s heme vibrational frequen ies have to be evaluated as a fun tion of the value of the stru tural parameters des ribing the system, and up to now, within a

To assess whether macrophages phagocytosed neuron- derived exosomes, resulting in functional transfer of miR-21-5p, we incubated peritoneal macrophages with exosome-enriched

Finally, I aim to test if Sox2 reintroduction in mutant cells could rescue the long-range interactions of a small number of identified target genes, lost in Sox2-deleted cells, by

Assessing the Impact of Space Debris on Orbital Resource in Life Cycle Assessment: a Proposed Method and Case Study.. Science of the Total

To develop a prediction model of BW based on BCS, both the intercepts and the slopes of the 12 linear simple equations (one for each breed) were fitted against the mature weight of

Neo-functionalism hence predicts that parties become integrated into transnational groups, to obtain an advantage in the national party arena.87 Integration within

As suggested in Łęska (2016), the derivation of Polish który-subject relatives along the lines of the Case attraction analysis could proceed in the following steps.. Agree with the

Similarly, the temporal metric of flashes elicits an early response likely involving also the auditory cortex in hearing but not in deaf individuals, which mimics