• Non ci sono risultati.

PEDIATRIC ONCOLOGY

N/A
N/A
Protected

Academic year: 2021

Condividi "PEDIATRIC ONCOLOGY"

Copied!
13
0
0

Testo completo

(1)

PEDIATRIC ONCOLOGY

(2)

Neuro-

blastoma

123

With 51 Figures and 48 Tables

Nai-Kong V. Cheung Susan L. Cohn

(Eds.)

(3)

Nai-Kong V. Cheung, MD, PhD (e-mail: cheungn@mskcc.org)

Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York,

NY 10021, USA Susan L. Cohn, MD

(e-mail: scohn@northwestern.edu)

Department of Pediatrics and the Comprehensive Robert H. Lurie Cancer Center, Northwestern University, Feinberg School of Medicine, Children’s Memorial Hospital

2300 Children’s Plaza, Chicago, IL 60614, USA

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specif- ically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this pub- lication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its cur- rent version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media springeronline.com

© Springer-Verlag Berlin Heidelberg 2005 Printed in Germany

The use of general descriptive names, registered names, trade- marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Product liability: The publishers cannot guarantee the accu- racy of any information about dosage and application con- tained in this book. In every individual case the user must check such information by consulting the relevant literature.

Medical Editor: Dr. Julia Heidelmann, Heidelberg, Germany Desk Editor: Meike Stoeck, Heidelberg, Germany

Cover design: Erich Kirchner, Heidelberg, Germany Layout: Bernd Wieland, Heidelberg, Germany Production: Pro Edit GmbH, Heidelberg, Germany Reproduction and typesetting: AM-productions GmbH, Wiesloch, Germany

21/3151 – 5 4 3 2 1 0 Printed on acid-free paper

Library of Congress

Control Number 2004113134 ISBN-10 3-540-40841-X

Springer Berlin Heidelberg NewYork ISBN-13 978-3-540-40841-3

Springer Berlin Heidelberg NewYork

ISSN 1613-5318

(4)

The rapid advances in our understanding of the biol- ogy and treatment of neuroblastoma make it difficult to keep up to date. The clinical facets of neuroblas- toma are endlessly fascinating. Its “natural history”

overtly displays the difference between cancer and a truly extraordinary non-malignant proliferative dis- ease. An interesting and potentially promising re- search emphasis is to unravel the difference between the “good” and “bad” forms of the disease. Our inter- est in neuroblastoma was kindled by clinical obser- vations going back many decades. For example, is it likely that neuroblastoma “metastasizes” from one adrenal to the other and to the posterior medi- astinum, or that malignant secondary deposits in these three unlikely sites will disappear spontaneous- ly? Our early observations of this phenomenon were made in the days when there were no effective treat- ments for neuroblastoma so it was easier willy-nilly to observe the natural history.

We have seen disease wax and wane over time, such as skin lesions which became increasingly ma- ture with each new “crop”; thus, the last one seen at 36 months was diagnosed as a neurofibroma. The re- sults coming from the screening programs underline these concepts. They have shown that many more in- fants actually harbor occult neuroblastoma than are diagnosed clinically (in the nonscreened cohort pop- ulation). This establishes that most such foci would have regressed spontaneously had they not been de-

tected through screening. Observations such as these suggest that 4S neuroblastoma could teach us more about what clonal growth implies than clonal growth teaches us about neuroblastoma.

Obviously neuroblastoma can be a relentless, ma- lignant disease, and these children need far better therapies than we now can muster. But the future may not lie so much in new classes of compounds or even drug adjuvants. It lies, instead, in the final under- standing of what makes neuroblastoma mature into ganglioneuroma or, even more importantly, what prompts it to disappear spontaneously. Success will be measured when widespread disease in children with high-risk neuroblastoma is made to vanish through molecular genetic manipulations. Then cure will have achieved its true and very special meaning:

disappearance of a life-threatening malignant dis- ease without incurring the side effects of currently available avenues of treatment.

