• Non ci sono risultati.

Fisica dell’elettromagnetismo e dell’ottica Esercizi

N/A
N/A
Protected

Academic year: 2021

Condividi "Fisica dell’elettromagnetismo e dell’ottica Esercizi"

Copied!
64
0
0

Testo completo

(1)

Fisica dell’elettromagnetismo e dell’ottica

Esercizi

Politecnico di Bari

Ingegneria Elettronica e delle Telecomunicazioni Ingegneria Elettrica

a cura di Nicola Pace con la supervisione del prof. G. Iaselli

(2)

Indice

1. Campi elettromagnetici nel vuoto e nella materia . . . 2

2. Fenomeni oscillatori . . . 19

3. Fenomeni ondulatori . . . 31

4. Onde elettromagnetiche . . . 39

5. Riflessione, rifrazione e polarizzazione delle onde elettromagnetiche . . . 47

6. Interferenza . . . 53

7. Diffrazione . . . 58

(3)

Capitolo 1

Campi elettromagnetici nel vuoto e nella materia

(4)

Esercizio 1.1

Un condensatore a facce piane e parallele ha armature di area Σ poste a distanza h = 3 cm. All’interno del condensatore vi è una lastra di materiale dielettrico, posta parallelamente alle armature, di superficie Σ e spessore d = 1 cm. Il rapporto fra l’energia U0 contenuta nella parte vuota e l’energia Ud all’interno del dielettrico vale U0/Ud= 4. Determinare la costante dielettrica εr.

Soluzione

Il campo D sia nel vuoto sia che nel dielettrico ha lo stesso valore poiché dipende solo dalle cariche libere, trascurando gli effetti di bordo. Si ha quindi:

D0= ε0E0= Dd = εrε0Ed, E0= εrEd

Si può determinare l’energia elettrostatica moltiplicando la densità di energia U = 12ε0E2 per i volumi senza e con il dielettrico, rispettivamente.

U0= 1

0E02Σ(h − d) Ud= 1

0εrE2dΣ d =1

0εrE02 ε2r Σ d

Facendo il rapporto fra queste energie, si ottiene:

U0

Ud =

1

2ε0E02Σ(h − d)

1 2ε0

E20 εr Σ d

= εr

h − d d Dal dato del problema U0/Ud= 4 si ricava:

εr(h − d) = 4d , εr= 4d h − d e numericamente:

εr= 4 × 10−2

3 × 10−2− 10−2 = 2.00

(5)

Esercizio 1.2

Un condensatore a facce piane e parallele poste a distanza d=1 mm di capacità C = 1 µF viene caricato a una differenza di potenziale di 10 V e successivamente isolato.

Fra le armature del condensatore viene inserito un dielettrico omogeneo e isotropo la cui polarizzazione ha modulo P = 5 × 10−8C/m2.

Determinare la differenza di potenziale ai capi del condensatore e la constante dielettrica relativa εr del materiale.

Soluzione

La differenza di potenziale ai capi del condensatore si può esprimere, come prodotto del campo all’interno (uniforme) per la distanza fra le armature. Quando il condensatore è vuoto si ha:

V = E d

mentre quando il condensatore è riempito con dielettrico:

V0 = E0d

Il campo nel dielettrico si può esprimere attraverso la densità di carica libera e quella di polarizzazione:

E0 =σ − |σpol| ε0

= E −|σpol| ε0

La densità di carica di polarizzazione è uguale, in modulo, al vettore polarizzazione:

V0=

"

E −|P | ε0

#

d = V −|P | ε0

d

e numericamente:

V0= 10 − 5 × 10−8

8.85 × 10−1210−3= 4.35 V

La costante dielettrica si può ottenere come rapporto fra la differenza di potenziale fra V e V’:

εr= V V0 e numericamente:

εr= 10

4.35 = 2.30

(6)

Esercizio 1.3

Un condensatore a facce piane e parallele di superficie Σ = 1 dm2 distanti d = 1 mm, riempito con un dielettrico omogeneo e isotropo di costante dielettrica εr viene caricato a una differenza di potenziale V0= 103V , immagazzinando un’energia elettrostatica di 1.77 × 10−3J . Determinare:

1) La costante dielettrica relativa εr del dielettrico interposto fra le armature del condensatore e la capacità del condensatore;

2) La differenza di potenziale V fra le armature, se queste sono allontanate fino a una distanza d0= 2d (il dielettrico non viene alterato) e la capacità Ctot;

3) Il lavoro compiuto per spostare le armature da d a d0;

4) L’energia persa per effetto Joule se le armature del condensatore, cariche alla differenza di potenziale V, vengono collegate fra loro con un filo di resistenza R = 100 Ω. Si effettui il calcolo negli intervalli fra t0= 0 e t1= 1 s e fra t0= 0 e t2 = 0.1 s e si commentino i risultati.

Soluzione

Esprimendo l’energia elettrostatica in funzione della differenza di potenziale e della capacità ed esprimen- do quest’ultima in funzione delle caratteristiche geometriche del condensatore e della costante dielettrica, si ha:

U = 1

2C1V02 e C1= εrε0

Σ d da cui:

U = 1 2εrε0

Σ d V02 e quindi:

εr= 2 U d

ε0Σ V02 = 40.0 La capacità del condensatore sarà:

C1= εrε0

Σ

d = 3.54 nF

La capacità del condensatore che si ottiene allontanando le armature è uguale alla capacità del con- densatore risultante dalla serie di due condensatori, di cui uno pari al condensatore C1 e l’altro con armature di uguale area e di distanza fra di esse uguale a

d0− d = d, senza dielettrico.

