• Non ci sono risultati.

An introduction to process control systems Constantinos Siettos

N/A
N/A
Protected

Academic year: 2021

Condividi "An introduction to process control systems Constantinos Siettos"

Copied!
30
0
0

Testo completo

(1)

An introduction to process control systems

Constantinos Siettos

School of Applied Mathematics and Physical Sciences

National Technical University of Athens

(2)

Control Systems

Linear, Non Linear and Adaptive

Control: Sensing + Computation + Actuation

(3)

Open and Closed Loop Systems

(4)

First Applications

Watts Engine (1788)

(5)

Εφαρμογές • Navigation systems

• Robotics

• Chemical Reaction Control

• Communication

• Engines

• Biologocial

• Food Engineering

• Economic

(6)

Applications : Flying of insects

(7)

Outline

• Laplace transformation

• Solution of linear differential equations with Laplace

• Transfer Functions

• Dynamic responses of first and second order

• Intro to Feedback control systems

• Stability Ruth-Hurwitz, Root-Locus

• Feedback controllers

• Digital controllers

(8)

Laplace transformation

Laplace

transform Solution in s domain

inverse Laplace transform

Solution in time Signal in

time

• Other transformations

• Fourier

• z-transform

• wavelets

 ( ) 0 ( )

)]

(

[ f t F s f t e st dt L

s =σ+jw

(9)

Laplace Transfromations of known functions

Function f(t) F(s)

Impulse Step

Ramp Exponential

Sine

1

s 1

2

1 s

a s

1

2 s2

1 ) ( tf

t t

f ( )  e

at

t f ( ) 

) sin(

)

( t t

f  

 

 

0 0

0 ) 1

( t

t t f

Cosine f t ( ) cos( t )

2 2

s

s

(10)

Laplace Transformation-Properties

0 t 0

( ) ( ) ( ),

L d f t sF s f dt

     

 

 

 

0

)

t

F s

L f(

  s

Linearity

L a f t [

1 1

( )a f t

2 2

( )]a F s

1 1

( )a F s

2 2

( )

Derivative

Integral

1 2 1 2

0

) ( ) ( )

t

L f (tτ)f (τ dτ F s F s   

Time delay

Lf t e F s

s

 

Transformation of

e f t

t

  L e f t

t

    F s a

Convolution

(11)

Laplace Transformation-Properties

Final Value Theorem

f     lim

t

f t   lim

s0

sF s  

       

       

0 0 0

0

0 0 0

st st st

st

df t df t

L e dt e f t se f t dt

dt dt

f s f t e dt sF s f

 

 

           

 

      

 

     

0 0

0

0

lim

st

lim

s s

df t e dt sF s f

dt

 

 

 

   

 

  

Taking the limit

 

0

   

0

0 lim

s

df t dt sF s f

dt

 

   

or

     

0 0

0

0

lim

st

lim

s s

df t e dt sF s f

dt

 

 

 

   

 

  

PROOF

or ή

f t  f   0 lim

s0

sF s   f   0

(12)

Laplace Transformation-Properties

Final Value Theorem

Find the value of the function

f t  

for

t  

     

     

5 1

2 3 4

s s

F s s s s s

 

   

  lim

t

  lim

s 0

 

f f t sF s



  

       

     

0 0

5 1 5

2 3 4 24

lim lim lim

t s s

s s

f t sF s s

s s s s



 

  

  

when

(13)

Laplace Transformation-Properties

Final Value Theorem

       

       

0 0 0

0

0 0 0

st st st

st

df t df t

L e dt e f t se f t dt

dt dt

f s f t e dt sF s f

 

 

           

 

      

 

     

0

0

lim

st

lim

s s

df t e dt sF s f

dt

 

 

 

 

   

 

  

Taking the limit

   

0 lim 0

s

sF s f



 

   

or

     

0

0

lim

st

lim

s s

df t e dt sF s f

dt

 

 

 

 

   

 

  

PROOF

or

  0 lim

t 0

  lim

s

  , 0

f

f t sF s t



  

(14)

Laplace Transformation-Properties

Initial Value Theorem

Find the initial value of a function

f   0

     

     

5 1

2 3 4

s s

F s s s s s

 

   

       

   

0

2 2

5 1

0 2 3

4 5 5 6 1

lim lim lim

lim

t s s

s

s s

f sF s s

s s s

s s

s s

 



 

  

 

 

 

 

when

  0 lim

t 0

  lim

s

  , 0

f

f t sF s t



  

(15)

Laplace Transformations

 

0

)

t

F s

L f(

  s

PROOF

0 0 0

) )

t t

L f( dτ 

f( dτ e dt

st

 

  

We set

u e

st

 

0 t

v   f t dt

και

du  se dt

st

dv f t dt  

 

   

     

0

0 0 0 0

0 0 0

1 1

1

1 1 1

0 0 )

t

st

t

st st

f( dτ e dt vdu vu udv

s s

f t dt e e f t dt s

F s F s

s s s

         

   