Audrey E. Evans

Professor of Pediatrics, Emeritus at the University of Pennsylvania, Senior Physician, Children’s Hospital of Philadelphia, Philadelphia , Pennsylvania

Giulio J. D’Angio

Professor of Radiation Oncology, Radiology and Pe- diatrics, Emeritus at the University of Pennsylvania, Philadelphia, Pennsylvania

V

Preface

(5)

1 Epidemiology Andrew F. Olshan

1.1 Descriptive Epidemiology . . . 1

1.2 Risk Factors . . . 2

1.2.1 Pregnancy and Childhood Factors . . . 2

1.2.2 Medication Use . . . 3

1.2.3 Lifestyle Exposures . . . 3

1.2.4 Parental Occupation and Environmental Exposures . . . 4

1.3 Conclusions . . . 4

References . . . 5

2 Screening for Neuroblastoma William G. Woods

2.1 Introduction . . . 7

2.2 The Rationale for Neuroblastoma Screening . . 7

2.3 Early Pioneering Studies Investigating Neuroblastoma Screening in Japan . . . 8

2.4 Initial North American and European Neuroblastoma Screening Trials . 9 2.5 Follow-up Studies from Japan and Europe . . . . 11

2.6 Definitive Controlled Trials from Quebec and Germany . . . 11

2.6.1 Studies, Designs, and Logistics . . . 11

2.6.2 Studies’ Results . . . 15

2.7 Biologic, Psychologic, Economic, and Clinical Aspects of Neuroblastoma Screening . . . 17

2.7.1 Biologic Aspects . . . 17

2.7.2 Psychologic Aspects . . . 17

2.7.3 Economic Aspects . . . 17

2.7.4 Clinical Implications . . . 18

2.8 Conclusions . . . 18

References . . . 18

3 Genetics John M. Maris, Garrett M. Brodeur

3.1 Introduction . . . 21

3.2 Associated Genetic Conditions . . . 21

3.3 Constitutional Chromosomal Abnormalities . . . 22

3.4 Hereditary Neuroblastoma . . . 23

3.5 Genetic Studies of Familial Neuroblastoma . . . 25

3.6 Conclusions . . . 25

References . . . 26

4 Molecular Cytogenetics Manfred Schwab

4.1 Introduction . . . 27

4.2 Classical Cytogenetics . . . 27

4.3 Oncogene Expression Profiling . . . 28

4.4 “Neuroblastoma Suppressor Genes” and Loss of Heterozygosity . . . 29

4.4.1 Chromosome 1p Deletion . . . 29

4.4.1.1 One or More “Tumor Suppressor Gene” Loci in 1p. . . 31

4.4.2 Deletion of 11q . . . 31

4.4.2.1 Chromosome 11 Deletion and 17q Gain . . . 32

4.4.3 LOH of Additional Chromosomes . . . 32

4.4.4 LOH and Tumor Suppressor Genes: an Evasive Connection or Flawed Hypothesis? 32 4.5 Comparative Genomic Hybridization . . . 34

4.6 Tumor Cell Ploidy . . . 34

4.7 Conclusion . . . 35

References . . . 35 VII

Contents

(6)

