• Non ci sono risultati.

Semiconductor Detectors Solid state Ionization Counters

N/A
N/A
Protected

Academic year: 2021

Condividi "Semiconductor Detectors Solid state Ionization Counters"

Copied!
32
0
0

Testo completo

(1)

Semiconductor Detectors

Solid state Ionization Counters

(2)
(3)

1/40 eV

(4)
(5)

4 valence atoms

GROUP (IVA) same external electronic configuration

Z A

(6)

SILICON is the second most abundant element in the Earth crust (28.2%) GERMANIUM 54° most abuntant (1.5%)

(Most abundant is oxygen, 46.1%)

Abundance (atom fraction) of the chemical elements

in Earth's upper continental crust as a function of atomic number.

Not included are elements with extremely

low crustal concentrations:

technetium (Z=43),

promethium (61)

• all elements with Z > 83 (except thorium (90)

and uranium (92)).

(7)

No need to go to very low Temperature with Si:

Intrinsic carriers concentration

ISi ~ 10-9 A, IGe ~ 10-6-10-3 A Leakage current

(8)

At room temperature:

Measurable with Si detectors

NOT Measurable with Ge detectors

ISi ~ 10-9 A, IGe ~ 10-6-10-3 A, Leakage current

(9)

n-type p-type

To control the electrical conduction

p-type in contact with n-type give rise to a p-n junction

(10)

n-type p-type

(11)

Increase of depletion region by applying REVERSE BIAS Þ E = Eint+ eVext

Ge: Vext = 1000-3000 V, Si: Vext = 300 V

2ϕ = −ρ / ε

Ε(x) = − dx Fixed charges

!!!

Too small to use it for detection (high recombination) NA

ND

n p

(12)

REVERSE BIAS DIRECT BIAS

(DIODE, current conduction majority carrier flow)

(Little current conduction minority carrier flow)

(13)

≈ 1 V Too small

Charge recombination

majority carrier flow

minority carrier flow

A decrease in potentialf(x) (defined for positive charge) corresponds to an increase in electron energies

p

p n

(14)

2ϕ = −ρ / ε

Condizioni al contorno per E e V

2 2

2 2

A

A

A NDa = NAb

(15)

p-type n-type

Used for charged particles: 1 MeV e-, range = 1 mm 5 MeV a, range = 0.02 mm

Electric contact

(16)
(17)
(18)
(19)

77 K (−196 °C) with LN2

i= Intrisic (non-doped) layer)

(20)
(21)

High Purity Ge Detectors

impurity concentration N ~ 1010 atoms/cm3

600 µm 0.3µm

eN d 2eV

»

Characteristics

size Ø~10cm, L~9cm

shape coaxial

n-type less sensitive

to radiation damage

operating temperature < 85 K

rates ~ 10 kHz

to prevent pile-up

energy resolution 2 keV at 1.332 MeV

(0.2 %)

time resolution 4-5 ns (with CFD)

200-300 ns total rise time

efficiency* up to 200%

* relative to 7.5x7.5 cm NaI(Tl) for 1.33 MeV g-rays

emitted by 60Co source at 25 cm from detector (ea = 1.2 x 10-3)

active region d

V~2500-4500V

15%

150%

See also:

Best choice HpGe detector, from ORTEC

(22)

Signal Pulse Shape depends on interaction point

V+

V-

V+

V- Planar geometry

Coaxial geometry

(23)

most severe in p-type detectors

Annealing process

(24)

Trapping Effect:

- Reduction of pulse amplitude

due to capture of carrier by trapping centers

- Deterioration of energy resolution due to variable amount of charge lost per pulse

(25)

Energy resolution versus Temperature

FW H M [ ke V] FW H M [ ke V]

Temperature [K] Temperature [K]

@122 keV @1332 keV

band structure effect

T(LN2) = 77 K (−196 °C)

(26)
(27)

