• Non ci sono risultati.

Particle  Detectors

N/A
N/A
Protected

Academic year: 2021

Condividi "Particle  Detectors"

Copied!
31
0
0

Testo completo

(1)

Particle  Detectors  

a.a.  2016-­‐2017   Emanuele  Fiandrini  

1

Lecture   18  

10/05/17  

(2)

Rivelatori di Particelle 2

Rivelatori a stato solido

(3)

The Charge Signal

  Collected Charge for a Minimum Ionizing Particle (MIP)

•  Mean energy loss

dE/dx (Si) = 3.88 MeV/cm

⇒ 116 keV for 300µm thickness

•  Most probable energy loss ≈ 0.7 ×mean

⇒ 81 keV

•  3.6 eV to create an e-h pair

⇒ 72 e-h / µm (most probable) ⇒ 108 e-h / µm (mean)

•  Most probable charge (300 µm) ≈ 22500 e ≈ 3.6 fC

Mean charge

Most probable charge ≈ 0.7× mean

3 Rivelatori di Particelle

N = (dE/dx)(x/w)

(4)

0 100 200 300 400 500

ADC channel (arb. units) Landau distribution

Noise

Landau distribution with noise

[M.Moll, schematic figure!]

Signal to noise ratio (S/N)

 Landau distribution has a low energy tail - becomes even lower by noise broadening

 Good hits selected by requiring N

ADC

> noise tail

If cut too high ⇒ efficiency loss If cut too low ⇒ noise occupancy

 Figure of Merit: Signal-to-Noise Ratio S/N  Typical values >10-15, people get nervous

below 10.

Radiation damage severely degrades the S/N.

Noise

Signal Cut (threshold)

4

Rivelatori di Particelle

(5)

Rivelatori a semiconduttore

Rivelatori di Particelle 5

(6)

Shot noise

Rivelatori di Particelle 6

a

(7)

Capacitance noise

Rivelatori di Particelle 7

(8)

Parallel resistor noise

Rivelatori di Particelle 8

(9)

Serie resistor noise

Rivelatori di Particelle 9

(10)

Rivelatori di Particelle 10

(11)

Rivelatori di Particelle 11

(12)

Rivelatori di Particelle 12

(13)

Si detectors: typical noise performance

13

Rivelatori di Particelle

(14)

Risoluzione spaziale

Rivelatori di Particelle 14

(15)

Rivelatori di Particelle 15

Risoluzione spaziale

(16)

Rivelatori di Particelle 16

Risoluzione spaziale

(17)

t=0

t=5 ns

t=12 ns

t=30 ns

Time evolution of current

Ionization cylinder

Intrinsic collection time is O(tens of ns)

V

bias

Ground

300 um Silicon layer

Il raggio del cilindro di ionizzazione e' fissato

essenzialmente dal range dei

raggi δ della ionizzazione

secondaria

(18)

Rivelatori di Particelle

18

The convection–diffusion equation can be derived in a straightforward way from the continuity equation, which states that the rate of change dn/dt for a scalar quantity in a differential control volume is given by flow and diffusion into and out of that part of the system along with any generation or destruction inside the control volume:

n

where is the total flux and R is a net volumetric source for c. There are two sources of flux in this situation. First, diffusive flux arises due to diffusion. This is typically approximated by Fick's first law:

i.e., the flux of the diffusing material (relative to the bulk motion) in any part of the system is proportional to the local concentration gradient. Second, when there is overall convection or flow, there is an associated flux called advective flux:

The total flux is given by the sum of these two:

Equazione di diffusione

n

n

n n

n n n

n

(19)

trap

-

As for gas: initial volume recomb and Q loss during their travel to electrodes

Response to a primary ionization

Particle

h e -

h + e - E

Recombination losses q 0 =A*Q 0 Primary

ionisation Q 0

e -

Trapping, recombination q=q 0 e –(L/λ)

L, drift distance

trap trap

+V

n n n

(20)

Drift and Diffusion in Presence of E field

E=0 thermal diffusion

E>0 charge transport and diffusion

Δs, Δt s

Electric Field

Electron swarm drift Drift velocity

Diffusion

e - A

+

= 0 v

t

t

v

D

v =

N(x, t) = N 0

4 π Dt e

( x−v

Dt )2

4 Dt

The solution of diffusion-transport eqn is then

drift + diffusion motion: the average position of the charge swarm moves as x = vt, while the width increases in time

v D = µE

(21)

  Charge Collection time

• Drift velocity of charge carriers v ≈ µE, so drift time, t

d

= d/v = d/µE Typical values: d=300 µm, E= 2.5 kV/cm,

with µ

e

= 1350 cm

2

/ V·s and µ

h

= 450 cm

2

/ V·s ⇒ t

d

(e)= 9ns , t

d

(h)= 27ns

  Diffusion

• Diffusion of charge “cloud” caused by scattering of drifting charge carriers, radius of distribution after time td:

with diffusion constant • Same radius for e and h since t

d

∝ 1/µ

Typical charge radius: σ ≈ 6µm, could exploit this to get better position resolution due to charge sharing between adjacent strips (using centroid finding), but need to keep drift times long (low field).

Charge Collection time and diffusion

Dt

d

= 2

σ D = µ kT q

21

Rivelatori di Particelle

(22)

Risoluzione spaziale

Rivelatori di Particelle σ(t) (um) 22

(23)

Risoluzione spaziale

Rivelatori di Particelle 23

(24)

Risoluzione spaziale

Rivelatori di Particelle 24

2

(25)

Si strip detectors: spatial resolution

25

Rivelatori di Particelle

(26)

Risoluzione spaziale

Rivelatori di Particelle 26

But the signal-to-noise ratio plays an essential role

(27)

Si strip detectors: spatial resolution

27

Rivelatori di Particelle

(28)

Risoluzione spaziale

Rivelatori di Particelle 28

(29)

Risoluzione spaziale

Rivelatori di Particelle 29

(30)

Si strip detectors: spatial resolution

30

Rivelatori di Particelle

(31)

Si strip detectors: spatial resolution

31

Rivelatori di Particelle

Riferimenti

Documenti correlati

BabyLux device: a diffuse optical system integrating diffuse correlation spectroscopy and time-resolved near-infrared spectroscopy for the neuromonitoring of the premature

e hanno consentito di recuperare l’intera volumetria contenuta all’interno del baluardo, liberata dal riempimento di terra aggiunto in epoca spagnola, con la

Keywords Scalar curvature equation · Ground states · Fowler transformation · Invariant manifold · Shooting method · Bubble tower solutions · Phase plane analysis ·

Keywords Scalar curvature equation · Ground states · Fowler transformation · Invariant manifold · Bubble tower solutions · Phase plane analysis · Multiplicity results..

[3] Marco Degiovanni and Marco Marzocchi, On the Euler-Lagrange equation for functionals of the Calculus of Variations without upper growth conditions, SIAM J. Tyrrell

Although it is not possible to define an optimal timing, it is our opinion that tracheostomy should be indicated on case-by-case basis taking into account including potential

a very small number of points are ascertained with high precision (the number of points has to be kept as low as possible because operational costs

In the diagram, the states of the switches are so that the Mosfet is on, and obviously their control is the same as the control signal of the Mosfet... 3.2.1 Equations and Block