C = C1C2

C1+ C2

con:

C2= ε0

Σ

d0− d= 88.5 pF e quindi:

C = 86, 3 pF

(7)

La carica sulle armature del condensatore rimane inalterata rispetto al caso della domanda 1), cioè è uguale al prodotto fra capacità e differenza di potenziale. Si ottiene quindi:

V0 =Q

C =C1V0

C E sostituendo l’espressione di C, si ottiene:

V0= C1V0(C1+ C2) C1C2 = V0

C1+ C2

C2 = V0 1 + C1

C2

!

con:

C1 C2

= εrε0Σd ε0 Σ

d0−d

= εr

e quindi:

V0 = V0(1 + εr) = 4.10 × 104V

Per calcolare il lavoro compiuto per spostare le armature è sufficiente calcolare la differenza fra l’e- nergia elettrostatica del caso 2) e quella del caso 1).

L = 1

2CV02−1

2C1V02= 7.08 × 10−2J

Possiamo schematizzare il circuito come un circuito RC e quindi:

−Q

C − iR = 0 Derivando rispetto al tempo e dividendo per −R si ottiene:

i RC +di

dt = 0 da cui

di

i = − dt RC che, integrata fra t0= 0 e il tempo generico t, dà:

i =V0 ReRCt Il lavoro Joule è dato da L =Rt

0Ri2dt, e quindi sostituendo l’espressione per la corrente i si ottiene L =

Z t 0

RV02

R2 eRC2t dt = V02 R2

Z t 0

eRC2t dt = V02 R2

eRC2t

RC2

t

0

= V02 R

eRC2

RC2 − 1

RC2

!

= V02C

1 − eRC2t 

(8)

Numericamente, per i due valori del tempo si ottiene:

L1= 0, 145 J L2= 0.145 J

I due valori coincidono perché i tempi t1 e t2 sono ambedue molto maggiori del tempo caratteristico del circuito, che è:

tc= RC = 102× 8.63 × 10−11= 8.63 × 10−9s = 8.63 ns

(9)

Esercizio 1.4

Un condensatore a facce piane e parallele con armature quadrate di lato l = 20 cm e distanti d = 5 cm è disposto in serie a una batteria di fem V0= 25 V e appoggiato di lato sul fondo di una bacinella cilindrica isolante di area di base Σ0= 0.25 m2, inizialmente vuota.

La bacinella viene riempita con un tubicino di portata ξ = 0.2 litri/s con un liquido isolante di costante dielettrica εr= 1.5.

Trascurando il valore della resistenza complessiva del circuito, determinare in funzione del tempo, e all’i- stante t0= 65 s:

1) la capacità C del condensatore;

2) la carica elettrica q sulle armature;

3) il lavoro compiuto dalla batteria.

Al tempo t0 si chiude l’accesso del liquido e si inserisce, al posto della batteria, una resistenza R = 1M Ω in serie al condensatore.

4) Determinare la carica sulle armature del condensatore dopo 1 µs a partire dal tempo t0.

Soluzione

La capacità del condensatore in funzione dell’altezza del liquido sul fondo della bacinella si può ottenere schematizzando il condensatore come due condensatori in parallelo, uno con armature di area l(l − x) e con l’aria fra le armature e l’altro con armature di area lx con il liquido come dielettrico.

C = C1+ C2

C1= ε0l(l − x)

d C2= εrε0lx d

Il valore di x si può ottenere dalla portata, considerando l’area di base della bacinella:

x = ξ Σ0

t

La capacità C sarà quindi:

C = ε0

l

d(l − x + εrx) = ε0

l d h

l + (εr− 1) ξ Σ0ti

= 7.08 × 10−12+ 1.42 × 10−14t F

ed al tempo t0= 65 s:

C = 8.00 × 10−12F

(10)

Poiché la resistenza del circuito è trascurabile, consideriamo che le variazioni di carica siano istantanee e quindi che valga la relazione fra carica, capacità e differenza di potenziale del caso statico, o meglio di equilibrio.

q = CV0

e al tempo t’:

q = 2.00 × 10−10C

Il lavoro compiuto della batteria è dato dalla differenza di energia elettrostatica al tempo generico t e al tempo t0= 0.

L = 1

2CV02−1

2C0V02= 1

2(C − C0)V02 da cui:

L = 1 2

"

ε0l d

"

l + (εr− 1) ξ Σ0

#

− ε0

l2 d

# V02=1

2

"

ε0r− 1)l ξ t Σ0d

#

V02= 4.43 × 10−12t J

All’istante t0 si avrà:

L = 4.43 × 10−10× 65 = 2.88 × 10−10J

Quando si interrompe l’ingresso del liquido, la capacità del condensatore rimane costante (pari a quella calcolata nel punto 1) e la carica iniziale sulle armature del condensatore è quella calcolata nel punto 2).

Scriviamo l’equazione del circuito:

−q

C = Rdq dt da cui:

dq dt + 1

RCq = 0 che ha come soluzione:

q = qieRCt

Dopo 1 µs dal tempo t0 si avrà , numericamente,

q = 2 × 10−10e10−6 ×8×10−1210−6 = 177 × 10−10C

(11)

Esercizio 1.5

Una sfera di raggio R1= 5 cm è carica uniformemente con una carica q = 10−11C. La sfera è circondata da un guscio sferico dielettrico omogeneo e isotropo, di raggio interno R1 e raggio esterno R2= 15 cm.

