• Non ci sono risultati.

Search for Higgs and Z boson decays to J/ψ or Y pairs in the four-muon final state in proton-proton collisions at sqrt(s)=13TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Search for Higgs and Z boson decays to J/ψ or Y pairs in the four-muon final state in proton-proton collisions at sqrt(s)=13TeV"

Copied!
22
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Search

for

Higgs

and

Z boson

decays

to

J/

ψ

or

Y pairs

in

the

four-muon

final

state

in

proton-proton

collisions

at

s

=

13

TeV

.TheCMS Collaboration

CERN,Switzerland

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received24May2019

Receivedinrevisedform23July2019 Accepted25July2019

Availableonline30July2019 Editor:M.Doser

Keywords:

CMS

Standardmodelphysics Higgsboson

Zboson Raredecays

AsearchfordecaysoftheHiggsandZ bosontopairsofJ/ψorY(nS)(n=1,2,3)mesons,withtheir subsequentdecayto μ+μ− pairs,ispresented.Theanalysis usesdata fromproton-protoncollisionsat √

s=13TeV,collectedwith theCMSdetector atthe LHCin2017and correspondingto anintegrated luminosity of 37.5 fb−1. While an observation of such a decay with this samplewould indicate the presenceofphysicsbeyondthestandardmodel,nosignificantexcessisobserved.Upper limitsat95% confidencelevelareplacedonthebranchingfractionsofthesedecays.IntheJpairchannel,thelimits are1.8×10−3and2.2×10−6fortheHiggsandZ boson,respectively,whileinthecombinedY(nS)pair channel,thelimitsare 1.4×10−3 and1.5×10−6,respectively, whenthe mesonsfromthe Higgsand Z bosondecayareassumedtobeunpolarized.Whenfullylongitudinalandtransversepolarizationsare consideredthelimitsreducebyabout22–29%andincreasebyabout10–13%,respectively.

©2019TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Anew boson with a mass of 125 GeV was discovered by the ATLAS and CMS Collaborations at the CERN LHC in 2012 [1–7]. Comprehensivestudies in various decaychannelsandproduction modeshaveshownthatthepropertiesofthenewbosonare con-sistent,sofar,withexpectationsforthestandardmodel(SM)Higgs boson (H) [7–9]. Recently, the Higgsboson couplings to top and bottomquarkshavebeendirectlymeasured [10–13].Couplingsto lighterquarksarestillnotobserveddirectly.Rareexclusivedecays ofthe Higgsboson to mesons provide experimentally cleanfinal states to study Yukawa couplings to quarks and physics beyond theSM (BSM).ExamplesofdiagramsfordecaysoftheHiggsand Z bosonintoquarkoniumpairsareshowninFig.1.The symbolQ referstocharmoniumandbottomoniumstates.

Theimportance of the measurementof such decays hasbeen pointedout by Ref. [15–18]. Usinga phenomenological approach for the direct H-qq coupling, Ref. [15] finds that the dominant quarkoniumpairdecaymodeisH→YY withanestimated branch-ing fraction (B) at the level of 10−5. The early calculations of

Higgsbosondecaysinto apair ofheavy quarkoniastatesdid not include relativistic corrections caused by the internal motion of quarks [14]. The importance of the latter corrections is under-linedby the fact that the predictede+e−→J/ψηc cross section

 E-mailaddress:cms-publication-committee-chair@cern.ch.

increasesbyanorderofmagnitude [19–21] whentheseeffectsare included,inagreementwithmeasurementsbytheBelleandBaBar experiments [22,23].

Withemphasis onamplitudes wherethe Higgsboson couples indirectly to the final state mesons, such as represented by the twoleftmostdiagramsinFig.1,Ref. [14] arrivesatvaluesofabout

B(H→J/ψJ/ψ)=1.5×10−10 and B(HYY)=2×10−9. The

mechanism where the Higgs boson couples directly to charm or bottom quarks, which then hadronize to heavy quarkonia, was considered in a recentcalculation [24] leading to an increase of an order of magnitude in B(H→J/ψγ). The Higgs boson decay to the J/ψ pair could also occur when the photon in the J/ψγ

decay is virtual and transforms into a J/ψ meson. Recently, the decay H→J/ψγ has been searched for by the ATLAS and CMS collaborations [25,26]. This Letter also presents the first search for decays of the Z boson into quarkonium pairs. Feynman dia-gramsare shownin Fig.1 (tworightmostplots). The SM predic-tion for B(Z→J/ψJ/ψ) calculated in the framework of nonrela-tivistic QCD andleading twist light cone models is of the order of 10−12 [27]. Several approximations for the non-perturbative QCD processes are used, includingthe restriction to color-singlet quarkoniumstates.

New physics could affectthe direct boson couplings or could enterthroughloops,andaltertheinterferencepatternbetweenthe amplitudes.Anyofthosepossibilitiesenhancebranchingfractions with respect to the SM predictions. Many BSM theories predict substantial modifications of the Yukawa couplings of the Higgs

https://doi.org/10.1016/j.physletb.2019.134811

0370-2693/©2019TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

Fig. 1. FeynmandiagramsforH→QQ andZ→QQ withQ=charmoniumorbottomoniumstates.Inthetwoleftmostdiagrams[14],thevirtualparticlesareZ bosons.The center-rightdiagramdepictsindirectprocessesinthecasewheretheflavorofthequarkq intheloopistop,anddirectprocessesinthecasewhereitischarmorbottom. Theothervirtualparticlesareeitherphotonsorgluons.Inthelattercaseadditionalsoft-gluonexchangeoccurs.TherightmostdiagramshowsdirectprocessesfortheHiggs orZ bosons.

boson to quarks, such as models with Higgs-dependent Yukawa couplings [28], the minimal flavor violation framework [29], the Froggatt–Nielsenmechanism [30],andtheRandall–Sundrum fam-ilyofmodels [31].AnoverviewofmodelscanbefoundinRef. [32]. Intherelatedquarkonium–γ channels,deviationsoftheH-qq cou-plings from the SM predictions can change the interference be-tweendirectandindirectamplitudes,resultinginsubstantial mod-ificationsofthebranchingfractions,particularlyinthe Y channel, wheretheincreaseisuptoseveralordersofmagnitude [24].The observationof aHiggs orZ boson signal inthe quarkonium pair decaymodeswiththe availableLHCdata setswouldindicatethe presenceofBSMphysics.

ThisLetterpresentsthefirstsearch forthe HiggsandZ boson decaysintoJ/ψorY mesonpairs,whereY standsforthecombined contributionoftheY(nS)stateswithn= 1,2,3.Thesubsequent decayofthesemesonpairstothe4μfinalstateoffersaveryclean experimental signature that is used in thisanalysis. For the J/ψ

meson pairs, feed-down from higher charmonium states are not takenintoaccount.FortheY(nS)mesonpairs,decaysfromhigher tolower massY(nS)statesare included.Theresultspresented in thisLetterarebasedonproton-proton(pp)collisiondatarecorded in2017withtheCMSdetectoratacenter-of-massenergyof√s= 13TeV,amountingtoanintegratedluminosityof37.5 fb−1.

2. TheCMSdetector

AdetaileddescriptionoftheCMSdetector,togetherwitha def-inition ofthe coordinatesystemusedand therelevantkinematic variables,canbefoundinRef. [33].ThecentralfeatureoftheCMS apparatusis a superconducting solenoid, 13 m inlength and6 m in internal diameter, providing an axial magnetic field of 3.8 T. Withinthe solenoid volume are a silicon pixel andstrip tracker, a lead tungstate crystal electromagnetic calorimeter, anda brass andscintillatorhadroncalorimeter,eachcomposedofabarreland two endcap sections.Forward calorimeters extend the pseudora-pidity (η) coverage provided by thebarrel andendcap detectors. Muonsare detected ingas-ionization chambersembedded inthe steelflux-returnyokeoutsidethesolenoid. Theyaremeasuredin therange|η|<2.4,withdetectionplanesmadeusingthree tech-nologies: drift tubes, cathode strip chambers, and resistive-plate chambers.

An entirely new pixel detector has been installed after 2016, featuring an all-silicon device with four layers in the barrel and threedisksintheendcaps [34],providingfourpixeldetector mea-surements. Reduced material budget in front of the calorimeters was achieved with two-phase CO2 cooling and light-weight

me-chanical support, and moving the electronic boards and connec-tionsoutofthetrackingvolume.

Events of interest are selected using a two-tiered trigger sys-tem [35].Thefirstlevel,composedofcustomhardwareprocessors, usesinformationfromthecalorimetersandmuondetectorsto se-lectevents ata rateofaround 100 kHz within a time interval of lessthan 4 μs. The second level,known asthe high-level trigger,

consistsofafarmofprocessorsrunningaversionofthefullevent reconstructionsoftwareoptimizedforfastprocessing,andreduces theeventratetoaround1 kHzbeforedatastorage.

Dedicatedtriggersweredeployedin2017toenhancethe selec-tion of eventsof interestfor thepresent study.Theyrequire the presenceofatleastthreemuonswith pTgreaterthan2 GeV.Two

ofthesemustbe oppositelychargedandhavetooriginatefroma commonvertexwithaprobabilitygreaterthan0.5%,asdetermined byaKalmanvertexfit [36],thussuppressingrandomcombinations oftwomuons.TheJ/ψ-specifictriggerrequiresadimuonsystem’s invariant masstobe between2.95and3.25 GeV andits pT to be

greater than 3.5 GeV. Thetrigger usedto selectthe Y sample re-quires two ofthe three muons to have pT greater than 3.5 GeV,

andone muon pT greater than5 GeV.Theinvariant massforone

oppositelychargedmuonpairmustlieintheinterval8.5–11.4 GeV. Bothtriggersgaveanefficiencyexceeding85%toselectevents sat-isfyingtheselectioncriteriausedintheanalysis.

3. Signalandbackgroundmodeling

Simulated samplesof theHiggs andZ boson signalsare used to estimate the expected signal yields and model the distribu-tion of signal events in the four-muon invariant mass. For the H→J/ψJ/ψ and H→YY samples the Higgs boson is produced withthe powheg v2.0MonteCarlo(MC) eventgenerator [37,38], whichincludesthegluon-gluon fusion(ggF)andvector-boson fu-sion productionprocesses.The partondistribution function (PDF) set used is NNPDF3.1 [39]. The JHUGen 7.1.4 generator [40,41] is used to decay the Higgs boson into two vector mesons taking into account their helicity. Toproduce the decay forunpolarized quarkonia, the JHUGen generator is configured to model a uni-formmuon helicityangledistribution.Thegeneratorisinterfaced with pythia 8.226 [42] forparton-showeringandhadronization ac-cording to the CUETP8M1 [43] tune. The total SM Higgs boson productioncrosssection forthecalculation ofbranching fractions istakenfromtheLHCHiggscrosssectionworkinggroup [32].