Pulse shaping

true pulses

from preamp

t ~ 50µs

after shaping FET

Preamplifier :

FET (at 130 K,

to minimize noise) Amplifier: CR-RC shaping circuit

pile-up energy

time

t t t

out t e

E

E = -

if C1R1=C2R2=t

t ~ 15 µs

t ~ 15 µs is a good compromise between reduced pile-up and good energy resolution

(depending on large charge collection)

mV

V

(28)

Preamplifier

R=input resistance C=input capacitance+

detector capacitance + cables …

t = RC

operation mode

for time information, high rates, …

operation mode

for energy information

tc

charge collection time ~100 ns

t =RC

decay time

~ 50 µs

Amplifier

(RC-CR shaping)

RC-integrator (low-pass filter)

) 1

( ...

/t t out

out in

e E E

E iR E

- -

= +

=

CR-differentiator (high-pass filter)

t /

...

t out

out in

Ee E

C E E Q

= -

+

=

(29)

g-ray interaction

spp » Z2lnEg

ionization occurs

in limited regions of the absorber

Ge

µ

pp C

ph

s s

s

µ = + +

Linear attenuation coefficient

(probability per unit path)

g

s g

E Z E

C

» ln

5 4

5 . 3

-

=

» n

E Zn

ph

g

s

I/I0

t

e-µt

(30)

Detector response

We detect recoil electrons and NOT photons !

) (

256 . 2 0

/ 2 1

2 2

2

c m E

if c MeV

m

c m E E E

E E

e e

e CE

gap

>>

=

»

= + -

=

g g

g g

Egap

Important characteristics:

§ energy resolution: dEg/Eg = FWHM/Eg

§ peak-to-total: P/T = Areapeak/Areatotal

Egap

(31)

Ge Response function

(+ Anti-Compton Shield)

P/T~20%

P/T~60%

Anular detector

used material: BGO (Bi

4

Ge

3

O

12

)

§ density ~ 7.3 g/cm3

§ Z = 83

§ 3 times more efficient than NaI Þ ideal for very compact geometry

(small spaces)

N.B. in some cases NaI nose is used to improve the light output far away from PM tube

used with heavy metal collimators in front

(32)

incident g

Compton scattering angular distribution

) cos 1 )(

/ (

1 2

'

g q

g

g = + -

c m E E E

e

high-energy g-ray: forward scattering low-energy g-ray: forward & backward

NaI nose: improvement of light output far away from PM tubes (low-energy g-rays)

BGO back-catcher: improvement of high-energy Compton scattering (high-energy g-rays)

Riferimenti

Documenti correlati

I raggi δ non troppo energetici (E&lt;&lt;E max ) sono emessi quasi ortogonali alla direzione di volo della particella incidente (cos 2 θ=E/E max ), ma… lo scattering multiplo

•  For electric field strengths of 500V/cm and typical drift velocities of v− = 5 cm/µs, collection times for electrons of 2 µs and for ions of about 2 ms are obtained for a

The signed impact parameter of a track is defined as positive if the angle between the jet direction and the line joining the primary vertex to the point of DCA &lt;90 and it is

Materiale plastico (plexiglass) opportunamente sagomato in modo da adattare la superficie di uscita dello scintillatore con quella d ’ ingresso del PMT → solo una frazione r

Queste correnti di diffusione sono dovute alle cariche generate vicino alla zona di svuotamento e che diffondono nella zona di svuotamento stessa.. τ o = vita media dei

The convection–diffusion equation can be derived in a straightforward way from the continuity equation, which states that the rate of change dn/dt for a scalar quantity in

Materiale plastico (plexiglass) opportunamente sagomato in modo da adattare la superficie di uscita dello scintillatore con quella d ’ ingresso del PMT → solo una frazione r

particelle secondarie che perdono energia sciamando, ma i parametri dello sciame sono molto diversi è pur usando materiali ed elettronica simili, le granularità,