A sua volta il dielettrico è circondato da un guscio conduttore di raggio interno R2 e raggio esterno R3 = 25 cm. Se il campo elettrico in un punto P a distanza R0 = 10 cm dal centro della sfera vale E = 1 V /m, determinare:

1) la costante dielettrica relativa εrdel dielettrico;

2) la carica di polarizzazione sulle superfici del dielettrico;

3) il potenziale al centro della sfera.

Soluzione

Il punto P a distanza R0 dal centro della sfera si trova nel dielettrico. Dalla legge di Gauss:

I

Σ

E · dΣ = qint

ε0 Si ottiene:

4πR20E = q ε0εr e quindi si può ricavare il valore della costante dielettrica relativa:

εr= q

ε04πR20E = 10−11

4π · 8.85 · 10−12· 1 · 10−2

Il campo elettrico all’interno del dielettrico si può esprimere in funzione della costante dielettrica relativa:

E = q

ε0εr4πr2

oppure, considerando la carica di polarizzazione che si trova sulle superfici del dielettrico (qp ), E = q − qp

ε04πr2

(12)

Eguagliando le due espressioni di può ricavare la carica di polarizzazione:

q

εr = q − qp → qp= q 1 − 1

εr



= 8.89 · 10−12C

Il potenziale al centro della sfera si può ricavare valutando il lavoro del campo dall’infinito al centro della sfera, tenendo presente che il campo si deve esprimere in modo diverso nei diversi materiali:

V = − Z 0

E · dr = − Z R3

Eest· dr − Z R2

R3

Ec· dr − Z R1

R2

Ed· dr − Z 0

R1

Eint· dr

Il campo a distanza maggiore di R3, Eest, è uguale al campo di una carica puntiforme nel vuoto; il campo all’interno del conduttore, Ec, è nullo, il campo nel dielettrico, Ed, è uguale al campo di una carica puntiforme nel dielettrico. Il campo Eint all’interno della sfera si può ricavare dalla legge di Gauss:

I

E · dΣ = 4πr2Eint= 1 ε0

ρV = 1 ε0

q

4 3πr31

4 3πr3 si ottiene quindi:

Eint= qr εo4πR13 Il potenziale al centro della sfera sarà dunque:

V = − Z R3

q

4πε0r2dr − Z R1

R2

q 4πε0εrr2

Z 0 R1

qr

εo4πR31dr = q 4πε0

"

1 R3

+ 1

εrR1

− 1

εrR2

+ 1 2R1

#

e numericamente:

V = 10−11 4π · 8.85 · 10−12

"

1

0.25+ 1

8.99 · 5 · 10−2 − 1

8.99 · 0.15+ 1 0.1

#

= 0.502 V

(13)

Esercizio 1.6

Un toroidale di raggio medio r = 50 cm è costituito da 1000 spire ed è riempito da un mezzo di permeabilità magnetica relativa µr = 750. Se la superficie di ogni spira è Σ = 1 cm2, determinare il coefficiente di autoinduzione del toroide.

Soluzione

Per calcolare il campo magnetico B nel materiale, ricaviamo innanzitutto il campo H, attraverso la sua circuitazione lungo la circonferenza coincidente con il raggio medio del toroide:

I

H · ds = N i ⇒ H = N I 2πr

Il campo può essere considerato indipendente dalla posizione all’interno del toroide, essendo trascurabile il raggio delle spire rispetto al raggio del toroide. Dalla relazione fra B e H si ottiene:

B = µH = µrµ0

N i 2πr

Il coefficiente di autoinduzione L si ricava dal rapporto fra il flusso del B attraverso la sezione del toroide e la corrente che circola vi circola:

L = Φ(B)

i = µrµ0N2Σ

2πr = 3.00−2H

(14)

Esercizio 1.7

Una guaina cilindrica indefinita di materiale ferromagnetico omogeneo ed isotropo con µr= 50, di raggio interno R1 ed esterno R2, è percorsa da una corrente uniforme I = 4 A parallela all’asse. Si determini:

a) l’espressione del campo magnetico H, del campo di induzione magnetica B e della magnetizzazione M in funzione della distanza radiale dall’asse del cilindro;

b) le correnti amperiane di superficie (specificandone modulo, direzione e verso) presenti sulla superficie interna ed esterna del materiale.

Soluzione

La densità di corrente nel materiale è:

J = I

π(R22− R21) a)

Facendo uso del teorema della circuitazione di Ampere per H, delle relazioni B = µ0µrH ,

M = χmH = (µr− 1)H,

e tenendo conto della simmetria del problema (i campi sono tangenti alle circonferenze centrate sull’asse del cilindro), si ottiene:

per r < R1:

H = 0 B = 0 M = 0

(15)

per R1< r < R2:

H = J (r2− R21)

2r = I

2π(R22− R21) r −R21 r

!

B = µ0µrH M = (µr− 1)H

per r > R2:

H = I 2πr B = µ0H M = 0

dato che nel vuoto µr= 1, allora M = (1 − 1)H = 0 .