The Z→J/ψJ/ψ and Z→YY samples are produced with the pythia8.226generator [42],tuneCUETP8M1 [43].TheSMZ boson productioncrosssectionincludesthenext-to-next-to-leadingorder (NNLO) QCD contributions, and the next-to-leading order (NLO) electroweak corrections from fewz 3.1 [44] calculated using the NLO PDF set NNPDF3.0. The Z boson pT is reweighted to match

theNLO calculation [37,38,45].Thetotal crosssectionisobtained withtheB(Z→ μ+μ−)valuefromRef. [46].

In the J/ψ and Y pair channels backgrounds are assumed to originate from promptnonresonant pairproduction,which in pp collisions dominantly occurs via ggF [47–50]. Initially, the two mesons arecolor-octet boundstatesthat thenradiate softgluons tobecomerealmesons.Eventsamplesaregeneratedaccordingto thismodel [49].

Thegeneratedeventsareprocessedthroughadetailed simula-tion oftheCMSdetectorbased on Geant4 [51]. Thehigh instan-taneous luminosity oftheLHC resultsinmultiple pp interactions

(3)

Fig. 2. Thefour-muoninvariantmassdistributions,forJJ(left)andYY (right)candidates(errorbarsforzeroentriesareomitted).Theresultofthemaximumlikelihood fitissuperimposed(solidblueline).Forillustrativepurposes,theplotsalsoshowthedistributionsforsimulatedHiggsandZ bosonsignals(dashedredlines),eachnormalized totwoevents.

perbunchcrossing.Simultaneouspp interactionsthatoverlapwith theeventofinterest,i.e.pileup,areincludedinsimulatedsamples. Thedistributionofthenumberofadditionalinteractionsperevent insimulationcorrespondstothatobservedinthedata,wherethe averagepileupnumberisfoundtobe32.

The acceptance of the final states changes with the angular distribution of the muons in the quarkonium decay. The distri-bution of the decay angle θ, defined as the angle between the positivemuon directionofflight intherestframe ofthe quarko-niumwithrespectto thequarkonium directionin thebosonrest frame, isproportional to (1+ λθcos2θ ). In thisLetter, the nom-inalresults are obtainedusing a signal acceptance calculatedfor the unpolarized case (λθ =0). Two extreme scenarios have also been considered, where the J/ψ and Y mesons are either fully transversely polarized, λθ = +1, or fully longitudinally polarized,

λθ= −1.Noazimuthalanisotropieshavebeenconsidered. Accord-ingtoRefs. [14,27] theJ/ψandY mesonsproducedinthedecays ofbothbosonsareexpectedtobedominantlylongitudinally polar-ized.

4. Datareconstructionandselection

Muons are reconstructed by combining information from the silicontrackerandthe muonsystem [52]. Thematching between tracks reconstructed in each of the subsystems proceeds either outside-in,startingfromatrackinthemuonsystem,orinside-out, startingfroma trackprovided bythe silicontracker.Inthelatter case,tracksthatmatchtracksegmentsinonlyoneortwostations ofthemuonsystemare alsoconsideredinthe analysistocollect very low-pT muons that may not have sufficient energyto

pen-etratethe entiremuon system. Themuons areselected fromthe reconstructedmuontrackcandidatesthatmatchwithatleastone segmentinanymuonstationinbothx and y.Thenumberof sili-contrackerlayerswithhitsusedinthemuontrackcandidatehas tobegreater than5andincludeatleastonepixeldetectorlayer. Matchingmuonstotracks measuredin thesilicontrackerresults in a relative transverse momentum (pT) resolution of 1% in the

barreland3% in theendcaps formuons with pT up to 100 GeV.

The pT resolutioninthe barrelisbetterthan 7% formuonswith

pTupto1 TeV [52].

The reconstructed vertex with the largest value of summed chargedparticle p2

T istakentobetheprimarypp interaction

ver-tex. To suppress muons originating from nonprompt hadron de-cays, the impact parameter of each muon track, computedwith respect to the position of the primary pp interaction vertex, is required to be less than 0.3 (20.0) cm in the transverse plane

(longitudinal axis). Events with at least four such muons with pT>3GeV and|η|<2.4 areaccepted.Toisolatetheleadingmuon

candidatefromotherhadronicactivityintheevent,aconeofsize

R=√(η)2+ (φ)2=0.3 isconstructedarounditsmomentum direction, whereφ is theazimuthal angleinradians. The sumof the pT ofthereconstructedinner-detectortracksoriginatingfrom

the primary pp interactionvertexwithin the conehas tobe less than50%ofthemuon’s pT.Thetransversemomentumofthe

lead-ingmuonissubtractedfromthesumandthesubleadingmuon pT

is alsosubtracted, ifthis muon fallswithin the isolation cone of theleadingmuon.

The J/ψ and Y candidates are built from pairs of oppositely chargedmuons. Eachmuon pairmustfittotheir commonvertex withaprobabilitygreaterthan0.5%.TheJ/ψcandidate’spThasto

begreaterthan3.5 GeV,matchingthetriggerrequirement,andthe invariant massesofthehigherandlower-pT J/ψcandidates have

to be within 0.1 and0.15 GeV, respectively, ofthe nominal mass oftheJ/ψ.Thedimuonmassresolutionisabout30 MeV.Themass windowofthesubleadingJ/ψiswidertoallowfurthermonitoring of the sidebandpopulation. To suppresscontributions from non-prompthadrons, separatelyproducedJ/ψsandmuonsfromother sources, thefour-muon Kalmanvertexfitprobability of J/ψpairs has to be greater than 5%. Finally, the absolutevalue of the dif-ferenceinrapiditybetweenthetwoJ/ψ candidateshastobeless than3.Thiscriterionmarginallyaffectsthesignalwhileremoving about20% of theselected events.After theselection, 189 events are found in data in the 40–140 GeV four-muon invariant mass range. Fig.2 (left) shows thefour-muon invariant mass distribu-tion.

For the selection of Y paircandidates, the same event selec-tioncriteriaare applied,exceptthatthe Y candidate pT hastobe

greater than5 GeV, andthe invariant masshasto fall within the range 8.5–11 GeV. Furthermore, the four-muon Kalman vertex fit probability hastobe greaterthan 1%to suppressrandom combi-nations.The nonprompt backgroundis negligible inthischannel. Afterapplyingtheselections,106eventsarefound indatainthe 20–140 GeV four-muonsinvariantmassrange.Fig.2(right)shows thefour-muoninvariantmassdistribution.

Thedifferencesinefficienciesbetweendataandsimulationfor the trigger, offline muon reconstruction, identification, and iso-lation are corrected by reweighting the simulated events with data-to-simulationcorrectionfactors,whichareobtainedwiththe “tag-and-probe”method [53] usingJ/ψ → μ+μ−events.Thescale correctionfactorsare observedtodeviatefromunitybylessthan 3%. The difference in the four-muon Kalman vertex fit efficiency between data and simulation is evaluated with J/ψ pair event

(4)

samplesandfound tobe lessthan3%. Thetotalsignal efficiency, includingkinematicacceptance,trigger, reconstruction, identifica-tion,andisolationefficiencies,fortheJ/ψJ/ψdecayswith unpolar-izedJ/ψisapproximately23%forbothbosons.Forthe YY decays thecorrespondingefficiencyisabout27%.

5. Results

Unbinned extended maximum-likelihoodfits [54] to the four-muon invariant massdistributions M4μ are performed. Yields for signals and backgrounds are free parameters in the fit. For the Higgsboson the invariant massdistribution obtainedfrom simu-lation is described with two Gaussian functions witha common mean.ThesimulatedZ signalisdescribedwithaVoigtianfunction with the world-average value for the resonance width [46]. The massresolutionandmeanaretakenfromthefittothesimulation, andtheyarefixedinthefittodata.

The four-muon invariant mass distribution up to 140 GeV is described by an exponential plus constant function. The relative contribution and decay constant of the exponential function are variedinthefittodata.Thevaluesofbothparameters arefound tobeincloseagreementbetweenobservationandsimulation [49]. TheresultofthefitisshownasasolidbluelineinFig.2(left).

In theY pair sample, no events are observed above the four-muon invariant mass of 40 GeV. The four-muon invariant mass distribution ismodeled analogously tothe J/ψ pairchannel. The M4μ distribution below40 GeV is well described by an exponen-tialfunction.Thedecayconstantoftheexponentialfunctionisalso variedinthefit.Thesamefunctiondescribesaneventsample gen-eratedwiththepairproductionmodel [49].Fig.2(right)showsthe observedM4μdistributionwiththefitsuperimposed.

Given the absence of a signal for either of the bosons, up-per limits on the branching fractions are obtained. They are set by usingthe modified frequentist approach, CLs, withtheprofile

likelihoodratioasateststatistic [55–57].Theuncertainties affect-ingthesignalyieldsincludethecontributionsfromtheluminosity measurement [58],thecorrectionsappliedtothesimulatedevents inordertocompensatefordifferencesintrigger,muon reconstruc-tionandidentificationefficiencies,momentumscaleandresolution ofmuoncandidates,andfour-muonvertexfit.Sourcesfor theoret-icaluncertaintiesaretheQCDcouplingandPDFchoice [32,39,59], andtherenormalizationandfactorizationscalechoice [59–62].The uncertainties intheJ/ψ andY branching fractionsto muonpairs aretakenfromRef. [46].Therelativeimpactofthesystematic un-certaintiesontheupperlimitsislessthan2%inallchannels.

The value for B(J/ψ → μ+μ−) is taken from Ref. [46]. This analysis doesnot distinguish betweenthe three Y(nS) states. To calculate their contribution to the corresponding H andZ boson branchingfractionthecouplingstrengthofthebosonstoanyY(nS)

pairing is assumedto be the same.All Y states can directly de-cay into muon pairswith thedifferent branching fractions taken fromRef. [46]. Inaddition,itisassumedthat oneofthe Y states couldbetheresultofatransitionY(3S)→Y(2S),Y(3S)→Y(1S), orY(2S)→Y(1S)beforedecayingintomuons [46].

The observed and median expected exclusion limits for the branching fractionsat 95% confidencelevel (CL) for theH and Z bosondecaysarelistedinTable1.

TherelativechangesintheupperlimitsontheHiggsboson de-caybranchingfractionswithrespecttothecaseofunpolarized de-caymesons areabout−22% forfullylongitudinallypolarizedJ/ψ

andY mesons,and+10% forfullytransversely polarizedmesons. For the Z boson the relative changes are about−29 (−26)% for fullylongitudinallypolarizedJ/ψ(Y)mesonsand+13(+12)%for fullytransverselypolarizedmesons.

Table 1

Exclusionlimitsat95%CL forthebranchingfractionsoftheH andZ bosondecays toJorY mesonspairs.Thesecondcolumnliststheobservedlimits.Thethird columnshowsthemedianexpectedlimitswiththeupperandlowerboundsinthe expected68%CL intervals.