   

   

   

 

      

 

 

 

   

   

(16)

Laplace Transformations

   

L e  

at

f t    F s a

PROOF

       

0 0

( )

at at st a s t

L e f t e f t e dt e f t dt F a s

 

     

   

at

1

L e s a

 

  

PROOF

 

0 0 0

( )

1

s a t

at at st a s t

e

L e e e dt e dt

s a s a

 

 

 

       

         

(17)

Laplace Transformations

       

2

2 2

0 0

d f t df

L s F s sf

dt dt

 

  

 

 

 

PROOF

   

         

2 2

2 2

0 0 0 0

2 0

0 0

0 0

at st st st st

st

d f t d f t d df df df

L e e dt e dt e e dt

dt dt dt dt

dt dt

df df t df

s e dt s F s sf

dt dt dt

          

         

 

 

 

     

 

 

 

  

         

   

1

1 2

2 1

1 1 0 1

0 0

0 0

...

n n

n n n

n

n n i

n i

i n i

d f t df d f

L s F s s f s

dt

dt dt

d f

s F s s

dt

 

 

 

     

 

 

 

 

IN GENERAL

(18)

Laplace Transformations with Matlab

Use of Symbolic toolbox of Matlab Commands:

L = laplace(F)

is the Laplace transform of the scalar symbol F with default independent variable t. The default return is a function of s.

L=laplace(F,t)

makes L a function of t instead of the default s.

L = laplace(F,w,z

) makes L a function of z and F a function of w instead of the default variables s and t, respectively

>> syms f t

>> f=t^4

>> laplace(f) ans =

24/s^5

syms w t

>> laplace(sin(w*t)) ans =

w/(s^2+w^2)

>> laplace(exp(-w*t)) ans =

1/(s+w)

(19)

Solution of D.Ε.with Laplace

Two kinds of linear differential equations

   

0 n i

i i

i

d y t

a u t

dt

     

0 0

i i

n m

i i i i

i i

d y t d u t

a b

dt dt

  

 

u t

Input signal

y t  

Output signal

Initial Conditions i

 

i

0

i

  0 , 0 ,...., 1

d y y i n

dt   

The Laplace transformation of (1) is given by

 

1 1

   

0 0

n i

0

i i j

i j

i j

a s Y s

s

 

y U s

 

 

 

 

 

We solve for

Y s      

1 1

 

0 0

0 0

0

n i

i j

i j

i j

n n

i i

i i

i i

a s y Y s U s

a s a s

 

   

 

(1) (2)

1

1 1 0

0

....

n i n n

i n n

i

a s a s a s

a s a

    

Characteristic Equation

n

1

a

(20)

Solution of D.E. with Laplace

   

1 1

 

0 0

0 0

n i

0

i j

i j

i j

n n

i i

i i

i i

a s y Y s U s

a s a s

 

   

 

   

1 1

 

0 0

1 1

0 0

0

n i

i j

i j

i j

n n

i i

i i

i i

a s y

y t L U s L

a s a s

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

For (1)

(21)

Solution of D.Ε. with Laplace

   

1 1

 

1 1

 

0 0 0 0

0

0 0 0

0 0

m i n i

m i i j i j

i j i j

i i j i j

i

n n n

i i i

i i i

i i i

b s u a s y

b s

Y s U s

a s a s a s

   

       

  

For (2)

   

0 0

i i

n m

i i i i

i i

d y t d u t

a b

dt dt

  

(22)

Inverse Laplace Transformation with expansion in partial fractions

   

 

0

0

m j

j j

n i

i i

Q s b s F s P s

a s

  

a

n

1

Let

Let the characteristic equation has n roots(poles) so that the pole s1 has multiplicity r1, pole s2 multiplicity r2…… pole sk multiplicity rk :

1 k

i i

r n

 

Then

0 1

i

k

n i r

i i

i i

a s s s

 

 

Hence

 

 

0

1

i

m j

j j

k r

i i

b s F s

s s



The expansion in partial fractions is given by

 

1 1

  , 0 iff

ri

k ij

n j n

i j i

F s b c b m n

s s

   

 

1     

!

i

i i

i

r j r

ij r j i

s s

i

c d s s F s

r j ds



 

    

(23)

Example 1

 

1 1

  , 0 iff

ri

k ij

n j n

i j i

F s b c b m n

s s

   

  1 !

ii

  

i

i

r j r

ij r j i

s s

i

c d s s F s

r j ds



 

    

      1 5 s 2 3 3

F s s s s

 

  

 

11 21 31

1 2 3

c

c c

F ssss

  

     

   

     

   

     

   

11 1

21 2

31 3

5 1 3

1 1

2 1 3 1

5 2 3

2 7

1 2 3 1 5 3 3

3 6

1 3 2 3

s

s

s

c s F s

c s F s

c s F s







   

        

   

       

   

        

(24)

Example 2

 

1 1

  , 0 iff

ri

k ij

n j n

i j i

F s b c b m n

s s

   

  1 !