La densità di corrente superficiale si ottiene dalla relazione JM = M × ˆn (con ˆn normale uscente dalla superficie del materiale). Sulla superficie interna si ha :

JMint= M (R1) = 0

e quindi :

iintM = 0

mentre sulla superficie esterna :

JMext= M (R2) = (µr− 1)H(R2)

e quindi :

iextM = JMext2πR2= (µr− 1)I ∼= 196 A

con direzione parallela all’asse e verso opposto a I. Si noti che in questo caso si producono anche delle correnti amperiane di volume ivolM che devono essere uguali ed opposte alle correnti amperiane di super- ficie iextM . Infatti, considerando il teorema della circuitazione di Ampère per B lungo una circonferenza contenente il cilindro,

B · 2πr = µ0(I + itotM), e tenendo conto del fatto che all’esterno del cilindro

B =µ0I 2πr

si deduce che le correnti amperiane totali devono essere nulle e quindi quelle di superficie devono essere uguali ed opposte a quelle di volume.

(16)

Esercizio 1.8

Un condensatore piano con armature circolari di raggio R=20 cm, distanti f=2 cm, è collegato mediante un circuito di resistenza trascurabile a un generatore di forza elettromotrice V = V0sin(ωt) di resistenza interna trascurabile con V0= 10 V e ω = 1 rad/s .

Determinare, all’istante di tempo t= 6.28 s:

1. il modulo del campo magnetico Bi in un punto interno al condensatore, a distanza ri = 10 cm dall’asse;

2. il modulo del campo magnetico Bein un punto esterno al condensatore, a distanza re= 50 cm dall’asse;

3. l’energia elettrostatica immagazzinata all’interno del condensatore;

4. l’energia magnetica immagazzinata all’interno del condensatore.

Si trascurino gli effetti del bordo.

Soluzione

Si applichi la legge di Ampère-Maxwell, : I

s

B · ds = µ0ε0

Z

Σ

∂E

∂t · dΣ

Il campo elettrico all’interno del condensatore può essere considerato costante (si trascurano gli effetti di bordo) e si può ricavare dalla differenza di potenziale fra le armature:

E =V

d = V0sin(ωt) d

Si consideri una linea circolare di raggio ri concentrica all’asse del condensatore:

2πriBi = µ0ε0

Z ri 0

∂t

V0sin(ωt) d

!

2πr · dr = µ0ε0

V0ω cos(ωt) d 2πr2i

2 da cui si ottiene:

Bi= µ0ε0

riV0ω cos(ωt) 2d e numericamente:

Bi= 4π × 10−7× 8.85 × 10−12 10 × 1 × cos(6.28) × 10−1

2 × 2 × 10−2 = 2.78 × 10−16T

2. Si consideri una linea circolare di raggio re concentrica all’asse del condensatore, tenendo presente che il campo elettrico è diverso da zero all’esterno del condensatore:

2πreBe= µ0ε0 Z R

0

∂t

V0 sin(ωt) d

!

2πr · dr = µ0ε0V0ω cos(ωt)

d 2πR2

2 da cui si ottiene:

Be= µ0ε0

R2V0ω cos(ωt) 2d re

(17)

e numericamente:

Be= 4π × 10−7× 8.85 × 10−12 10 × 1 × cos(6.28) × ×4 × 10−2

2 × 2 × 10−2× 5 × 10−1 = 2.22 × 10−16T

L’energia elettrostatica totale si calcola, tenendo presente che il campo elettrico è uniforme all’inter- no del condensatore, moltiplicando la densità di energia elettrostatica per il volume del condensatore:

UE= 1

0E2 · V = 1 2ε0

V2

d2 π R2d = 1

2εV02cos2(ωt)

d π R2

e numericamente:

UE =8.85 × 10−12× 102 cos2(6.28) × π × 4 × 10−2

2 × 2 × 10−2 = 2.78 × 10−9J

Per calcolare l’energia magnetica è necessario tener presente che il campo magnetico all’interno del con- densatore non è uniforme:

UB= Z R

0

1 2µ0

ε20µ20V02ω2cos2(ωt)

4d2 2π d r3 · dr = ε20µ0

V0ω2cos2(ωt) 16d π R4 e numericamente:

UB = (8.85 × 10−12)2× 4π × 10−7102cos2(6.28) × π × 16 × 10−4

16 × 2 × 10−2 = 1.55 × 10−28J

(18)

Esercizio 1.9

Dimostrare che la corrente di spostamento in un condensatore ad armature parallele si può scrivere:

id= CdV dt

Soluzione

In un condensatore ad armature piane e parallele il campo elettrico è uniforme, per cui, indicata con V, Σ e h rispettivamente la differenza di potenziale, l’area e la distanza fra le armature, si ha:

E = V h

E inoltre:

ΦE = Z

Σ

E · dΣ = E Σ = VΣ h

La corrente di spostamento diventa:

id = ε0= d

dtΦE= ε0Σ h · dV

dt = CdV dt

avendo effettuato la sostituzione C = ε0Σ/h

(19)

Esercizio 1.10

Si consideri un condensatore piano con armature quadrate di 1,22 m di lato (vedi figura).

Una corrente di 1,84 A carica il condensatore.

(a) Qual è la corrente di spostamento nella regione tra le armature?

(b) Quanto vale dE/dt in tale regione?

(c) Quanto vale la corrente di spostamento attraverso il quadrato tratteggiato tra le armature?

(d) Quanto valeH B · ds lungo tale quadrato tratteggiato?

Soluzione

La corrente di spostamento è uguale alla corrente di conduzione.