Process Observed Expected

B(H→J/ψJ/ψ) 1.8×10−3 (1.8+0.2 −0.1)×10−3 B(H→YY) 1.4×10−3 (1.4±0.1)×10−3 B(Z→JJ/ψ) 2.2×10−6 (2.8+1.2 −0.7)×10− 6 B(Z→YY) 1.5×10−6 (1.5±0.1)×10−6 6. Summary

In summary,thisLetter presentsthefirst search fordecaysof the Higgs and Z boson to pairs of J/ψ or Y(nS) (n = 1, 2, 3) mesons,withtheirsubsequentdecaytoμ+μ−pairs.Datafrompp collisionsat√s=13TeV,correspondingtoanintegrated luminos-ity of 37.5 fb−1 are used. No excess has been observed above a smallbackgroundintheJ/ψpairandwithvanishinglysmall back-groundin theY pair channels. The observedupperlimitsat 95% confidencelevelonthebranchingfractionsfortheHiggsboson de-caysforunpolarizedmesonsareB(H→J/ψJ/ψ)<1.8×10−3and

B(H→YY)<1.4×10−3.Theobservedupperlimitsonthe

branch-ingfractionsfortheZ bosondecayintheunpolarizedscenarioare

B(Z→J/ψJ/ψ)<2.2×10−6 andB(Z→YY)<1.5×10−6,where allthreeY(nS)statesareconsidered.Extremepolarization scenar-ios give rise to variations in the observed boson decay branch-ingfractionsbetween−(22–29)%forfullylongitudinallypolarized J/ψ andY mesonsand+(10–13)%forfullytransverselypolarized mesons.Thisanalysisisexpectedtomotivaterenewedcalculations of the Higgs boson branching fractions for rare standard model decays, as only a few positive signal events would indicate the presenceofphysicsbeyondthestandardmodel.

Acknowledgements

WecongratulateourcolleaguesintheCERNaccelerator depart-ments for the excellent performance of the LHC and thank the technical andadministrativestaffs atCERNand atother CMS in-stitutes for their contributions to the success of the CMS effort. Inaddition,wegratefullyacknowledgethecomputingcentersand personneloftheWorldwideLHCComputingGridfordeliveringso effectively thecomputinginfrastructure essentialto our analyses. Finally, we acknowledge the enduring support for the construc-tion andoperationofthe LHCandtheCMSdetectorprovided by the followingfundingagencies: BMBWFandFWF(Austria);FNRS and FWO (Belgium); CNPq, CAPES,FAPERJ, FAPERGS, andFAPESP (Brazil); MES (Bulgaria); CERN; CAS, MOST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, PUT and ERDF (Estonia); AcademyofFinland,MEC,andHIP(Finland);CEAandCNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NK-FIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy);MSIPandNRF(RepublicofKorea);MES(Latvia);LAS (Lithuania);MOEandUM(Malaysia);BUAP,CINVESTAV,CONACYT, LNS,SEP,andUASLP-FAI(Mexico);MOS(Montenegro);MBIE(New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portu-gal);JINR(Dubna);MON,ROSATOM, RAS,RFBR,andNRCKI (Rus-sia);MESTD(Serbia);SEIDI,CPAN,PCTI,andFEDER(Spain);MoSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter,IPST,STAR, andNSTDA(Thailand);TUBITAKandTAEK (Turkey);NASU andSFFR (Ukraine);STFC(United Kingdom);DOE andNSF(USA).

(5)

Individuals have received support from the Marie-Curie pro-gramandtheEuropeanResearchCouncilandHorizon2020Grant, contract Nos. 675440, 752730, and 765710 (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexan-der von Humboldt Foundation; the Belgian Federal Science Pol-icy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); theF.R.S.-FNRS andFWO (Belgium)under the “Excellenceof Sci-ence – EOS” – be.h project n. 30820817; the Beijing Municipal Science & Technology Commission, No. Z181100004218003; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Lendület (“Momentum”) Program and the János Bolyai Research Scholarship of the Hungarian Academy of Sci-ences,the NewNationalExcellenceProgramÚNKP,theNKFIA re-search grants 123842, 123959, 124845, 124850, 125105, 128713, 128786,and129058(Hungary);theCouncilofScienceand Indus-trialResearch, India; the HOMING PLUS program of the Founda-tion for Polish Science, cofinanced from European Union, Euro-pean Regional Development Fund, the Mobility Plus program of theMinistryofScienceandHigherEducation,theNationalScience Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/ 02861,Sonata-bis2012/07/E/ST2/01406;theNationalPriorities Re-search Program by Qatar National Research Fund; the Programa Estatalde Fomentode laInvestigaciónCientíficayTécnicade Ex-celencia María de Maeztu, grant MDM-2015-0509 and the Pro-grama Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; theRachadapisek Sompot Fund forPostdoctoral Fellowship, Chu-lalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Welch Foundation,contract C-1845; andthe WestonHavensFoundation (USA).

References

[1] ATLASCollaboration,Observationofanewparticleinthesearchforthe Stan-dardModelHiggsbosonwiththeATLASdetectorattheLHC,Phys.Lett.B716 (2012)1,https://doi.org/10.1016/j.physletb.2012.08.020,arXiv:1207.7214. [2] ATLASCollaboration, Evidencefor thespin-0natureofthe Higgsboson

us-ingATLASdata,Phys.Lett.B726(2013)120,https://doi.org/10.1016/j.physletb. 2013.08.026,arXiv:1307.1432.

[3] CMSCollaboration, Observationofanewbosonat amassof125GeVwith theCMSexperimentattheLHC,Phys.Lett.B716(2012)30,https://doi.org/10. 1016/j.physletb.2012.08.021,arXiv:1207.7235.

[4] CMSCollaboration,Observationofanewbosonwithmassnear125GeVinpp collisionsat √s=7and8TeV,J.HighEnergyPhys.06(2013)081,https:// doi.org/10.1007/JHEP06(2013)081,arXiv:1303.4571.

[5] CMSCollaboration,PrecisedeterminationofthemassoftheHiggsbosonand testsofcompatibilityofitscouplingswiththestandardmodelpredictions us-ingprotoncollisionsat7and8TeV,Eur.Phys. J.C75(2015)212,https:// doi.org/10.1140/epjc/s10052-015-3351-7,arXiv:1412.8662.

[6] ATLASCollaboration,MeasurementsoftheHiggsbosonproductionanddecay ratesandcouplingstrengthsusingppcollisiondataat√s=7 and8TeVin theATLASexperiment,Eur.Phys.J.C76(2016)6,https://doi.org/10.1140/epjc/ s10052-015-3769-y,arXiv:1507.04548.

[7] ATLAS and CMS Collaborations, Measurements ofthe Higgsboson produc-tionanddecayrates andconstraintsonitscouplings fromacombined AT-LAS andCMS analysisofthe LHCpp collisiondata at √s=7 and8TeV, J.High EnergyPhys. 08(2016)45, https://doi.org/10.1007/JHEP08(2016)045, arXiv:1606.02266.

[8] ATLASand CMSCollaborations,CombinedmeasurementoftheHiggsboson massinppcollisionsat√s=7 and8TeVwiththeATLASandCMS experi-ments,Phys.Rev.Lett.114(2015)191803,https://doi.org/10.1103/PhysRevLett. 114.191803,arXiv:1503.07589.

[9] CMSCollaboration,CombinedmeasurementsofHiggsbosoncouplingsat√s=

13 TeV,Eur.Phys.J.C79(2019)421,https://doi.org/10.1140/epjc/s10052-019 -6909-y,arXiv:1809.10733.

[10] CMSCollaboration,ObservationofttH production,Phys.Rev.Lett.120(2018) 23180,https://doi.org/10.1103/PhysRevLett.120.231801,arXiv:1804.02610. [11] ATLAS Collaboration, Observation ofHiggs boson production in association

withatopquarkpairattheLHCwiththeATLASdetector,Phys.Lett.B784 (2018)173,https://doi.org/10.1016/j.physletb.2018.07.035,arXiv:1806.00425. [12] CMSCollaboration,ObservationofHiggsbosondecaytobottomquarks,Phys.

Rev.Lett.121(2018)121801,https://doi.org/10.1103/PhysRevLett.121.121801, arXiv:1808.08242.

[13] ATLASCollaboration,ObservationofH→bb decaysandVHproductionwith the ATLAS detector, Phys. Lett. B 786 (2018) 59, https://doi.org/10.1016/j. physletb.2018.09.013,arXiv:1808.08238.

[14] V.Kartvelishvili,A.V.Luchinsky,A.A.Novoselov,Doublevectorquarkonia pro-duction in exclusive Higgs boson decays, Phys. Rev. D 79 (2009) 114015,

https://doi.org/10.1103/PhysRevD.79.114015,arXiv:0810.0953.

[15] M.Bander,A.Soni,DecaysofHiggsscalarsintovectormesonsandphotons, Phys.Lett.B82(1979)411,https://doi.org/10.1016/0370-2693(79)90255-7. [16] W.-Y.Keung,DecayoftheHiggsbosonintoheavy-quarkoniumstates,Phys.Rev.

D27(1983)2762,https://doi.org/10.1103/PhysRevD.27.2762.

[17]M.N. Doroshenko, V.G. Kartvelishvili, E.G. Chikovani, S.M. Esakiya, Vector quarkoniumindecaysofheavyHiggsparticles,Yad.Fiz.46(1987)864.

[18]V.G.Kartvelishvili,E.G.Chikovani,S.M.Esakiya,Theproductionanddecaysof heavyquarkbound statesinstrongand electroweakinteractions, Fiz.Elem. Chast.Atom.Yadra19(1988)139(inRussian).

[19] A.E.Bondar,V.L.Chernyak,IstheBelleresultforthecrosssectionσ(e+e−→ J/ψ +ηC)arealdifficultyforQCD?,Phys.Lett.B612(2005)215,https://doi.

org/10.1016/j.physletb.2005.03.021,arXiv:hep-ph/0412335.

[20] V.V.Braguta,A.K.Likhoded,A.V.Luchinsky,Observationpotentialforχbatthe FermilabTevatronandCERNLHC,Phys.Rev.D72(2005)094018,https://doi. org/10.1103/PhysRevD.72.094018,arXiv:hep-ph/0506009.

[21] V.V.Braguta,A.K.Likhoded,A.V.Luchinsky,Theprocessese+e−→J/ψ/ψχc0,

ψ(2S)χc0at√s=10.6GeVintheframeworkoflightconeformalism,Phys. Lett. B635(2006)299,https://doi.org/10.1016/j.physletb.2006.03.005,arXiv: hep-ph/0602047.

[22] K.Abe,etal.,Belle,Observationofdoublecc productionine+e−annihilation at √s≈10.6 GeV,Phys.Rev.Lett.89(2002)142001,https://doi.org/10.1103/ PhysRevLett.89.142001,arXiv:hep-ex/0205104.

[23] B.Aubert,et al.,BABAR,Measurementofdoublecharmoniumproductionin e+e−annihilationsat√s=10.6 GeV,Phys.Rev.D72(2005)031101,https:// doi.org/10.1103/PhysRevD.72.031101,arXiv:hep-ex/0506062.

[24] G.Bodwin,F.Petriello,S.Stoynev,M.Velasco,Higgsbosondecaystoquarkonia andtheHcc coupling,Phys.Rev.D88(2013)053003,https://doi.org/10.1103/ PhysRevD.88.053003,arXiv:1306.5770.

[25] ATLASCollaboration,SearchforHiggsandZ bosondecaystoJ/ψγ andY(nS) γ withtheATLASdetector,Phys.Rev.Lett.114(2015)121801,https://doi.org/ 10.1103/PhysRevLett.114.121801,arXiv:1501.03276.