ii

  

i

i

r j r

ij r j i

s s

i

c d s s F s

r j ds



 

    

    

3

1

1 2

F ss s s

   

11

12

1  

13

1  

2 14

1  

3 21

2

c c c c c

F ssssss

   

 

   

   

     

     

11 0

21 2

3

14 1

3

13 1

1

2 2

3

12 2 2

1 1

1 2 2 1

2

1 1

1 1 0

2

1 1 1

1 1

2 ! 2 2

s

s

s

s s

s s

c sF s

c s F s

c s F s

d d

c s F s

ds ds s s

d d

c s F s

s s

ds ds





 

 

 

   

 

    

 

     

 

 

            

 

 

             

(25)

Use of Matlab για for expansion in partial function of the inverse Laplace

Residue: Convert between partial fraction expansion and polynomial coefficients Syntax

[r,p,k] = residue(b,a) [b,a] = residue(r,p,k)

      1 5 s 2 3 3

F s s s s

 

  

>> num=[5 3];

>> den=poly([-1 -2 -3]);

>> [r,p,k] = residue(num,den)

r =

-5.99999999999999 7

-1.00000000000001

p =

-3 -2 -1 R: Column vector of residues P: Column vector of poles K: Row vector of direct terms

(26)

Use of Matlab για for expansion in partial function of the inverse Laplace

Residue: Convert between partial fraction expansion and polynomial coefficients Syntax

[r,p,k] = residue(b,a) [b,a] = residue(r,p,k)

 

2

1

2 F s s

s s

 

>> num=[1 1];

>> den=[1 2 0];

>> [r,p,k] = residue(num,den)

R: Column vector of residues P: Column vector of poles K: Row vector of direct terms

r =

0.5 0.5 p =

-2 0

k = []

(27)

Inverse Laplace Transformation with the use of partial functions

       

1 1 1

1 1 1 1

1 !

i i

i

r r

k k

ij ij j s t

n j n

i j i i j

c c

L F s L b b t t e

s sj

 

 

             

Example

F s      s s

2

2 2 s s 1 3

     

     

1 1

1 1 1 3 2

4 1

1 3 2

4 1

1 4

3 2

t t

L F s L

s s

L L L t e e

s s

  

     

 

 

 

   

         

 

   

   

(28)

Use of Matlab for the inverse Laplace Transformation

Use of Symbolic toolbox of Matlab Commands:

L = ilaplace(F)

is the Laplace transform of the scalar symbol F with default independent variable t. The default return is a function of s.

L=ilaplace(F,t)

makes L a function of t instead of the default s.

L = ilaplace(F,w,z

) makes L a function of z and F a function of w instead of the default variables s and t, respectively

>> syms F,s;

>> F=(s^2+2*s+1)/((s+2)*(s+3));

>> ilaplace(F) ans =

dirac(t)-4*exp(-3*t)+exp(-2*t)

(29)

Example of the solution of D.Ε. With Laplace

0 )

0 ( ' )

0 ( 2

8

2

6

2

  yyy

dt dy dt

y

d • ODE / initial conditions

• Laplace Transformation

• Solution for Y(s)

• partial fraction expansion

• Inverse Laplace Tranformation

s s

Y s

Y s s

Y

s

2

( )  6 ( )  8 ( )  2 /

) 4 (

) 2 (

) 2

(   

s s

s s Y

) 4 (

4 1 )

2 (

2

1 4

) 1

(  

 

s s s

s Y

4 2

4 ) 1

(

4 2t

e

t

t e y

(30)

Example of Solution of D.Ε. with Laplace- illustration with Matlab

0 )

0 ( ' )

0 ( 2

8

2

6

2

  yyy

dt dy dt

y

d ODE / αρχικές συνθήκες

4 2

4 ) 1

(

4 2t

e

t

t e y

>> t=0:0.01:10;

>> y=(1/4)-(1/2)*exp(-2*t)+(1/4)*exp(-4*t);

>> plot(t,y)

>> xlabel('Time')

>> ylabel('System Response')

0 1 2 3 4 5 6 7 8 9 10

0 0.05 0.1 0.15 0.2 0.25

Time

System Response

Riferimenti

Documenti correlati

This is why we are now going to move into the Co-Simulation world, where the rmware will be executed as if it would be inside a real controller and, at the same time, it interacts

(Ed.), Proceedings of IUTAM Symposium on Buckling of Structures. Macmillan Publishing Company. Inelastic Instability and Incremental Theories of Plasticity.. Description

The equations in closed form are provided to account for three possible material behaviours (linear-elastic, cracking and plastic with stress block model). The

[r]

© Davide Manca – Dynamics and Control of Chemical Processes – Master Degree in ChemEng – Politecnico di Milano.. Introduction to process dynamics

.If the error is positive (the process output is below the set point) and the change of error is negative, implying that at the previous step the controller was driving the

[r]

This eventuality is described by the fact that input thermal power of the simple ORC system is low, because Jack water is used as heat transfer between air cooler