In un condensatore piano ΦE = E Σ, per cui la corrente di spostamento è : id = ε0

d

dtΦE= ε0ΣdE dt e quindi:

dE dt = id

ε0Σ= 1.39 × 1011V · m−1· s−1

La corrente di spostamento attraverso il quadrato tratteggiato è:

i0d= ε0Σ0dE dt = id

Σ0

Σ = 0.46 A

La circuitazione di B lungo il quadrato tratteggiato vale:

I

S

B · ds = µ0i0d= 5.78 × 10−7T · m

(20)

Capitolo 2

Fenomeni oscillatori

(21)

Esercizio 2.1

Un condensatore di capacità C = 1 µF caricato a una differenza di potenziale V0= 10 V viene staccato dal generatore e collegato a un solenoide di induttanza L = 1 µH attraverso un circuito di resistentza trascurabile.

Determinare il campo B all’interno del solenoide all’istante t= 1.57 µs, sapendo che il solenoide ha 1000 spire al metro. Si consideri il caso di un solenoide ideale.

Soluzione

Il circuito che si ottiene è un circuito LC, di equazione:

q

C = −Ldi dt Tenendo conto che i = −dq/dt, si ottiene l’equazione:

Ld2q dt2 + q

C = 0 che ha come soluzione:

q = q0 sin(ωt), con ω = r 1

LC e q0= CV0 La corrente si ottiene derivando la carica rispetto al tempo:

i = q0ω sin(ωt) Per un solenoide ideale il campo magnetico vale:

B = µ0n i e quindi:

B = µ0n C V0

r 1 LC sin

r 1 LC

!

numericamente,

B = 1.26 × 10−2 T

(22)

Esercizio 2.2

Un cilindro di legno di sezione Σ ha un estremità riempita di piombo; posto in acqua l’oggetto galleggia come illustrato in figura. La porzione immersa misura L = 2.56 m. Si supponga di porre l’oggetto in oscillazione verticale.

(a) Si dimostri che il moto è armonico semplice.

(b) Si calcoli il periodo delle oscillazioni. Si trascuri l’effetto di smorzamento dovuto alla presenza del fluido.

Soluzione

Introduciamo un asse x orientato verso il basso. Supponiamo di spostare il cilindro di legno come in figura: la spinta di Archimede ora è insufficiente a bilanciare il peso; si origina quindi una forza netta verso il basso e l’equazione del moto è:

d2x

dt20Σg m x = g

avendo indicato con ρ0 la densità dell’acqua. Si ottiene così l’equazione del moto armonico semplice.

Il periodo delle oscillazioni è dato da

T =2π ω = 2π

r m

ρ0Σg

Nella situazione di equilibrio, il peso del fluido spostato eguaglia il peso dell’oggetto, per cui mg = ρ0LΣg.

Ricavando allora la massa m dell’oggetto e sostituendola nell’espressione del periodo, si ha infine

T = 2π s

ρ0LΣ ρ0Σg = 2π

s L

g = 2π s

(2, 56 m)

(9.8 m/s2) = 3.21 s

(23)

Esercizio 2.3

Si consideri il sistema illustrato in figura e si supponga che il blocco abbia massa M = 1.52 kg e la molla abbia costante elastica k = 8.13 N/m. Sia inoltre:

f = −λdx dt

con λ =0.227 kg/s. Si supponga di spostare il corpo di 12.5 cm dalla posizione di equilibrio e di abban- donarlo al suo moto.

(a) Si calcoli il tempo necessario perché l’ampiezza si riduca di un terzo del suo valore iniziale.

(b) Si calcoli il numero di oscillazioni compiute in questo intervallo di tempo.

Soluzione

Siamo di fronte a un moto armonico smorzato, di cui possiamo calcolare la (pseudo-)frequenza:

ω = 2πν = s

k m−

 λ 2 m

2

= s

8.13 N/m

1.52 kg − 227 × 10−3 kg/s 2(1.52 kg)

2

= 2.31 rad/s Il periodo è:

T = 1

f = 2.72 s Dall’equazione del moto:

x(t) = Ae−γtcos (ωt + ϕ) con

γ = λ/2m si vede che l’ampiezza si riduce a 1/3 del valore iniziale quando

e−γt= 1 3 cioè:

−γt = ln 1 3



= −ln 3 Ciò accade dopo un tempo:

t = 2(1.52 kg)

227 × 10−3kg/sln 3 = 14.7 s quindi dopo un numero di oscillazioni:

N = t

T = 14.7 s

2, 72 s = 5.4 ' 5

(24)

Esercizio 2.4

Un tubo a U viene riempito con un liquido omogeneo e il livello di una delle due superfici viene abbassato per mezzo di un pistone. Rimosso il pistone, il livello del liquido oscilla in entrambi i tubi.

Si dimostri che il periodo delle oscillazioni vale:

T = π s

2L g

dove L è la lunghezza della porzione di tubo occupata dal liquido.

ì

Soluzione

Come possiamo notare dalla figura, lo spostamento dalla posizione di equilibrio di una quantità x tramite compressione di una delle due superfici Σ, crea un dislivello di 2x, e quindi una differenza di pressione ∆P = ρ0g2x. Sul fluido si esercita quindi una forza F = ∆P Σ e quindi F = ρ0g2xΣ.