VIII Contents

5 Molecular and Developmental Biology of Neuroblastoma

Akira Nakagawara

5.1 Neural Crest Development and Neuroblastoma 41 5.1.1 Genes of Neural Development

and Molecular Targets

of Neuroblastoma . . . 41

5.1.1.1 Bone Morphogenetic Proteins . . . 43

5.1.1.2 MASH1/hASH1. . . 43

5.1.1.3 Phox2a and Phox2b. . . 44

5.1.1.4 Id . . . 44

5.1.1.5 MYCN . . . 45

5.2 Molecular Bases of Differentiation and Programmed Cell Death . . . 45

5.2.1 Molecular Aspect of Spontaneous Regression . . . 45

5.2.2 Neurotrophic Factors and Their Receptors 46 5.2.2.1 Neurotrophins and Their Receptors in Neuroblastoma. . . 46

5.2.2.2 Neurotrophin Signaling in Neuroblastoma. . . 46

5.2.2.3 GDNF Family Receptors. . . 48

5.2.2.4 Other Factors and Receptors . . . 48

5.2.3 Functional Role of p53 Family Genes . . . . 48

5.2.4 Apoptotic Signals in Neuroblastoma . . . . 50

5.3 Conclusions . . . 50

References . . . 51

6 Cellular Heterogeneity Robert A. Ross

6.1 Introduction . . . 55

6.2 Neural Crest Differentiation . . . 55

6.3 Neuroblastoma Cellular Heterogeneity . . . 56

6.4 N-type Neuroblastic Cells . . . 56

6.5 S-type Non-Neural Cells . . . 57

6.6 I-type Stem Cells . . . 58

6.7 Transdifferentiation . . . 59

6.8 Conclusions . . . 60

References . . . 60

7 Clinical Presentation Frank Berthold, Thorsten Simon

7.1 Introduction . . . 63

7.2 Diagnosis . . . 64

7.2.1 Diagnostic Tumor Tissue . . . 64

7.3 Clinical Presentation . . . 65

7.3.1 Symptoms . . . 65

7.3.1.1 Frequent Symptoms . . . 65

7.3.1.2 Rare but Characteristic Symptoms . . . 66

7.3.2 Tumor Markers . . . 67

7.3.2.1 Catecholamine Metabolites . . . 68

7.3.2.2 Neuron-Specific Enolase . . . 68

7.3.2.3 Ferritin. . . 68

7.3.2.4 Lactate Dehydrogenase . . . 68

7.3.2.5 Other Tumor Markers . . . 68

7.3.3 Primary Tumors . . . 69

7.3.3.1 Sites of the Primary Tumor . . . 69

7.3.4 Metastases . . . 69

7.3.4.1 Metastatic Sites . . . 69

7.3.4.2 Bone Marrow Assessment . . . 70

7.3.4.3 Definition of Cortical Bone Metastases. . . . 72

7.4 Differential Diagnosis . . . 72

7.4.1 Small Blue Round Cell Tumors . . . 72

7.4.2 Adrenal Hemorrhage in the Newborn . . . 72

7.4.3 Nephroblastoma . . . 73

7.4.4 Esthesioneuroblastoma (Olfactory Neuroblastoma) . . . 73

7.4.5 Ganglioneuroma, Pheochromocytoma, Paraganglioma, Chemodectoma . . . 73

7.5 Clinical and Laboratory Evaluation . . . 73

7.5.1 Staging . . . 73

7.5.2 Biological Types of Neuroblastoma . . . . 75

7.5.2.1 Maturative Subtype. . . 75

7.5.2.2 Regressive Subtype. . . 76

7.5.2.3 Progressive Subtype . . . 77

7.5.3 Prognostic Risk Groups . . . 77

7.5.4 Response Criteria . . . 82

7.6 Conclusions . . . 82

References . . . 83

8 Pathology of Peripheral Neuroblastic Tumors Hiroyuki Shimada, Inge M. Ambros

8.1 Introduction . . . 87

8.2 Historical Overview . . . 88

8.3 Basic Morphology . . . 88

8.3.1 Neuroblastoma (Schwannian Stroma-poor) . . . 89

8.3.2 Ganglioneuroblastoma, Intermixed (Schwannian Stroma-rich) . . . 91

8.3.3 Ganglioneuroma (Schwannian Stroma-dominant) . . . 91

8.3.4 Ganglioneuroblastoma, Nodular (Composite, Schwannian Stroma-rich/ Stroma-dominant and Stroma-poor) . . . . 91

(7)