[26] CMSCollaboration,SearchforraredecaysofZ andHiggsbosonstoJanda photoninproton-protoncollisionsat√s=13TeV,Eur.Phys.J.C79(2019) 94,https://doi.org/10.1140/epjc/s10052-019-6562-5,arXiv:1810.10056. [27] A.K.Likhoded, A.V.Luchinsky, Double charmoniaproduction in exclusiveZ

bosondecays,Mod.Phys.Lett.A33(2018)1850078,https://doi.org/10.1142/ S0217732318500785,arXiv:1712.03108.

[28] G.F.Giudice,O.Lebedev,Higgs-dependentYukawacouplings,Phys.Lett.B665 (2008)79,https://doi.org/10.1016/j.physletb.2008.05.062,arXiv:0804.1753. [29] G.D’Ambrosio,G.F.Giudice,G.Isidori,A.Strumia,Minimalflavourviolation:

aneffectivefieldtheoryapproach,Nucl.Phys.B645(2002)155,https://doi. org/10.1016/S0550-3213(02)00836-2,arXiv:hep-ph/0207036.

[30] C.D.Froggatt,H.B.Nielsen,Hierarchyofquarkmasses,CabibboanglesandCP violation,Nucl.Phys.B147(1979)277,https://doi.org/10.1016/0550-3213(79) 90316-X.

[31] L.Randall,R.Sundrum,Largemasshierarchy fromasmallextradimension, Phys.Rev.Lett.83(1999)3370,https://doi.org/10.1103/PhysRevLett.83.3370. [32]D.deFlorian,C.Grojean,F.Maltoni,C.Mariotti,A.Nikitenko,M.Pieri,P.Savard,

M. Schumacher,R. Tanaka,HandbookofLHCHiggsCross Sections:4. Deci-pheringtheNatureoftheHiggsSector,CERNReportCERN-2017-002-M,2017, arXiv:1610.07922.

[33] CMSCollaboration,TheCMSexperimentattheCERNLHC,J.Instrum.3(2008) S08004,https://doi.org/10.1088/1748-0221/3/08/S08004.

[34]CMSTechnicalDesignReportforthePixelDetectorUpgrade,TechnicalReport CERN-LHCC-2012-01,CMS-TDR-11,2012.

[35] CMS Collaboration, The CMStrigger system, J. Instrum. 12 (2017) P01020,

https://doi.org/10.1088/1748-0221/12/01/P01020,arXiv:1609.02366. [36] R.Frühwirth,ApplicationofKalmanfilteringtotrackandvertexfitting,Nucl.

Instrum. MethodsA 262(1987) 444, https://doi.org/10.1016/0168-9002(87) 90887-4.

[37] S.Alioli,P.Nason,C.Oleari,E.Re,NLOHiggsbosonproductionviagluonfusion matchedwithshowerinPOWHEG,J.HighEnergyPhys.04(2009)002,https:// doi.org/10.1088/1126-6708/2009/04/002,arXiv:0812.0578.

(6)

[38] P. Nason, C. Oleari, NLO Higgs boson production via vector-boson fusion matchedwithshowerinPOWHEG,J.HighEnergyPhys.02(2010)037,https:// doi.org/10.1007/JHEP02(2010)037,arXiv:0911.5299.

[39] R.D.Ball,V.Bertone,S.Carrazza,L.DelDebbio,S.Forte,P.Groth-Merrild,A. Guffanti,N.P.Hartland,Z.Kassabov,E.R.Nocera,J.I.Latorre,J.Rojo,L.Rottoli,E. Slade,M.Ubiali,NNPDF,Partondistributionsfromhigh-precisioncolliderdata, Eur.Phys.J.C77(2017)663,https://doi.org/10.1140/epjc/s10052-017-5199-5, arXiv:1706.00428.

[40] S.Bolognesi,Y.Gao,A.V.Gritsan,K.Melnikov,M.Schulze,N.V.Tran,A. Whit-beck, Onthe spinand parity ofa single-produced resonanceat the LHC, Phys. Rev.D 86(2012) 095031, https://doi.org/10.1103/PhysRevD.86.095031, arXiv:1208.4018.

[41] A.V.Gritsan, R.Röntsch,M.Schulze,M. Xiao,ConstraininganomalousHiggs bosoncouplingstotheheavyflavorfermionsusingmatrixelementtechniques, Phys. Rev.D94 (2016)055023, https://doi.org/10.1103/PhysRevD.94.055023, arXiv:1606.03107.

[42] T.Sjöstrand, S.Ask,J.R.Christiansen,R.Corke, N.Desai,P.Ilten,S.Mrenna, S. Prestel,C.O.Rasmussen, P.Z.Skands,Anintroductionto pythia 8.2, Com-put.Phys.Commun.191(2015)159,https://doi.org/10.1016/j.cpc.2015.01.024, arXiv:1410.3012.

[43] CMSCollaboration,Eventgeneratortunesobtainedfromunderlyingeventand multipartonscatteringmeasurements,Eur.Phys.J.C76(2016)155,https:// doi.org/10.1140/epjc/s10052-016-3988-x,arXiv:1512.00815.

[44] Y. Li, F.Petriello, Combining QCD and electroweak corrections to dilepton productioninFEWZ,Phys.Rev.D86(2012)094034,https://doi.org/10.1103/ PhysRevD.86.094034,arXiv:1208.5967.

[45] J.Alwall, R. Frederix,S. Frixione, V.Hirschi, F.Maltoni, O. Mattelaer, H.-S. Shao, T. Stelzer,P. Torrielli, M. Zaro, The automated computation of tree-levelandnext-to-leadingorderdifferentialcrosssections,andtheirmatching to partonshower simulations,J.High Energy Phys.07 (2014)079,https:// doi.org/10.1007/JHEP07(2014)079,arXiv:1405.0301.

[46] ParticleDataGroup,M.Tanabashi,etal.,Reviewofparticlephysics,Phys.Rev. D98(2018)030001,https://doi.org/10.1103/PhysRevD.98.030001.

[47] J.P.Lansberg,H.S.Shao,J-pairproductionatlargemomenta:indicationsfor double-partonscatteringsandlargeα5

s contributions,Phys.Lett.B751(2015) 479,https://doi.org/10.1016/j.physletb.2015.10.083,arXiv:1410.8822. [48] P.N. Baranov, A.M. Snigirev, P. Zotov, A. Szczurek, W. Schäfer, Interparticle

correlationsintheproductionofJpairsinproton-protoncollisions,Phys. Rev.D87(2013)034035,https://doi.org/10.1103/PhysRevD.87.034035,arXiv: 1210.1806.

[49] C.-F.Qiao,J.Wang,Y.-H.Zheng,DJpsiFDC:aneventgeneratorfortheprocess

gg→J/ψJ/ψattheLHC,Chin.Phys.C35(2011)209,https://doi.org/10.1088/ 1674-1137/35/3/001,arXiv:1007.0617.

[50] CMSCollaboration,MeasurementofpromptJ-pair productioninpp colli-sionsat√s=7TeV,J.HighEnergyPhys.09(2014)094,https://doi.org/10. 1007/JHEP09(2014)094,arXiv:1406.0484.

[51] S. Agostinelli, et al., GEANT4, Geant4—a simulation toolkit, Nucl. Instrum. MethodsA506(2003)250,https://doi.org/10.1016/S0168-9002(03)01368-8. [52] CMSCollaboration,PerformanceoftheCMSmuondetectorandmuon

recon-structionwithproton-protoncollisionsat√s=13TeV,J.Instrum.13(2018) P06015,https://doi.org/10.1088/1748-0221/13/06/P06015,arXiv:1804.04528. [53] CMSCollaboration,MeasurementoftheinclusiveW andZ productioncross

sectionsinpp collisionsat√s=7 TeV,J.HighEnergyPhys.10(2011)132,

https://doi.org/10.1007/JHEP10(2011)132,arXiv:1107.4789.

[54]W.Verkerke,D.P.Kirkby,TheRooFittoolkitfordatamodeling,in:Proceedings, 13thInt’lConf.onComputinginHigh-EnergyandNuclearPhysics,CHEP2003, LaJolla,California,US,2003,arXiv:physics/0306116,[SLAC-econf-C0303241].

[55] T.Junk,Confidencelevelcomputationforcombiningsearcheswithsmall statis-tics,Nucl.Instrum.MethodsA434(1999)435,https://doi.org/10.1016/S0168 -9002(99)00498-2,arXiv:hep-ex/9902006.

[56] A.L.Read,Presentationofsearchresults:theCLstechnique,J.Phys.G28(2002) 2693,https://doi.org/10.1088/0954-3899/28/10/313.

[57] TheATLASCollaboration,TheCMSCollaboration,TheLHCHiggsCombination Group,Procedurefor the LHCHiggsBosonSearch CombinationinSummer 2011, Technical Report CMS-NOTE-2011-005, ATL-PHYS-PUB-2011-11, 2011,

https://cds.cern.ch/record/1379837.

[58] CMSCollaboration,CMSLuminosityMeasurementsforthe2017DataTaking Periodat√s=13TeV,CMSPhysicsAnalysisSummaryCMS-PAS-LUM-17-004, 2018,https://cds.cern.ch/record/2621960.

[59] J.Butterworth, etal., PDF4LHCrecommendationsfor LHCRunII,J. Phys.G 43(2016)023001,https://doi.org/10.1088/0954-3899/43/2/023001,arXiv:1510. 03865.

[60] A.D.Martin,W.J.Stirling,R.S.Thorne,G.Watt,PartondistributionsfortheLHC, Eur.Phys.J.C63(2009)189,https://doi.org/10.1140/epjc/s10052-009-1072-5, arXiv:0901.0002.

[61] H.L.Lai,M.Guzzi,J.Huston,Z.Li,P.M.Nadolsky,J.Pumplin,C.P.Yuan,New partondistributionsforcolliderphysics,Phys.Rev.D82(2010)74024,https:// doi.org/10.1103/PhysRevD.82.074024,arXiv:1007.2241.

[62] R.D.Ball,V.Bertone, F.Cerutti, L.DelDebbio, S. Forte,A.Guffanti, J.I. La-torre,J. Rojo, M. Ubiali, NNPDF,Impact ofheavy quark masseson parton distributionsandLHCphenomenology,Nucl.Phys.B849(2011)296,https:// doi.org/10.1016/j.nuclphysb.2011.03.021,arXiv:1101.1300.