Possiamo scrivere l’equazione del moto, ponendo un sistema di riferimento verticale orientato verso l’alto:

mtota = −F = −ρ0g2xΣ Poiché:

mtot= ρ0Σ L ,

dove ρ0, è la densità del liquido, Σ è la sezione del tubo, e L è l’è la lunghezza della porzione di tubo occupata dal liquido, si ottiene:

Ld2x

dt2 = −2gx , d2x dt2 +2g

Lx = 0 (1)

La (1) è l’equazione di un moto armonico con:

ω = 2 π T =

r2g L Quindi il periodo delle oscillazioni vale:

T = 2 π ω = 2 π

s L 2g = π

s 2L

g

(25)

Assumendo il valore U0= 0 dell’energia potenziale nella configurazione di equilibrio del liquido, simme- trica nei due rami del tubo, l’energia potenziale in una configurazione generica, in cui la superficie libera si spostata verticalmente di una lunghezza x rispetto alla posizione di equilibrio, risulta:

U (x) = ρ0Σx · g · x = ρ0Σ g x2

Infatti è come se una colonna di liquido di volume Σx fosse stata sollevata di un tratto x e portata al- l’altro ramo. In particolare, nell’istante iniziale l’energia potenziale ha il valore U0= ρ0Σ g x20. L’energia cinetica del liquido, poiché in ogni istante tutti i suoi punti si muovono con la stessa velocità v, è data da : K = 12ρ0Σ L v2.

Supponendo di poter trascurare gli attriti, applichiamo la legge di conservazione dell’energia mecca- nica:

U0 + K0= U0= ρ0Σ g x20 = U + K = ρ0Σ g x2 + 1

0Σ L v2 dalla quale possiamo ricavare la velocità in funzione dello spostamento:

v = dx dt =

r2g L

q x20− x2

A questo punto si potrebbe integrare l’equazione, separando le variabili:

Z x x0

1

px20− x2dx = Z t

0

r2g L dt da cui si ottiene:

arcsin x x0

x

x0

= r2g

L t cioè:

x = x0sin r2g

L t − π 2

!

La soluzione trovata è nuovamente un moto armonico di ampiezza x0 e di periodo:

T = 2π ω = 2 π

s L 2g = π

s 2L

g

c.v.d.

(26)

Esercizio 2.5

Un blocco di massa m = 2 kg è attaccato ad una molla di costate elastica k = 32 N/m e può oscilla- re in un piano orizzontale. Sul blocco agisce una forza di attrito viscoso tale da essere in condizioni di smorzamento critico. Si applica al blocco una forza variabile F = 12.8 sin(ω0t) con pulsazione uguale alla pulsazione propria del sistema. Calcolare:

(a) l’ampiezza dell’oscillazione forzata;

(b) il valore dello spostamento della massa in funzione del tempo;

(c) il valore della forza viscosa.

Soluzione

Sapendo che il sistema è nelle condizioni di smorzamento critico e di risonanza, e quindi:

ω = ω0= γ = rk

m = 4 rad/sec , calcolo l’ampiezza dell’oscillazione A:

A = F0

m

1

p(ω20− ω2)2+ 4γ2ω2 = F0

2mγω0

= 0.2 m ,

La fase è ϕ = −π2, dato che ci troviamo in condizioni di risonanza, quindi, calcolo il valore dello sposta- mento della massa in funzione del tempo, sapendo che ci troviamo in condizioni di smorzamento critico e risonanza:

x(t) = e−γt(At + B)

| {z }

tende a 0

+A0sin(ω0t + ϕ)

Quindi,

x(t) = 0, 2 sin(4 t −π 2) Calcolo il valore della forza d’attrito: Fa = −λ v(t),

calcolo v(t):

v(t) =dx

dt(t) = A0ω0 cos(ω0t + ϕ) = 0, 8 sin(ω0t)

Fa= −λ v(t) = −2mγ 0.8 sin(ω0t) = −12.8 sin(ω0t) ' F

(27)

Esercizio 2.6

Un oscillatore armonico con massa m = 0.4 kg ed una costante elastica k = 2.5 N/m, sotto l’azione di una forza di attrito viscoso, è nelle condizioni di smorzamento critico. Calcolare il coefficiente di smorza- mento γ. Le condizioni iniziali del sistema sono x(t=0)= 0, 16 m e v(t=0)= 0. Supponendo una soluzione del tipo e−γt(At + B), determinare i parametri A e B. Calcolare l’istante in cui la velocità è massima (corrispondente alla condizione di accelerazione nulla).

Soluzione

Sapendo che il sistema è nelle condizioni di smorzamento critico, calcolo il coefficiente di smorzamento γ:

γ = ω0= rk

m = 2.5 Hz

L’equazione del moto in condizioni di smorzamento critico è inoltre fornita dalla traccia:

x(t) = e−γt(At + B)

Calcolo quindi l’equazione della velocità:

v(t) =dx

dt(t) = −γe−γt(At + B) + Ae−γt= e−γt(−γ (At + B) + A) Impongo, quindi, le condizioni iniziali per trovare A e B :

(x(0) = 0.16 v(0) = 0

(e−γ [0](A[0] + B) = 0.16 e−γ [0](−γ (A[0] + B) + A) = 0

(B = 0.16

−γ B + A = 0

(B = 0.16 m

A = 0.16 γ = 0.4 m/sec Per trovare l’istante in cui la velocità è massima, calcolo a(t), e vedo quando si annulla:

a(t) = dv

dt(t) = −γe−γt(−γ (At + B) + A) − γAe−γt= −γ e−γt(−γ (At + B) + 2A) In a(t) = 0, si ha:

0 = −γ e−γt(−γ (At + B) + 2A); −γ (At + B) + 2A = 0; t = 2 γ −B

A = 0.4 sec

(28)

Esercizio 2.7

Una massa m = 0.4 kg è collegata ad una molla di costante elastica k = 2.5 N/m . Una forza di attrito vi- scoso è applicata alla massa ed il coefficiente di smorzamento vale γ = 2 Hz. Si scriva l’equazione del siste- ma e si calcoli la pulsazione delle oscillazioni. Supponendo una soluzione del tipo x(t) = Ae−γtcos(ωt + ϕ) determinare i parametri A e ϕ sapendo che x(t=0) = A e v(t=0) = 1. Calcolare l’intensità della forza vi- scosa per t = 0.

Soluzione

Calcolo la pulsazione del sistema:

ω0= rk

m = 2, 5 rad/sec Scrivo l’equazione differenziale del moto, con λ = 2γm:

F = ma = −kx − λv, md2x dt2 + λdx

dt + kx = 0, d2x dt2 + λ

m dx dt + k

mx = 0

d2x

dt2 + 2γdx

dt + ω20x = 0 La cui soluzione è, per ω0> γ (smorzamento debole):

x(t) = A e−γ tcos(ωt + ϕ)

dove:

ω = q

ω20− γ2= 1, 5 rad/sec

Per trovare A e ϕ, calcolo v(t):

v(t) = dx

dt(t) = −Ae−γ t(γ cos(ωt + ϕ) + ω sin(ωt + ϕ)) quindi, scrivo il sistema:

(x(0) = A v(0) = 1

(A e−γ [0]cos(ω[0] + ϕ) = A

−Ae−γ [0](γ cos(ω[0] + ϕ) + ω sin(ω[0] + ϕ) = 1

(cos(ϕ) = 1

−A γ cos(ϕ) + ω sin(ϕ) = 1

(ϕ = 0

−A γ + ω sin(ϕ) = 1

(ϕ = 0 A = −γ1

L’intensità della forza viscosa, in t = 0, sapendo che v(t=0)= 1, è data da:

Fv(t) = −λ v(t), Fv(0) = −λ = −2γ m = −1.6 N

(29)

Esercizio 2.8

Un bambino di massa 30 kg si trova su un’altalena di massa 5 kg, sospesa con cavi lunghi 2 m, che durante ciascuna oscillazione perde 1/10 della sua energia. Calcolate il periodo di oscillazione, la costante di tempo del sistema e il numero di oscillazioni dopo le quali l’angolo di oscillazione si dimezza.

Soluzione

Calcolo il periodo dell’oscillazione (che è costante nel tempo per angoli piccoli):

T = 2π sL

g = 2.84s

Ora sapendo che ad ogni oscillazione l’energia diminuisce di 1/10 , e sapendo come varia l’energia in un moto armonico smorzato posso scrivere:

E = E0e−2τt

Dopo un tempo T, l’energia E1 sarà 9/10 di E0: E1= 9

10E0= E0e−2Tτ, 9

10 = e−2Tτ Quindi,

ln 9 10



= −2T

τ, τ = − 2T

ln(109) = 53.85 sec

γ = 1

τ = 0.0186 Hz L’equazione del moto del sistema è:

θ = θ0e−γtcos(ωt + ϕ)

e da ciò deduciamo che φ si dimezza quando e−γt diventa 1/2, quindi:

1

2 = etτ, t = −τ ln 1 2



= 37.33 sec

Quindi,per trovare il numero di oscillazioni basta dividere il precedente t per il periodo:

N = t

T =37.33 sec

2.84 sec = 13.14 ' 13

(30)

Esercizio 2.9

Un oggetto di 5.13 kg si muove su un piano liscio sotto l’azione di una molla di costante elastica 9.88 N/cm. L’oggetto viene spostato di 53.5 cm dalla sua posizione di equilibrio e viene lanciato verso di essa con velocità iniziale di 11.2 m/s. Si calcoli:

(a) la frequenza del moto risultante;

(b) l’energia potenziale iniziale del sistema;

(c) l’energia cinetica iniziale;

(d) l’ampiezza delle oscillazioni.

Soluzione

Calcolo la frequenza, trasformando le varie grandezze in unità del Sistema Internazionale:

ω = 2πf = rk

m = 13, 88 rad/sec, f = 1 2π

rk

m = 2.21 Hz

L’energia potenziale iniziale del sistema è data da:

Uiniz= 1

2kx20= 141.39 J

L’energia cinetica iniziale del sistema è data da:

Kiniz=1

2mv20= 321.75 J

Per trovare l’ampiezza delle oscillazioni possiamo procedere in 2 modi:

1) equazioni del moto

Dato che il sistema è in condizioni di moto armonico, posso scrivere l’equazione del moto e della ve- locità, e imporre le condizioni iniziali, in modo da calcolare A:

(x(t) = A sin(ω t + ϕ)

v(t) = dxdt(t) = Aω cos(ω t + ϕ)

(A sin(ϕ) = x(0)

Aω cos(ϕ) = v(0) ...risolvendo...(//

A =

(x0ω)2+v02

ω = 0.968 m

2) energia

Nel punto in cui la massa m si arresta, l’ampiezza del moto è massima, ed è quindi A, e in quel punto la sua energia è tutta potenziale, quindi applicando il principio della conservazione dell’energia:

Kiniz+ Uiniz= Uv=0+ Kv=0, 1

2kA2= Kiniz+ Uiniz, A =

r2(Kiniz+ Uiniz)

k = 0.968 m

(31)

Esercizio 2.10

Per il sistema indicato in figura, il blocco ha una massa di 1,5 kg e la costante elastica è k = 8.0 N/m.