IX Contents

8.4 Prognostic Classification . . . 92

8.5 Biological Relevance . . . 92

8.5.1 Schwannian Development in Neuroblastic Tumors . . . 92

8.5.2 Correlation of Histopathology with MYCN Amplification and trkA Expression . . . 93

8.5.3 Composite Tumor . . . 93

8.6 Conclusion . . . 94

References . . . 94

9 Molecular Pathology of Neuroblastic Tumors Based on Genome-wide Expression Analysis William L. Gerald

9.1 Introduction . . . 97

9.2 Clinical Issues . . . 98

9.3 Technical Aspects of Gene Expression Analysis . 98 9.3.1 Transcript Profiling Methods . . . 98

9.3.2 Data Analysis . . . 100

9.3.3 The Impact of Tissue Heterogeneity on Gene Expression Analysis . . . 100

9.4 Gene Expression Analysis of NB . . . 100

9.4.1 The NB Transcriptome and Its Relationship to Neural Crest Development . . . 100

9.4.2 Gene Expression Associated with Clinically Relevant Subtypes of NB . . 103

9.4.3 Molecular Pathology of MYCN Amplification . . . 103

9.4.4 Distinct Molecular Features of NB Discovered Through Gene Expression Analysis . . . 105

9.5 Conclusion . . . 106

References . . . 106

10 Anatomic and Functional Imaging Sara J. Abramson, Barry L. Shulkin

10.1 Introduction . . . 109

10.2 Imaging Modalities . . . 109

10.2.1 Ultrasonography . . . 109

10.2.2 Computerized Axial Tomography . . . 110

10.2.3 Magnetic Resonance Imaging . . . 112

10.2.4 Bone Scan . . . 113

10.2.5 MIBG Scintigraphy . . . 113

10.2.6 Octreotide Scanning . . . 115

10.2.7 Positron Emission Tomography Scanning . 115 10.2.8 Other Tracers . . . 115

10.3 Disease Evaluation . . . 116

10.3.1 Primary Site . . . 116

10.3.2 Local Invasion . . . 116

10.3.3 Distant Metastases . . . 116

10.3.3.1 Bone Metastases . . . 116

10.3.3.2 Bone-Based, Dural-Based, Leptomeningeal, and Brain Metastases . . . 116

10.3.3.3 Marrow Metastasis. . . 117

10.4 Prenatally Diagnosed Neuroblastoma . . . 118

10.5 Stage-4S Neuroblastoma . . . 118

10.6 Evaluation of Disease Response . . . 120

10.7 Conclusion . . . 120

References . . . 120

11 Treatment of Neuroblastoma

11.1 Low-Risk Neuroblastoma

Brian H. Kushner, Susan L. Cohn

11.1.1 Introduction . . . 124

11.1.2 Clinical Presentation . . . 124

11.1.3 Clinical Staging . . . 125

11.1.4 Biologic Prognostic Markers . . . 125

11.1.5 Treatment . . . 125

11.1.5.1 Localized Tumors with No Regional Spread 126 11.1.5.2 Regionally Invasive Unilateral Localized Tumors. . . 127

11.1.5.3 Stage 4S . . . 128

11.1.6 Future Directions . . . 129

11.1.7 Conclusion . . . 129

References . . . 129

11.2 Intermediate-Risk Neuroblastoma

Brian H. Kushner, Susan L. Cohn

11.2.1 Introduction . . . 131

11.2.2 Clinical Presentation . . . 131

11.2.3 Clinical Staging . . . 133

11.2.4 Biologic Prognostic Markers . . . 133

11.2.5 Treatment . . . 133

11.2.5.1 Treatment for Stage-3 Neuroblastoma . . . 134

11.2.5.2 Treatment for Stage-4S Neuroblastoma. . . 134

11.2.5.3 Treatment of Infant Stage-4 Neuroblastoma 135 11.2.6 Future Directions . . . 136

11.2.7 Conclusion . . . 136

References . . . 137

11.3 High-Risk Neuroblastoma

Katherine K. Matthay, Nai-Kong V. Cheung

11.3.1 Treatment Approach for High-Risk Disease 138 11.3.2 Induction Therapy . . . 139

11.3.3 Local Control . . . 141

11.3.4 Consolidation Therapy . . . 142

11.3.5 Therapy of Minimal Residual Disease . . . 144

11.3.6 Conclusion . . . 145

References . . . 145

(8)