TheCMSCollaboration

A.M. Sirunyan†, A. Tumasyan YerevanPhysicsInstitute,Yerevan,Armenia

W. Adam, F. Ambrogi, T. Bergauer, J. Brandstetter, M. Dragicevic, J. Erö,A. Escalante Del Valle,M. Flechl, R. Frühwirth1,M. Jeitler1,N. Krammer, I. Krätschmer,D. Liko,T. Madlener, I. Mikulec, N. Rad,

J. Schieck1,R. Schöfbeck, M. Spanring, D. Spitzbart,W. Waltenberger, C.-E. Wulz1,M. Zarucki InstitutfürHochenergiephysik,Wien,Austria

V. Drugakov,V. Mossolov, J. Suarez Gonzalez InstituteforNuclearProblems,Minsk,Belarus

M.R. Darwish,E.A. De Wolf, D. Di Croce, X. Janssen,J. Lauwers, A. Lelek,M. Pieters, H. Rejeb Sfar, H. Van Haevermaet,P. Van Mechelen, S. Van Putte, N. Van Remortel

UniversiteitAntwerpen,Antwerpen,Belgium

F. Blekman, E.S. Bols,S.S. Chhibra, J. D’Hondt,J. De Clercq, D. Lontkovskyi, S. Lowette,I. Marchesini, S. Moortgat, L. Moreels,Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs

(7)

D. Beghin,B. Bilin, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, B. Dorney, L. Favart, A. Grebenyuk,A.K. Kalsi, J. Luetic,A. Popov, N. Postiau,E. Starling, L. Thomas, C. Vander Velde, P. Vanlaer,D. Vannerom, Q. Wang

UniversitéLibredeBruxelles,Bruxelles,Belgium

T. Cornelis,D. Dobur, I. Khvastunov2, C. Roskas, D. Trocino, M. Tytgat, W. Verbeke,B. Vermassen, M. Vit, N. Zaganidis

GhentUniversity,Ghent,Belgium

O. Bondu,G. Bruno, C. Caputo, P. David,C. Delaere, M. Delcourt,A. Giammanco, V. Lemaitre, A. Magitteri,J. Prisciandaro, A. Saggio, M. Vidal Marono, P. Vischia, J. Zobec

UniversitéCatholiquedeLouvain,Louvain-la-Neuve,Belgium

F.L. Alves,G.A. Alves,G. Correia Silva, C. Hensel,A. Moraes, P. Rebello Teles CentroBrasileirodePesquisasFisicas,RiodeJaneiro,Brazil

E. Belchior Batista Das Chagas, W. Carvalho,J. Chinellato3, E. Coelho, E.M. Da Costa, G.G. Da Silveira4, D. De Jesus Damiao,C. De Oliveira Martins, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, J. Martins5,D. Matos Figueiredo, M. Medina Jaime6,M. Melo De Almeida,C. Mora Herrera, L. Mundim, H. Nogima,W.L. Prado Da Silva, L.J. Sanchez Rosas, A. Santoro,A. Sznajder, M. Thiel,

E.J. Tonelli Manganote3,F. Torres Da Silva De Araujo, A. Vilela Pereira UniversidadedoEstadodoRiodeJaneiro,RiodeJaneiro,Brazil

S. Ahujaa,C.A. Bernardesa, L. Calligarisa,T.R. Fernandez Perez Tomeia,E.M. Gregoresb, D.S. Lemos, P.G. Mercadanteb,S.F. Novaesa,Sandra S. Padulaa

aUniversidadeEstadualPaulista,SãoPaulo,Brazil bUniversidadeFederaldoABC,SãoPaulo,Brazil

A. Aleksandrov, G. Antchev, R. Hadjiiska,P. Iaydjiev, A. Marinov, M. Misheva,M. Rodozov, M. Shopova, G. Sultanov

InstituteforNuclearResearchandNuclearEnergy,BulgarianAcademyofSciences,Sofia,Bulgaria

M. Bonchev,A. Dimitrov, T. Ivanov, L. Litov, B. Pavlov,P. Petkov UniversityofSofia,Sofia,Bulgaria

W. Fang7, X. Gao7,L. Yuan BeihangUniversity,Beijing,China

M. Ahmad, G.M. Chen,H.S. Chen, M. Chen, C.H. Jiang, D. Leggat, H. Liao,Z. Liu, S.M. Shaheen8, A. Spiezia,J. Tao, E. Yazgan, H. Zhang, S. Zhang8,J. Zhao

InstituteofHighEnergyPhysics,Beijing,China

A. Agapitos,Y. Ban, G. Chen, A. Levin,J. Li, L. Li,Q. Li, Y. Mao, S.J. Qian, D. Wang StateKeyLaboratoryofNuclearPhysicsandTechnology,PekingUniversity,Beijing,China

Z. Hu, Y. Wang TsinghuaUniversity,Beijing,China

C. Avila,A. Cabrera, L.F. Chaparro Sierra, C. Florez,C.F. González Hernández, M.A. Segura Delgado UniversidaddeLosAndes,Bogota,Colombia

(8)

J. Mejia Guisao,J.D. Ruiz Alvarez,C.A. Salazar González, N. Vanegas Arbelaez UniversidaddeAntioquia,Medellin,Colombia

D. Giljanovi ´c,N. Godinovic, D. Lelas, I. Puljak, T. Sculac

UniversityofSplit,FacultyofElectricalEngineering,MechanicalEngineeringandNavalArchitecture,Split,Croatia Z. Antunovic, M. Kovac

UniversityofSplit,FacultyofScience,Split,Croatia

V. Brigljevic,S. Ceci, D. Ferencek,K. Kadija, B. Mesic, M. Roguljic, A. Starodumov9, T. Susa InstituteRudjerBoskovic,Zagreb,Croatia

M.W. Ather,A. Attikis, E. Erodotou, A. Ioannou,M. Kolosova, S. Konstantinou, G. Mavromanolakis, J. Mousa,C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski,D. Tsiakkouri

UniversityofCyprus,Nicosia,Cyprus

M. Finger10, M. Finger Jr.10, A. Kveton,J. Tomsa CharlesUniversity,Prague,CzechRepublic

E. Ayala

EscuelaPolitecnicaNacional,Quito,Ecuador E. Carrera Jarrin

UniversidadSanFranciscodeQuito,Quito,Ecuador Y. Assran11,12,S. Elgammal12

AcademyofScientificResearchandTechnologyoftheArabRepublicofEgypt,EgyptianNetworkofHighEnergyPhysics,Cairo,Egypt

S. Bhowmik, A. Carvalho Antunes De Oliveira,R.K. Dewanjee, K. Ehataht, M. Kadastik, M. Raidal, C. Veelken

NationalInstituteofChemicalPhysicsandBiophysics,Tallinn,Estonia

P. Eerola, L. Forthomme,H. Kirschenmann, K. Osterberg,M. Voutilainen DepartmentofPhysics,UniversityofHelsinki,Helsinki,Finland

F. Garcia, J. Havukainen, J.K. Heikkilä, T. Järvinen, V. Karimäki,R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Laurila, S. Lehti, T. Lindén,P. Luukka, T. Mäenpää, H. Siikonen,E. Tuominen, J. Tuominiemi

HelsinkiInstituteofPhysics,Helsinki,Finland T. Tuuva

LappeenrantaUniversityofTechnology,Lappeenranta,Finland

M. Besancon, F. Couderc,M. Dejardin, D. Denegri, B. Fabbro,J.L. Faure, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry,C. Leloup,E. Locci, J. Malcles,J. Rander, A. Rosowsky,

M.Ö. Sahin,A. Savoy-Navarro13,M. Titov IRFU,CEA,UniversitéParis-Saclay,Gif-sur-Yvette,France

C. Amendola, F. Beaudette, P. Busson, C. Charlot, B. Diab, G. Falmagne,R. Granier de Cassagnac, I. Kucher, A. Lobanov, C. Martin Perez,M. Nguyen, C. Ochando, P. Paganini, J. Rembser,R. Salerno, J.B. Sauvan, Y. Sirois, A. Zabi,A. Zghiche

(9)

J.-L. Agram14,J. Andrea, D. Bloch,G. Bourgatte, J.-M. Brom, E.C. Chabert,C. Collard, E. Conte14, J.-C. Fontaine14,D. Gelé, U. Goerlach,M. Jansová, A.-C. Le Bihan, N. Tonon,P. Van Hove

UniversitédeStrasbourg,CNRS,IPHCUMR7178,Strasbourg,France S. Gadrat

CentredeCalculdel’InstitutNationaldePhysiqueNucleaireetdePhysiquedesParticules,CNRS/IN2P3,Villeurbanne,France

S. Beauceron,C. Bernet, G. Boudoul,C. Camen, N. Chanon, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni,J. Fay, S. Gascon, M. Gouzevitch, B. Ille, Sa. Jain, F. Lagarde, I.B. Laktineh,H. Lattaud, M. Lethuillier,L. Mirabito, S. Perries,V. Sordini, G. Touquet, M. Vander Donckt, S. Viret

UniversitédeLyon,UniversitéClaudeBernardLyon1,CNRS-IN2P3,InstitutdePhysiqueNucléairedeLyon,Villeurbanne,France A. Khvedelidze10

GeorgianTechnicalUniversity,Tbilisi,Georgia Z. Tsamalaidze10

TbilisiStateUniversity,Tbilisi,Georgia

C. Autermann,L. Feld, M.K. Kiesel, K. Klein, M. Lipinski,D. Meuser, A. Pauls, M. Preuten, M.P. Rauch, C. Schomakers,J. Schulz,M. Teroerde, B. Wittmer

RWTHAachenUniversity,I.PhysikalischesInstitut,Aachen,Germany

A. Albert, M. Erdmann,S. Erdweg, T. Esch, B. Fischer, R. Fischer, S. Ghosh,T. Hebbeker, K. Hoepfner, H. Keller, L. Mastrolorenzo, M. Merschmeyer,A. Meyer, P. Millet,G. Mocellin, S. Mondal, S. Mukherjee, D. Noll, A. Novak, T. Pook,A. Pozdnyakov, T. Quast,M. Radziej, Y. Rath, H. Reithler,M. Rieger, J. Roemer, A. Schmidt,S.C. Schuler, A. Sharma, S. Thüer, S. Wiedenbeck

RWTHAachenUniversity,III.PhysikalischesInstitutA,Aachen,Germany

G. Flügge,W. Haj Ahmad15,O. Hlushchenko, T. Kress,T. Müller, A. Nehrkorn, A. Nowack, C. Pistone, O. Pooth,D. Roy, H. Sert, A. Stahl16

RWTHAachenUniversity,III.PhysikalischesInstitutB,Aachen,Germany

M. Aldaya Martin,P. Asmuss, I. Babounikau, H. Bakhshiansohi, K. Beernaert,O. Behnke, U. Behrens, A. Bermúdez Martínez, D. Bertsche, A.A. Bin Anuar, K. Borras17,V. Botta, A. Campbell,A. Cardini, P. Connor,S. Consuegra Rodríguez, C. Contreras-Campana, V. Danilov,A. De Wit, M.M. Defranchis, C. Diez Pardos,D. Domínguez Damiani,G. Eckerlin, D. Eckstein, T. Eichhorn, A. Elwood, E. Eren, E. Gallo18, A. Geiser, J.M. Grados Luyando, A. Grohsjean, M. Guthoff,M. Haranko, A. Harb,A. Jafari, N.Z. Jomhari, H. Jung,A. Kasem17, M. Kasemann, H. Kaveh, J. Keaveney, C. Kleinwort,J. Knolle, D. Krücker,W. Lange, T. Lenz, J. Leonard,J. Lidrych, K. Lipka,W. Lohmann19,R. Mankel,

I.-A. Melzer-Pellmann,A.B. Meyer, M. Meyer, M. Missiroli, G. Mittag, J. Mnich, A. Mussgiller,

V. Myronenko,D. Pérez Adán,S.K. Pflitsch, D. Pitzl,A. Raspereza, A. Saibel,M. Savitskyi, V. Scheurer, P. Schütze,C. Schwanenberger, R. Shevchenko, A. Singh,H. Tholen, O. Turkot, A. Vagnerini,

M. Van De Klundert,G.P. Van Onsem, R. Walsh, Y. Wen,K. Wichmann,C. Wissing, O. Zenaiev, R. Zlebcik

DeutschesElektronen-Synchrotron,Hamburg,Germany

R. Aggleton,S. Bein, L. Benato, A. Benecke, V. Blobel, T. Dreyer, A. Ebrahimi, A. Fröhlich, C. Garbers, E. Garutti,D. Gonzalez, P. Gunnellini, J. Haller, A. Hinzmann, A. Karavdina, G. Kasieczka, R. Klanner, R. Kogler,N. Kovalchuk, S. Kurz, V. Kutzner, J. Lange,T. Lange, A. Malara, D. Marconi,J. Multhaup, M. Niedziela, C.E.N. Niemeyer,D. Nowatschin, A. Perieanu, A. Reimers, O. Rieger,C. Scharf, P. Schleper,

(10)

S. Schumann,J. Schwandt, J. Sonneveld,H. Stadie, G. Steinbrück, F.M. Stober, M. Stöver, B. Vormwald, I. Zoi

UniversityofHamburg,Hamburg,Germany

M. Akbiyik, C. Barth,M. Baselga, S. Baur, T. Berger,E. Butz, R. Caspart,T. Chwalek, W. De Boer, A. Dierlamm, K. El Morabit,N. Faltermann, M. Giffels,P. Goldenzweig, A. Gottmann,M.A. Harrendorf, F. Hartmann16,U. Husemann, S. Kudella, S. Mitra, M.U. Mozer,Th. Müller, M. Musich,A. Nürnberg, G. Quast, K. Rabbertz,M. Schröder, I. Shvetsov, H.J. Simonis,R. Ulrich, M. Weber, C. Wöhrmann, R. Wolf

KarlsruherInstitutfuerTechnologie,Karlsruhe,Germany

G. Anagnostou, P. Asenov, G. Daskalakis,T. Geralis,A. Kyriakis, D. Loukas, G. Paspalaki InstituteofNuclearandParticlePhysics(INPP),NCSRDemokritos,AghiaParaskevi,Greece

M. Diamantopoulou,G. Karathanasis, P. Kontaxakis,A. Panagiotou, I. Papavergou, N. Saoulidou, A. Stakia, K. Theofilatos,K. Vellidis

NationalandKapodistrianUniversityofAthens,Athens,Greece

G. Bakas, K. Kousouris,I. Papakrivopoulos, G. Tsipolitis NationalTechnicalUniversityofAthens,Athens,Greece

I. Evangelou, C. Foudas,P. Gianneios, P. Katsoulis, P. Kokkas, S. Mallios,K. Manitara, N. Manthos, I. Papadopoulos, J. Strologas,F.A. Triantis, D. Tsitsonis

UniversityofIoánnina,Ioánnina,Greece

M. Bartók20,M. Csanad, P. Major, K. Mandal, A. Mehta, M.I. Nagy, G. Pasztor, O. Surányi, G.I. Veres MTA-ELTELendületCMSParticleandNuclearPhysicsGroup,EötvösLorándUniversity,Budapest,Hungary

G. Bencze,C. Hajdu, D. Horvath21,F. Sikler, T.Á. Vámi,V. Veszpremi, G. Vesztergombi† WignerResearchCentreforPhysics,Budapest,Hungary

N. Beni, S. Czellar, J. Karancsi20,A. Makovec, J. Molnar,Z. Szillasi InstituteofNuclearResearchATOMKI,Debrecen,Hungary

P. Raics, D. Teyssier,Z.L. Trocsanyi, B. Ujvari InstituteofPhysics,UniversityofDebrecen,Debrecen,Hungary

T. Csorgo, W.J. Metzger, F. Nemes, T. Novak EszterhazyKarolyUniversity,KarolyRobertCampus,Gyongyos,Hungary S. Choudhury, J.R. Komaragiri, P.C. Tiwari IndianInstituteofScience(IISc),Bangalore,India

S. Bahinipati22, C. Kar,P. Mal, V.K. Muraleedharan Nair Bindhu, A. Nayak23,D.K. Sahoo22,S.K. Swain NationalInstituteofScienceEducationandResearch,HBNI,Bhubaneswar,India

S. Bansal, S.B. Beri,V. Bhatnagar, S. Chauhan,R. Chawla, N. Dhingra, R. Gupta, A. Kaur, M. Kaur, S. Kaur, P. Kumari, M. Lohan, M. Meena, K. Sandeep, S. Sharma,J.B. Singh, A.K. Virdi, G. Walia

(11)

A. Bhardwaj,B.C. Choudhary, R.B. Garg,M. Gola, S. Keshri, Ashok Kumar,S. Malhotra, M. Naimuddin, P. Priyanka,K. Ranjan, Aashaq Shah, R. Sharma

UniversityofDelhi,Delhi,India

R. Bhardwaj24, M. Bharti24, R. Bhattacharya,S. Bhattacharya, U. Bhawandeep24, D. Bhowmik, S. Dey, S. Dutta, S. Ghosh,M. Maity25,K. Mondal, S. Nandan, A. Purohit,P.K. Rout, G. Saha,S. Sarkar,

T. Sarkar25,M. Sharan, B. Singh24,S. Thakur24 SahaInstituteofNuclearPhysics,HBNI,Kolkata,India

P.K. Behera,P. Kalbhor, A. Muhammad, P.R. Pujahari,A. Sharma, A.K. Sikdar IndianInstituteofTechnologyMadras,Madras,India

R. Chudasama, D. Dutta, V. Jha, V. Kumar, D.K. Mishra, P.K. Netrakanti, L.M. Pant, P. Shukla BhabhaAtomicResearchCentre,Mumbai,India

T. Aziz,M.A. Bhat, S. Dugad, G.B. Mohanty, N. Sur, Ravindra Kumar Verma TataInstituteofFundamentalResearch-A,Mumbai,India

S. Banerjee, S. Bhattacharya, S. Chatterjee,P. Das, M. Guchait,S. Karmakar, S. Kumar, G. Majumder, K. Mazumdar,N. Sahoo, S. Sawant

TataInstituteofFundamentalResearch-B,Mumbai,India

S. Chauhan,S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, A. Rastogi, S. Sharma IndianInstituteofScienceEducationandResearch(IISER),Pune,India

S. Chenarani26, E. Eskandari Tadavani,S.M. Etesami26, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, F. Rezaei Hosseinabadi

InstituteforResearchinFundamentalSciences(IPM),Tehran,Iran M. Felcini,M. Grunewald

UniversityCollegeDublin,Dublin,Ireland

M. Abbresciaa,b, C. Calabriaa,b, A. Colaleoa, D. Creanzaa,c,L. Cristellaa,b, N. De Filippisa,c,

M. De Palmaa,b, A. Di Florioa,b, L. Fiorea, A. Gelmia,b,G. Iasellia,c,M. Incea,b, S. Lezkia,b,G. Maggia,c, M. Maggia,G. Minielloa,b,S. Mya,b,S. Nuzzoa,b, A. Pompilia,b, G. Pugliesea,c,R. Radognaa, A. Ranieria, G. Selvaggia,b, L. Silvestrisa, R. Vendittia, P. Verwilligena

aINFNSezionediBari,Bari,Italy bUniversitàdiBari,Bari,Italy cPolitecnicodiBari,Bari,Italy

G. Abbiendia,C. Battilanaa,b,D. Bonacorsia,b, L. Borgonovia,b,S. Braibant-Giacomellia,b,

R. Campaninia,b,P. Capiluppia,b,A. Castroa,b, F.R. Cavalloa, C. Cioccaa, G. Codispotia,b, M. Cuffiania,b, G.M. Dallavallea,F. Fabbria,A. Fanfania,b,E. Fontanesi, P. Giacomellia, C. Grandia, L. Guiduccia,b, F. Iemmia,b,S. Lo Meoa,27, S. Marcellinia, G. Masettia,F.L. Navarriaa,b,A. Perrottaa,F. Primaveraa,b, A.M. Rossia,b,T. Rovellia,b, G.P. Sirolia,b,N. Tosia

aINFNSezionediBologna,Bologna,Italy bUniversitàdiBologna,Bologna,Italy

S. Albergoa,b,28,S. Costaa,b,A. Di Mattiaa,R. Potenzaa,b, A. Tricomia,b,28, C. Tuvea,b

aINFNSezionediCatania,Catania,Italy bUniversitàdiCatania,Catania,Italy

(12)

G. Barbaglia, R. Ceccarelli,K. Chatterjeea,b,V. Ciullia,b,C. Civininia,R. D’Alessandroa,b, E. Focardia,b, G. Latino,P. Lenzia,b,M. Meschinia,S. Paolettia,G. Sguazzonia, D. Stroma,L. Viliania

aINFNSezionediFirenze,Firenze,Italy bUniversitàdiFirenze,Firenze,Italy

L. Benussi, S. Bianco, D. Piccolo INFNLaboratoriNazionalidiFrascati,Frascati,Italy

M. Bozzoa,b,F. Ferroa,R. Mulargiaa,b,E. Robuttia, S. Tosia,b

aINFNSezionediGenova,Genova,Italy bUniversitàdiGenova,Genova,Italy

A. Benagliaa, A. Beschia,b,F. Brivioa,b,V. Cirioloa,b,16, S. Di Guidaa,b,16, M.E. Dinardoa,b,P. Dinia, S. Fiorendia,b,S. Gennaia,A. Ghezzia,b,P. Govonia,b,L. Guzzia,b, M. Malbertia, S. Malvezzia, D. Menascea,F. Montia,b,L. Moronia, G. Ortonaa,b,M. Paganonia,b, D. Pedrinia,S. Ragazzia,b, T. Tabarelli de Fatisa,b,D. Zuoloa,b

aINFNSezionediMilano-Bicocca,Milano,Italy bUniversitàdiMilano-Bicocca,Milano,Italy

S. Buontempoa, N. Cavalloa,c, A. De Iorioa,b,A. Di Crescenzoa,b, F. Fabozzia,c,F. Fiengaa, G. Galatia, A.O.M. Iorioa,b, L. Listaa,b,S. Meolaa,d,16, P. Paoluccia,16,B. Rossia,C. Sciaccaa,b, E. Voevodinaa,b

aINFNSezionediNapoli,Napoli,Italy bUniversitàdiNapoli‘FedericoII’,Napoli,Italy cUniversitàdellaBasilicata,Potenza,Italy dUniversitàG.Marconi,Roma,Italy