X Contents

11.4 The Role of Surgery in the Treatment of Neuroblastoma

Michael P. La Quaglia

11.4.1 Introduction . . . 149

11.4.2 History . . . 149

11.4.3 Staging . . . 151

11.4.3.1 Stage 1. . . 151

11.4.3.2 Stage 2. . . 152

11.4.3.3 Stage 3. . . 152

11.4.3.4 Stage 4. . . 153

11.4.4 Risk Status and Surgical Intervention . . 155

11.4.4.1 Low-Risk Patients . . . 156

11.4.4.2 Intermediate Risk . . . 156

11.4.4.3 High Risk. . . 156

11.4.4.3.1 Gross Total Resection. . . 156

11.4.4.3.2 Rationale for Gross Total Resection in High-Risk Patients. . . 156

11.4.4.3.3 Local Control. . . 157

11.4.5 Surgical Complications and Mortality . 157 11.4.6 Surgical Technique . . . 158

11.4.6.1 Initial Biopsy . . . 158

11.4.6.2 Cervical Lesions . . . 159

11.4.6.3 Cervico-Thoracic Lesions . . . 159

11.4.6.4 Mediastinal Tumors . . . 159

11.4.6.5 Lesions in the Upper Abdomen and Retroperitoneum . . . 159

11.4.6.6 Pelvic Tumors . . . 159

11.4.7 Conclusion . . . 160

References . . . 161

11.5 Radiation Therapy

Suzanne L. Wolden, Daphne A. Haas-Kogan

11.5.1 Background . . . 164

11.5.2 Radiation Approach According to Risk Stratification . . . 164

11.5.2.1 Low- and Intermediate-Risk Disease . . . 164

11.5.2.2 Intermediate-Risk Disease. . . 164

11.5.2.3 Stage-4S Disease. . . 165

11.5.2.4 High-Risk Disease . . . 165

11.5.3 Radiation Techniques . . . 167

11.5.3.1 General Technical Considerations . . . 167

11.5.3.2 Intraoperative Radiation Therapy . . . 169

11.5.4 Side Effects of Radiation . . . 170

11.5.5 Conclusion . . . 171

References . . . 171

11.6 Stem Cell Transplantation

Stephan A. Grupp

11.6.1 Introduction . . . 173

11.6.2 Autologous Transplant in Neuroblastoma . . . 174

11.6.2.1 Children’s Cancer Group 3891. . . 174

11.6.2.2 Experimental HDC/SCR . . . 175

11.6.3 PBSC Collection . . . 177

11.6.3.1 Vascular Access . . . 177

11.6.3.2 Collection . . . 178

11.6.3.3 Techniques for Stem Cell Mobilization . . . 178

11.6.3.4 Target Dose for PBSC Infusion. . . 179

11.6.3.5 Processing and Storage of PBSC. . . 180

11.6.3.6 Tumor Cell Purging . . . 181

11.6.3.7 Storage. . . 182

11.6.4 Conclusion . . . 182

References . . . 182

11.7 Minimal Residual Disease Measurement

Irene Y. Cheung, Peter F. Ambros

11.7.1 Introduction . . . 185

11.7.2 Techniques in the Detection of Tumor Cells in the Hematopoietic System . . . 186

11.7.2.1 Histology/Cytology . . . 186

11.7.3 Detection Methods for MRD . . . 186

11.7.3.1 Immunocytology/ Immuno histochemistry . . . 186

11.7.3.2 Automatic Immunofluorescence Detection Techniques . . . 187

11.7.3.3 Reverse Transcription-Polymerase Chain Reaction . . . 188

11.7.3.3.1 Real-Time Quantitative RT-PCR . . . 188

11.7.3.3.2 Molecular Targets . . . 188

11.7.3.3.3 Perspectives on Molecular Detection . . . 188

11.7.4 Clinical Relevance of MRD . . . 189

11.7.5 Future Directions . . . 190

References . . . 191

12 Treatment of Relapsed and Refractory Neuroblastoma Katherine K. Matthay, Brian H. Kushner

12.1 Introduction . . . 193

12.2 Treatment Strategies for Resistant Disease . . . 195

12.2.1 Primary Refractory Disease . . . 195

12.2.2 Early Relapse . . . 196

12.2.3 Late Relapse . . . 196

12.2.4 Multiply Relapsed Disease . . . 196

12.3 Cytotoxic Chemotherapeutic Agents . . . 196

12.3.1 Alkylating and DNA Cross-Linking Agents 197 12.3.1.1 Ifosfamide and Cyclophosphamide . . . 197

12.3.1.2 Melphalan Combined with Buthionine Sulfoximine. . . 197

12.3.1.3 Platinum Compounds . . . 198

12.3.1.4 Temozolomide . . . 198

12.3.1.5 Tirapazamine. . . 199

(9)