P. Azzia,N. Bacchettaa,A. Bolettia,b,A. Bragagnolo, R. Carlina,b, P. Checchiaa,P. De Castro Manzanoa, T. Dorigoa,U. Dossellia,F. Gasparinia,b,U. Gasparinia,b, A. Gozzelinoa, S.Y. Hoh, P. Lujan,M. Margonia,b, A.T. Meneguzzoa,b,J. Pazzinia,b,N. Pozzobona,b, M. Presillab,P. Ronchesea,b, R. Rossina,b,

F. Simonettoa,b,A. Tiko, M. Tosia,b, M. Zanettia,b,P. Zottoa,b,G. Zumerlea,b

aINFNSezionediPadova,Padova,Italy bUniversitàdiPadova,Padova,Italy cUniversitàdiTrento,Trento,Italy

A. Braghieria,P. Montagnaa,b, S.P. Rattia,b,V. Rea,M. Ressegottia,b,C. Riccardia,b,P. Salvinia,I. Vaia,b, P. Vituloa,b

aINFNSezionediPavia,Pavia,Italy bUniversitàdiPavia,Pavia,Italy

M. Biasinia,b, G.M. Bileia,C. Cecchia,b,D. Ciangottinia,b,L. Fanòa,b,P. Laricciaa,b, R. Leonardia,b, E. Manonia, G. Mantovania,b, V. Mariania,b,M. Menichellia,A. Rossia,b,A. Santocchiaa,b, D. Spigaa

aINFNSezionediPerugia,Perugia,Italy bUniversitàdiPerugia,Perugia,Italy

K. Androsova,P. Azzurria,G. Bagliesia,V. Bertacchia,c,L. Bianchinia,T. Boccalia, R. Castaldia,

M.A. Cioccia,b, R. Dell’Orsoa,G. Fedia, L. Gianninia,c, A. Giassia, M.T. Grippoa,F. Ligabuea,c, E. Mancaa,c, G. Mandorlia,c, A. Messineoa,b, F. Pallaa,A. Rizzia,b, G. Rolandi29,S. Roy Chowdhury, A. Scribanoa, P. Spagnoloa,R. Tenchinia, G. Tonellia,b,N. Turini, A. Venturia,P.G. Verdinia

aINFNSezionediPisa,Pisa,Italy bUniversitàdiPisa,Pisa,Italy

(13)

F. Cavallaria,M. Cipriania,b, D. Del Rea,b,E. Di Marcoa,b,M. Diemoza,E. Longoa,b,B. Marzocchia,b, P. Meridiania,G. Organtinia,b,F. Pandolfia, R. Paramattia,b, C. Quarantaa,b, S. Rahatloua,b,C. Rovellia, F. Santanastasioa,b, L. Soffia,b

aINFNSezionediRoma,Rome,Italy bSapienzaUniversitàdiRoma,Rome,Italy

N. Amapanea,b,R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c,N. Bartosika,R. Bellana,b,C. Biinoa, A. Cappatia,b,N. Cartigliaa, S. Comettia,M. Costaa,b, R. Covarellia,b,N. Demariaa, B. Kiania,b,

C. Mariottia, S. Masellia,E. Migliorea,b, V. Monacoa,b, E. Monteila,b, M. Montenoa,M.M. Obertinoa,b, L. Pachera,b,N. Pastronea, M. Pelliccionia,G.L. Pinna Angionia,b,A. Romeroa,b,M. Ruspaa,c, R. Sacchia,b, R. Salvaticoa,b,V. Solaa,A. Solanoa,b, D. Soldia,b, A. Staianoa

aINFNSezionediTorino,Torino,Italy bUniversitàdiTorino,Torino,Italy

cUniversitàdelPiemonteOrientale,Novara,Italy

S. Belfortea,V. Candelisea,b, M. Casarsaa,F. Cossuttia,A. Da Rolda,b,G. Della Riccaa,b,F. Vazzolera,b, A. Zanettia

aINFNSezionediTrieste,Trieste,Italy bUniversitàdiTrieste,Trieste,Italy

B. Kim, D.H. Kim,G.N. Kim, M.S. Kim, J. Lee,S.W. Lee, C.S. Moon,Y.D. Oh, S.I. Pak, S. Sekmen,D.C. Son, Y.C. Yang

KyungpookNationalUniversity,Daegu,RepublicofKorea H. Kim,D.H. Moon,G. Oh

ChonnamNationalUniversity,InstituteforUniverseandElementaryParticles,Kwangju,RepublicofKorea B. Francois,T.J. Kim, J. Park

HanyangUniversity,Seoul,RepublicofKorea

S. Cho,S. Choi, Y. Go, D. Gyun,S. Ha,B. Hong, K. Lee, K.S. Lee,J. Lim, J. Park, S.K. Park,Y. Roh KoreaUniversity,Seoul,RepublicofKorea

J. Goh

KyungHeeUniversity,DepartmentofPhysics,RepublicofKorea H.S. Kim

SejongUniversity,Seoul,RepublicofKorea

J. Almond,J.H. Bhyun, J. Choi, S. Jeon, J. Kim, J.S. Kim,H. Lee, K. Lee,S. Lee, K. Nam, M. Oh,S.B. Oh, B.C. Radburn-Smith, U.K. Yang,H.D. Yoo, I. Yoon, G.B. Yu

SeoulNationalUniversity,Seoul,RepublicofKorea

D. Jeon, H. Kim,J.H. Kim, J.S.H. Lee, I.C. Park, I. Watson UniversityofSeoul,Seoul,RepublicofKorea

Y. Choi,C. Hwang, Y. Jeong, J. Lee,Y. Lee, I. Yu SungkyunkwanUniversity,Suwon,RepublicofKorea

V. Veckalns30

(14)

V. Dudenas, A. Juodagalvis,G. Tamulaitis, J. Vaitkus VilniusUniversity,Vilnius,Lithuania

Z.A. Ibrahim, F. Mohamad Idris31, W.A.T. Wan Abdullah,M.N. Yusli, Z. Zolkapli NationalCentreforParticlePhysics,UniversitiMalaya,KualaLumpur,Malaysia

J.F. Benitez, A. Castaneda Hernandez,J.A. Murillo Quijada, L. Valencia Palomo UniversidaddeSonora(UNISON),Hermosillo,Mexico

H. Castilla-Valdez, E. De La Cruz-Burelo,I. Heredia-De La Cruz32,R. Lopez-Fernandez, A. Sanchez-Hernandez

CentrodeInvestigacionydeEstudiosAvanzadosdelIPN,MexicoCity,Mexico

S. Carrillo Moreno, C. Oropeza Barrera, M. Ramirez-Garcia, F. Vazquez Valencia UniversidadIberoamericana,MexicoCity,Mexico

J. Eysermans, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada BenemeritaUniversidadAutonomadePuebla,Puebla,Mexico

A. Morelos Pineda

UniversidadAutónomadeSanLuisPotosí,SanLuisPotosí,Mexico N. Raicevic

UniversityofMontenegro,Podgorica,Montenegro D. Krofcheck

UniversityofAuckland,Auckland,NewZealand S. Bheesette,P.H. Butler UniversityofCanterbury,Christchurch,NewZealand

A. Ahmad, M. Ahmad, Q. Hassan,H.R. Hoorani, W.A. Khan, M.A. Shah, M. Shoaib, M. Waqas NationalCentreforPhysics,Quaid-I-AzamUniversity,Islamabad,Pakistan

V. Avati,L. Grzanka, M. Malawski

AGHUniversityofScienceandTechnologyFacultyofComputerScience,ElectronicsandTelecommunications,Krakow,Poland

H. Bialkowska, M. Bluj,B. Boimska, M. Górski, M. Kazana, M. Szleper,P. Zalewski NationalCentreforNuclearResearch,Swierk,Poland

K. Bunkowski,A. Byszuk33, K. Doroba,A. Kalinowski, M. Konecki,J. Krolikowski, M. Misiura, M. Olszewski, A. Pyskir,M. Walczak

InstituteofExperimentalPhysics,FacultyofPhysics,UniversityofWarsaw,Warsaw,Poland

M. Araujo, P. Bargassa,D. Bastos, A. Di Francesco, P. Faccioli,B. Galinhas, M. Gallinaro, J. Hollar, N. Leonardo,J. Seixas, K. Shchelina,G. Strong, O. Toldaiev, J. Varela

LaboratóriodeInstrumentaçãoeFísicaExperimentaldePartículas,Lisboa,Portugal

S. Afanasiev,P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev,V. Karjavine, A. Lanev, A. Malakhov,V. Matveev34,35,P. Moisenz, V. Palichik,V. Perelygin, M. Savina, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov,N. Voytishin, A. Zarubin

(15)

L. Chtchipounov,V. Golovtsov, Y. Ivanov, V. Kim36, E. Kuznetsova37,P. Levchenko,V. Murzin, V. Oreshkin,I. Smirnov, D. Sosnov,V. Sulimov, L. Uvarov, A. Vorobyev

PetersburgNuclearPhysicsInstitute,Gatchina(St.Petersburg),Russia

Yu. Andreev,A. Dermenev,S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov,N. Krasnikov, A. Pashenkov,D. Tlisov, A. Toropin

InstituteforNuclearResearch,Moscow,Russia

V. Epshteyn,V. Gavrilov, N. Lychkovskaya,A. Nikitenko38,V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov,A. Stepennov, M. Toms,E. Vlasov,A. Zhokin

InstituteforTheoreticalandExperimentalPhysicsnamedbyA.I.AlikhanovofNRC‘KurchatovInstitute’,Moscow,Russia T. Aushev

MoscowInstituteofPhysicsandTechnology,Moscow,Russia

O. Bychkova, R. Chistov39, M. Danilov39,S. Polikarpov39,E. Tarkovskii NationalResearchNuclearUniversity‘MoscowEngineeringPhysicsInstitute’(MEPhI),Moscow,Russia

V. Andreev,M. Azarkin, I. Dremin, M. Kirakosyan, A. Terkulov P.N.LebedevPhysicalInstitute,Moscow,Russia

A. Belyaev,E. Boos,M. Dubinin40, L. Dudko,A. Ershov, A. Gribushin,V. Klyukhin, O. Kodolova, I. Lokhtin, S. Obraztsov,S. Petrushanko,V. Savrin, A. Snigirev

SkobeltsynInstituteofNuclearPhysics,LomonosovMoscowStateUniversity,Moscow,Russia

A. Barnyakov41, V. Blinov41, T. Dimova41,L. Kardapoltsev41, Y. Skovpen41 NovosibirskStateUniversity(NSU),Novosibirsk,Russia

I. Azhgirey,I. Bayshev,S. Bitioukov, V. Kachanov, D. Konstantinov, P. Mandrik,V. Petrov, R. Ryutin, S. Slabospitskii, A. Sobol, S. Troshin, N. Tyurin,A. Uzunian, A. Volkov

InstituteforHighEnergyPhysicsofNationalResearchCentre‘KurchatovInstitute’,Protvino,Russia A. Babaev,A. Iuzhakov, V. Okhotnikov

NationalResearchTomskPolytechnicUniversity,Tomsk,Russia V. Borchsh, V. Ivanchenko, E. Tcherniaev TomskStateUniversity,Tomsk,Russia

P. Adzic42,P. Cirkovic, D. Devetak,M. Dordevic, P. Milenovic, J. Milosevic, M. Stojanovic UniversityofBelgrade,FacultyofPhysicsandVINCAInstituteofNuclearSciences,Serbia

M. Aguilar-Benitez,J. Alcaraz Maestre, A. Álvarez Fernández, I. Bachiller, M. Barrio Luna, J.A. Brochero Cifuentes,C.A. Carrillo Montoya, M. Cepeda, M. Cerrada,N. Colino, B. De La Cruz, A. Delgado Peris,C. Fernandez Bedoya, J.P. Fernández Ramos,J. Flix, M.C. Fouz, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa,D. Moran, Á. Navarro Tobar,A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, I. Redondo,L. Romero, S. Sánchez Navas, M.S. Soares, A. Triossi,C. Willmott CentrodeInvestigacionesEnergéticasMedioambientalesyTecnológicas(CIEMAT),Madrid,Spain

C. Albajar, J.F. de Trocóniz UniversidadAutónomadeMadrid,Madrid,Spain

(16)

B. Alvarez Gonzalez, J. Cuevas, C. Erice,J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, J.R. González Fernández, E. Palencia Cortezon,V. Rodríguez Bouza, S. Sanchez Cruz

UniversidaddeOviedo,Oviedo,Spain

I.J. Cabrillo, A. Calderon, B. Chazin Quero,J. Duarte Campderros, M. Fernandez,P.J. Fernández Manteca, A. García Alonso,G. Gomez, C. Martinez Rivero, P. Martinez Ruiz del Arbol, F. Matorras,J. Piedra Gomez, C. Prieels, T. Rodrigo, A. Ruiz-Jimeno, L. Russo43,L. Scodellaro,N. Trevisani, I. Vila, J.M. Vizan Garcia InstitutodeFísicadeCantabria(IFCA),CSIC-UniversidaddeCantabria,Santander,Spain

K. Malagalage

UniversityofColombo,Colombo,SriLanka

W.G.D. Dharmaratna, N. Wickramage UniversityofRuhuna,DepartmentofPhysics,Matara,SriLanka

D. Abbaneo, B. Akgun,E. Auffray, G. Auzinger, J. Baechler,P. Baillon, A.H. Ball, D. Barney, J. Bendavid, M. Bianco,A. Bocci, E. Bossini, C. Botta, E. Brondolin, T. Camporesi, A. Caratelli, G. Cerminara, E. Chapon, G. Cucciati, D. d’Enterria, A. Dabrowski,N. Daci, V. Daponte, A. David,O. Davignon, A. De Roeck,

N. Deelen,M. Deile, M. Dobson, M. Dünser, N. Dupont,A. Elliott-Peisert, F. Fallavollita44, D. Fasanella, G. Franzoni, J. Fulcher, W. Funk, S. Giani, D. Gigi,A. Gilbert, K. Gill,F. Glege, M. Gruchala, M. Guilbaud, D. Gulhan, J. Hegeman,C. Heidegger, Y. Iiyama, V. Innocente, P. Janot, O. Karacheban19, J. Kaspar, J. Kieseler, M. Krammer1,C. Lange, P. Lecoq, C. Lourenço,L. Malgeri, M. Mannelli,A. Massironi, F. Meijers, J.A. Merlin, S. Mersi, E. Meschi,F. Moortgat, M. Mulders, J. Ngadiuba, S. Nourbakhsh, S. Orfanelli,L. Orsini, F. Pantaleo16, L. Pape,E. Perez, M. Peruzzi,A. Petrilli, G. Petrucciani, A. Pfeiffer, M. Pierini,F.M. Pitters, D. Rabady, A. Racz,M. Rovere, H. Sakulin, C. Schäfer, C. Schwick, M. Selvaggi, A. Sharma,P. Silva, W. Snoeys, P. Sphicas45, J. Steggemann,V.R. Tavolaro, D. Treille, A. Tsirou, A. Vartak, M. Verzetti, W.D. Zeuner

CERN,EuropeanOrganizationforNuclearResearch,Geneva,Switzerland

L. Caminada46, K. Deiters,W. Erdmann, R. Horisberger, Q. Ingram,H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe, S.A. Wiederkehr

PaulScherrerInstitut,Villigen,Switzerland

M. Backhaus, P. Berger, N. Chernyavskaya,G. Dissertori, M. Dittmar, M. Donegà, C. Dorfer,

T.A. Gómez Espinosa, C. Grab, D. Hits, T. Klijnsma,W. Lustermann, R.A. Manzoni, M. Marionneau, M.T. Meinhard,F. Micheli, P. Musella,F. Nessi-Tedaldi, F. Pauss,G. Perrin, L. Perrozzi,S. Pigazzini, M. Reichmann,C. Reissel, T. Reitenspiess, D. Ruini, D.A. Sanz Becerra,M. Schönenberger, L. Shchutska, M.L. Vesterbacka Olsson, R. Wallny, D.H. Zhu

ETHZurich–InstituteforParticlePhysicsandAstrophysics(IPA),Zurich,Switzerland

T.K. Aarrestad, C. Amsler47, D. Brzhechko, M.F. Canelli,A. De Cosa, R. Del Burgo, S. Donato, B. Kilminster, S. Leontsinis, V.M. Mikuni, I. Neutelings, G. Rauco, P. Robmann, D. Salerno, K. Schweiger, C. Seitz,

Y. Takahashi, S. Wertz, A. Zucchetta UniversitätZürich,Zurich,Switzerland

T.H. Doan,C.M. Kuo, W. Lin,A. Roy, S.S. Yu NationalCentralUniversity,Chung-Li,Taiwan

P. Chang, Y. Chao, K.F. Chen, P.H. Chen, W.-S. Hou,Y.y. Li, R.-S. Lu, E. Paganis, A. Psallidas,A. Steen NationalTaiwanUniversity(NTU),Taipei,Taiwan

(17)

B. Asavapibhop,C. Asawatangtrakuldee, N. Srimanobhas, N. Suwonjandee ChulalongkornUniversity,FacultyofScience,DepartmentofPhysics,Bangkok,Thailand

A. Bat,F. Boran, S. Cerci48,S. Damarseckin49, Z.S. Demiroglu,F. Dolek, C. Dozen, I. Dumanoglu,

G. Gokbulut,Emine Gurpinar Guler50,Y. Guler, I. Hos51,C. Isik, E.E. Kangal52,O. Kara, A. Kayis Topaksu, U. Kiminsu,M. Oglakci, G. Onengut, K. Ozdemir53,S. Ozturk54,A.E. Simsek,D. Sunar Cerci48, U.G. Tok, S. Turkcapar,I.S. Zorbakir, C. Zorbilmez

ÇukurovaUniversity,PhysicsDepartment,ScienceandArtFaculty,Adana,Turkey B. Isildak55, G. Karapinar56, M. Yalvac

MiddleEastTechnicalUniversity,PhysicsDepartment,Ankara,Turkey

I.O. Atakisi,E. Gülmez,M. Kaya57, O. Kaya58,B. Kaynak, Ö. Özçelik, S. Tekten, E.A. Yetkin59 BogaziciUniversity,Istanbul,Turkey

A. Cakir,Y. Komurcu, S. Sen60 IstanbulTechnicalUniversity,Istanbul,Turkey S. Ozkorucuklu

IstanbulUniversity,Istanbul,Turkey B. Grynyov

InstituteforScintillationMaterialsofNationalAcademyofScienceofUkraine,Kharkov,Ukraine L. Levchuk

NationalScientificCenter,KharkovInstituteofPhysicsandTechnology,Kharkov,Ukraine

F. Ball, E. Bhal, S. Bologna, J.J. Brooke,D. Burns, E. Clement, D. Cussans,H. Flacher, J. Goldstein, G.P. Heath, H.F. Heath,L. Kreczko, S. Paramesvaran,B. Penning, T. Sakuma, S. Seif El Nasr-Storey, D. Smith,V.J. Smith, J. Taylor,A. Titterton

UniversityofBristol,Bristol,UnitedKingdom

K.W. Bell,A. Belyaev61,C. Brew, R.M. Brown, D. Cieri, D.J.A. Cockerill,J.A. Coughlan, K. Harder,S. Harper, J. Linacre,K. Manolopoulos,D.M. Newbold, E. Olaiya,D. Petyt, T. Reis,T. Schuh,

C.H. Shepherd-Themistocleous, A. Thea,I.R. Tomalin, T. Williams, W.J. Womersley RutherfordAppletonLaboratory,Didcot,UnitedKingdom

R. Bainbridge,P. Bloch, J. Borg,S. Breeze, O. Buchmuller, A. Bundock, Gurpreet Singh Chahal62, D. Colling, P. Dauncey,G. Davies, M. Della Negra, R. Di Maria, P. Everaerts,G. Hall, G. Iles, T. James, M. Komm,C. Laner, L. Lyons, A.-M. Magnan,S. Malik, A. Martelli,V. Milosevic, J. Nash63,V. Palladino, M. Pesaresi,D.M. Raymond, A. Richards,A. Rose, E. Scott,C. Seez, A. Shtipliyski,M. Stoye, T. Strebler, S. Summers,A. Tapper, K. Uchida, T. Virdee16, N. Wardle, D. Winterbottom, J. Wright,A.G. Zecchinelli, S.C. Zenz

ImperialCollege,London,UnitedKingdom

J.E. Cole, P.R. Hobson,A. Khan, P. Kyberd,C.K. Mackay, A. Morton,I.D. Reid, L. Teodorescu,S. Zahid BrunelUniversity,Uxbridge,UnitedKingdom

K. Call,J. Dittmann, K. Hatakeyama,C. Madrid, B. McMaster,N. Pastika, C. Smith BaylorUniversity,Waco,USA

Riferimenti

Documenti correlati

ARPAV, Censimento delle aree naturali “minori” della Regione Veneto, Padova, Agenzia per la Prevenzione e Protezione Ambien- tale del Veneto, 2004. ARPAV, Guida agli ambienti

A researcher at the Polytechnic University of Turin, in 2005 she became Associate Professor in Topography and Cartography at the University of Florence, where she teaches on

to investigate the efficacy of a synbiotic formulation con- taining Lactobacillus paracasei B21060 plus arabinogalac- tan and xilooligosaccharides in the treatment of children with

(p &lt; 0.05; Fig.  1 ), the analysis of PdoU as a continuous variable (according to both continuous values and semi- quantitative score) showed no significant correlation between

Va detto che considerazioni simili potremmo avanzarle per quasi tutti gli attori del periodo (pensiamo per esempio ad artisti come Salvini o la Ristori e al loro rapporto con

Obviamente, esta atribución depende del contexto extralingüístico, del cotexto lingüístico y de condiciones concretas de realización (entre ellas, la prosodia). Nivel 3 Nivel 2 Nivel

We assessed the frequency of mutations in predisposition gene (BRCA1 -2) and in 7 predictor genes (BARD1, PALB2, BRIP1, CDH1, PTEN, CH£CK2 and TP53) and the clinical outcome in a

The enhancing effect of low pH on bactericidal activity of human hepcidins render these peptides interesting for the development of future drugs specifically designed for