XI Contents

12.3.2 Topoisomerase Inhibitors . . . 199

12.3.2.1 Irinotecan . . . 199

12.3.2.2 Topotecan . . . 200

12.3.2.3 Pyrazoloacridine . . . 200

12.3.2.4 Rebeccamycin . . . 201

12.4 Tumor-Targeted Biologic Agents . . . 201

12.4.1 Retinoids . . . 201

12.4.2 Tyrosine Kinase Inhibitors . . . 201

12.4.3 Modulators of Apoptotic Pathway and Angiogenesis . . . 201

12.4.3.1 Anti-Angiogenic Agents . . . 201

12.4.3.2 Arsenic Trioxide . . . 202

12.4.3.3 Demethylating Agents. . . 202

12.4.3.4 Histone Deacetylase Inhibitors . . . 202

12.5 Immunologic Therapy . . . 203

12.5.1 Anti-GD2 . . . 203

12.5.2 Interleukins . . . 203

12.5.3 Vaccines . . . 204

12.6 131I-Metaiodobenzylguanidine . . . 204

12.7 Conclusion . . . 204

References . . . 205

13 Management of Neurologic Complications Kim Kramer, Michael R. Pranzatelli

13.1 Introduction . . . 213

13.2 Epidural Neuroblastoma . . . 213

13.3 Metastatic Disease to the Central Nervous System . . . 216

13.4 Opsoclonus–Myoclonus . . . 217

13.4.1 Immunology . . . 218

13.4.2 Pharmacology . . . 218

13.4.3 Laboratory Testing . . . 218

13.4.4 Treatment . . . 219

13.4.4.1 Neuromodulation . . . 219

13.4.4.2 Adjunctive Therapy . . . 220

13.4.4.3 Precautions. . . 220

13.5 Treatment-Related Neurologic Complications . . 220

13.6 Conclusions . . . 220

References . . . 221

14 Immunology and Immunotherapy Nai-Kong V. Cheung, Paul M. Sondel

14.1 Introduction: The Case for Immunotherapy . . . 223

14.2 The Immunobiology of Neuroblastoma . . . 224

14.3 How Neuroblastoma Escapes the Innate and Adaptive Immune Systems . . . 225

14.4 Humoral Immunotherapy . . . 226

14.4.1 Effector Mechanisms of MAb . . . 226

14.4.2 Clinical Application of MAb . . . 227

14.4.2.1 Naked MAb. . . 227

14.4.2.2 Antibody in Combination with Cytokines . . 229

14.4.2.3 Antibody Immunoconjugates . . . 229

14.4.3 Humoral Vaccines . . . 232

14.4.3.1 Ganglioside-KLH Vaccines . . . 232

14.4.3.2 Anti-Idiotype Vaccine . . . 232

14.5 Cellular Immunotherapy . . . 232

14.5.1 Activation of NK and NKT Cells . . . 232

14.5.2 Activation of MHC-Restricted T Cells . . . 233

14.5.3 Pre-clinical and Clinical Testing of T-cell Based Therapy in Neuroblastoma 233 14.5.3.1 Immunostimulants. . . 233

14.5.3.2 Tumor Vaccines . . . 233

14.5.3.3 Adoptive Therapy Using Autologous Cytotoxic Lymphocytes . . . 234

14.5.3.4 Adoptive Therapy Using Allogeneic Lymphocytes. . . 234

14.6 Conclusions . . . 235

References . . . 235

15 Differentiation and Retinoids Carol J. Thiele, C. Patrick Reynolds

15.1 Introduction . . . 243

15.1.1 Neural Crest Development . . . 243

15.1.2 NB as a Neural Crest Derivative . . . 244

15.1.3 NB and Adrenal Medullary Development . 244 15.1.4 Neural Crest Gene Expression During Development . . . 245

15.1.5 MYCN in Neural Crest Development . . . . 245

15.2 Neurotrophins in Neural Crest Development . . 245

15.2.1 TrkA and NB . . . 246

15.2.2 TrkB and NB . . . 247

15.3 Differentiation . . . 247

15.3.1 Retinoids . . . 247

15.3.2 Retinoic Acid Receptors . . . 248

15.4 13-cis-Retinoic Acid . . . 249

15.4.1 High-Dose, Pulse, 13-cis-RA . . . 250

15.4.2 13-cis-RA vs All Trans-Retinoic Acid . . . . 250

15.4.3 Post-Consolidation 13-cis-RA Therapy for High-Risk NB . . . 250

15.5 Fenretinide . . . 253

15.6 Conclusions . . . 254

References . . . 254

(10)

XII Contents

16 Angiogenesis

Darrell J. Yamashiro, Susan L. Cohn

16.1 Introduction . . . 257

16.2 Vascularity in Neuroblastoma . . . 258

16.3 Expression of Proangiogenic Factors . . . 258

16.3.1 VEGF and VEGF Receptors . . . 258

16.3.2 Matrix Metalloproteinases . . . 259

16.4 Expression of Angiogenesis Inhibitors . . . 260

16.4.1 Pigment Epithelium-Derived Factor . . . . 260

16.4.2 Secreted Protein Acidic and Rich in Cysteine . . . 260

16.4.3 Thrombospondin-1 . . . 260

16.5 Regulation of Angiogenesis by MYCN . . . 261

16.6 Preclinical Testing of Antiangiogenic Agents . . 261

16.6.1 VEGF Blockade . . . 261

16.6.2 TNP-470 . . . 261

16.6.3 Endostatin . . . 261

16.7 Conclusions . . . 262

References . . . 263

17 Experimental Therapeutics and Preclinical Models Jennifer K. Peterson, Peter J. Houghton

17.1 Introduction . . . 267

17.2 Heterotransplant Models . . . 268

17.2.1 Cytotoxic Agents . . . 268

17.2.2 Signal Transduction Inhibitors . . . 270

17.2.3 Angiogenesis Inhibitors . . . 271

17.2.4 Viral-Based Therapies . . . 271

17.2.5 Immunotherapy and Radioimmunotherapy . . . 272

17.3 Transgenic Models . . . 272

17.4 Syngeneic Models . . . 273

17.5 Conclusion . . . 273

References . . . 274

18 Late Effects of Treatment Caroline Laverdière, James Gurney, Charles A. Sklar

18.1 Introduction . . . 277

18.2 Long-Term Complications for Low- and Intermediate-Risk Neuroblastoma Survivors . . . 278

18.2.1 Musculoskeletal . . . 278

18.2.2 Neurological . . . 278

18.3 Long-Term Complications for Survivors of High-Risk Neuroblastoma . . . 279

18.3.1 Audiological . . . 279

18.3.2 Endocrine . . . 280

18.3.2.1 Thyroid Function. . . 280

18.3.2.2 Reproductive Endocrine Function. . . 281

18.3.2.3 Growth . . . 282

18.3.3 Musculoskeletal Complications and Neurological Deficits . . . 282

18.3.4 Dental . . . 282

18.3.5 Pulmonary . . . 282

18.3.6 Cardiac . . . 283

18.3.7 Renal . . . 283

18.3.8 Neurocognitive . . . 283

18.3.9 Subsequent Malignant Neoplasms . . . . 284

18.4 Health-Related Quality of Life . . . 284

18.5 Conclusion . . . 285

References . . . 285

19 Perspectives and Future Directions Nai-Kong V. Cheung, Susan L. Cohn

References . . . 291

Subject Index

. . . 293

(11)

Sara J. Abramson, MD

(e-mail: abramsos@mskcc.org) Department of Radiology,

Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA Inge M. Ambros, MD

(e-mail: inge.ambros@ccri.univie.ac.at) Children’s Cancer Research Institute, St. Anna Kinderspital, Kinderspitalgasse 6, 1090 Vienna, Austria

Peter F. Ambros, PhD

(e-mail: peter.ambros@ccri.univie.ac.at) Children’s Cancer Research Institute, St. Anna Kinderspital, Kinderspitalgasse 6, 1090 Vienna, Austria

Frank Berthold, MD

(e-mail: Frank.Berthold@medizin.uni-koeln.de) Children’s Hospital, Department of Pediatric Oncology and Hematology, University of Cologne, Joseph-Stelzmann-Strasse 9, 50924 Cologne, Germany

Garrett M. Brodeur, MD

(e-mail: brodeur@email.chop.edu)

Division of Oncology, The Children’s Hospital of Philadelphia and the University of Pennsylvania, Abramson Pediatric Research Center 902,

Philadelphia, PA 19104, USA

Irene Y. Cheung, ScD

(e-mail: cheungi@mskcc.org)

Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York,

NY 10021, USA

Nai-Kong V. Cheung, MD, PhD (e-mail: cheungn@mskcc.org)

Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York,

NY 10021, USA Susan L. Cohn, MD

(e-mail: scohn@northwestern.edu)

Department of Pediatrics and the Comprehensive Robert H. Lurie Cancer Center, Northwestern University, Feinberg School of Medicine, Children’s Memorial Hospital,

2300 Children’s Plaza, Chicago, IL 60614, USA William L. Gerald, MD

(e-mail: geraldw@mskcc.org)

Department of Pathology, Memorial Sloan-Kettering Cancer Center, 275 York Avenue, New York,

NY 10021, USA

Stephan A. Grupp, MD, PhD (e-mail: grupp@email.chop.edu)

Director, Stem Cell Biology, Division of Oncology, Children’s Hospital of Philadelphia

and University of Pennsylvania,

3615 Civic Center Blvd., ARC 902, Philadelphia, PA 19104, USA

XIII

Contributors

(12)

Chapter 2

XIV Pediatric Cerebellar AstrocytomasContributors

James Gurney, MD

(e-mail: gurney@epi.umn.edu) Division of Pediatric Epidemiology,

University of Minnesota, Mayo Mail Code 715, 420 Delaware Street SE, Minneapolis,

MN 55455, USA

Daphne A. Haas-Kogan, MD

(e-mail: hkogan@radonc17.ucsf.edu) Department of Radiation Oncology,

School of Medicine, University of California at San Francisco, 2356 Sutter Street,

San Francisco, CA 94115-0226, USA Peter J. Houghton, PhD

(e-mail: peter.houghton@stjude.org) Department of Molecular Pharmacology, St. Jude Children’s Research Hospital,

332 Lauderdale, Memphis, TN 38105-2794, USA Kim Kramer, MD

(e-mail: kramerk@mskcc.org) Department of Pediatrics,

Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA Brian H. Kushner, MD

(e-mail: kushnerb@mskcc.org) Department of Pediatrics,

Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA Michael P. La Quaglia, MD

(e-mail: laquaglm@mskcc.org) Department of Surgery,

Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA Caroline Laverdière, MD

(e-mail: caroline.laverdiere@umontreal.ca) Sainte-Justine Hospital,

Recherche Clinique Hemato-Oncologie, 3175 Cote Ste-Catherine, Montreal, Quebec, Canada H3T 1C5

John M. Maris, MD

(e-mail: maris@email.chop.edu)

Division of Oncology, The Children’s Hospital of Philadelphia and the University of Pennsylvania, Abramson Pediatric Research Center 902,

Philadelphia, PA 19104, USA Katherine K. Matthay, MD

(e-mail: matthayk@peds.ucsf.edu)

Department of Pediatrics, M647, University of California San Francisco School of Medicine, 505 Parnassus, San Francisco, CA 94143-0106, USA Akira Nakagawara, MD

(e-mail: akiranak@chiba-cc.jp)

Division of Biochemistry, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuoh-ku, Chiba, 260-8717, Japan

Andrew F. Olshan, MD

(e-mail: andy_olshan@unc.edu) Department of Epidemiology, School of Public Health, University

of North Carolina, Chapel Hill, NC 27599-7435, USA Jennifer K. Peterson, MD

(e-mail: Jennifer.Peterson@stjude.org) Department of Molecular Pharmacology, St. Jude Children’s Research Hospital,

332 Lauderdale, Memphis, TN 38105-2794, USA Michael R. Pranzatelli, MD

(e-mail: mpranzatelli@siumed.edu) Departments of Neurology and Pediatrics, National Pediatric Myoclonus Center,

Southern Illinois University School of Medicine, P.O. Box 19658, Springfield, IL 62794-9658, USA C. Patrick Reynolds, MD, PhD

(e-mail: preynolds@chla.usc.edu)

USC-CHLA Institute for Pediatric Clinical Research, Division of Hematology/Oncology MS 57,

Children’s Hospital Los Angeles, 4650 Sunset Blvd.,

Los Angeles, CA 90054-0700, USA

(13)

XV Contributors

Robert A. Ross, PhD

(e-mail: rross@fordham.edu)

Laboratory of Neurobiology, Department of Biological Sciences, Fordham University, 441 East Fordham Road, Bronx, NY 10458, USA Manfred Schwab, PhD

(m.schwab@dkfz-heidelberg.de) German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany Hiroyuki Shimada, MD

(e-mail: HShimada@chla.usc.edu)

Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles,

4650 Sunset Boulevard, MS 43, Los Angeles, CA 90027, USA

Barry L. Shulkin, MD

(e-mail: barry.shulkin@stjude.org) Department of Radiological Sciences, MS 752, St. Jude Children’s Research Hospital, 332 N. Lauderdale, Memphis, Tennessee, 38105-2794, USA

Thorsten Simon, MD

(e-mail: thorsten.simon@medizin.uni-koeln.de) Children’s Hospital, Department of Pediatric Oncology and Hematology, University of Cologne, Joseph-Stelzmann-Strasse 9, 50924 Cologne, Germany

Charles A. Sklar, MD (e-mail: sklarc@mskcc.org)

Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York,

NY 10021, USA

Paul M. Sondel, PhD

(e-mail: pmsondel@wisc.edu)

Department of Pediatric Hematology/Oncology, University of Wisconsin, K4/448,

600 Highland Avenue, Madison, WI 53792, USA Carol J. Thiele, PhD

(e-mail: ct47a@nih.gov)

Cell and Molecular Biology Section, Center for Cancer Research, NCI, NIH CRC, Room 1-3940, 10 Center Drive, MSC-1105, Bethesda, MD 20892-1105, USA

Suzanne L. Wolden, MD (e-mail: woldens@mskcc.org)

Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA William G. Woods, MD

(e-mail: William.Woods@choa.org)

The Daniel P. Amos Children’s Chair for the AFLAC Cancer Center and Blood Disorders Service, Children’s Healthcare of Atlanta/Emory University, 1405 Clifton Road, Atlanta, GA 30322, USA

Darrell J. Yamashiro, MD (e-mail: dy39@columbia.edu) Department of Pediatric Oncology,

Irving Pavilion 7, 161 Fort Washington Avenue,

New York, NY 10032, USA

Riferimenti

Documenti correlati

We believe it is important to incorporate openness of information as part of the treatment protocol, obliging hospital staff members to help the child to understand this

(e-mail: Sarah@reyes.stanford.edu) Department of Radiation Oncology Stanford University Medical Center Stanford, CA 94305-5847, USA.

Due to the nature of childhood cancer diagnosis and treatment it is reasonable to ex- pect that all children will need some type of pain management plan, and certainly all

Jane Belmore RSCN, RGN, Dip Palliative Care Macmillan Clinical Nurse Specialist, Schiehallion Day Care Unit, Royal Hospital for Sick Children, Yorkhill NHS Trust, Glasgow, G3

Ruderman, MD Division of Rheumatology Department of Medicine Northwestern University Feinberg School of Medicine Chicago,

Media usage may interfere with sleep quality through the increase of psychophysiological arousal caused by stimulating content watched, or through bright light.. Bright light may

Professor of Radiation Oncology and Pediatrics University of Rochester School of Medicine and Dentistry, Strong Memorial Hospital/. The University of Rochester Medical Center

The Adolescent and Young Adult Committee of the Children’s Oncology Group was formed to focus research attention on this population, develop treat- ment