Supponiamo che il blocco venga tirato per un tratto di 12 cm e poi lasciato libero. Se la forza di attrito è data da Fa= −λdxdt, dove λ = 0, 23 kg/s. determinare il numero di oscillazioni fatte dal blocco

nell’intervallo di tempo necessario perché l’ampiezza si riduca di 1/3 del valore iniziale.

Soluzione

La pulsazione propria e il coefficiente di smorzamento saranno rispettivamente:

ω0= rk

m = s

8.0 N/m

1, 5 kg = 2.31 rad/s γ = λ

2m = 0.23 kg/s

2 × 1, 5 kg = 0.077 Hz La pulsazione del moto armonico smorzato sarà:

ω = 2πν = 2π T =

q

ω20− γ2= s

k m−

 λ 2m

2

= 2.31 rad/s.

Il periodo è:

T = 1 f = 2π

ω = 2.72 s.

Dall’equazione del moto del sistema:

x(t) = Ae2mλ tcos (ωt + ϕ)

si vede che l’ampiezza si riduce di 1/3 del valore iniziale quando:

e2mλ t= 1

3, λ

2mt = ln 1 3



= −ln 3 Ciò accade dopo un tempo:

t = 2m

λ ln 3 = 2(1, 5 kg)

0, 23 kg/sln 3 = 14.3 s

(32)

quindi dopo un numero di oscillazioni:

N = t

T =14.3 s

2.72 s = 5.26 ' 5.

Il termine di smorzamento è molto piccolo, in tal modo la frequenza ω differisce di poco da quella dell’oscillazione libera ω0. In tali condizioni ha senso parlare di (pseudo-)frequenza, trattandosi di un moto quasi periodico.

(33)

Capitolo 3

Fenomeni ondulatori

(34)

Esercizio 3.1

Una sbarra d’ acciaio (ρ = 7.8 · 10−3 kg/m3 , E = 2.8 · 1011 N/m2) di diametro d = 4 mm é utilizzata per trasmettere delle onde longitudinali generate da un oscillatore; tali onde sono armoniche di frequenza f = 10 Hz e ampiezza ξ0= 0.2 mm .

(a) Calcolare la velocitá massima dei singoli punti della sbarra e confrontarla con la velocitá di propagazione dell’onda lungo la sbarra.

(b) Calcolare inoltre la densitá di energia nella sbarra, l’intensitá dell’onda che si propaga lungo la sbarra e la potenza dell’oscillatore necessaria per mantenere l’onda in assenza di assorbimento.

Soluzione

Dall’equazione di D’Alambert, la velocitá di propagazione dell’onda lungo la sbarra vale:

v = s

E

ρ = 6 · 106m/s

La soluzione dell’equazione sarà :

ξ(x, t) = ξ0sin(kx − ωt) dξ

dt = −ξ0ω cos(kx − ωt) Il valore massimo dell velocità di oscillazione sará:

ξ0ω

Sapendo che:

ω = 2πf

si trova :

dξ dtmax

= 2π f ξ0= 1.26 · 10−2m/s

Calcoliamo la densitá di energia nella sbarra Wl. La potenza media é data da:

Pm= 1

02ω2vρΣ = WlvΣ Quindi dividendo ambo i membri per vΣ, ottengo:

Wl=1

02ω2ρ = 0.62 · 10−6J/m3

(35)

Calcoliamo l’intensitá dell’onda che si propaga lungo la sbarra I = Wlv : I = < P >

Σ = WlvΣ Σ .

Si trova I = 3.69 W/m2 .

Calcoliamo la potenza dell’oscillatore necessaria per mantenere l’onda in assenza di assorbimento.

Conoscendo I e Σ, la potenza si calcola come:

P = I Σ = Iπ d 2

2

= 4.64 × 10−5 W

(36)

Esercizio 3.2

Una corda con densità lineare ρ = 0.5 Kg/m é sottoposta alla tensione T = 20 N

Su di essa un’onda di ampiezza ξ0 = 10−2 m e frequenza f = 100 Hz si muove in direzione delle x negative.

(a) Qual’é la velocitá dell’onda?

(b) Scrivere l’equazione dell’onda, calcolando i parametri k, ω, e la fase ϕ, sapendo che per x = 0 e t = 0 l’ampiezza é massima.

(c) Qual’é la potenza media trasmessa sulla corda?

Soluzione

Dall’equazione di D’Alambert ricavo che :

v = s

T

ρ = 6.32 m/s

Scrivo l’equazione d’onda sapendo che per x = 0e t = 0 l’ampiezza delle oscillazioni é massima.

ξ = ξ0 sin(kx + ωt + ϕ)

Prendo il segno ’+’ davanti ad ω poiché l’onda si propaga nella direzione -x.

Quindi avró:

ω = 2π f = 2π 100 = 628 rad/s

Inoltre k sará pari a:

k = ω

v = 628 rad/sec

6.32 m/s = 99.36 rad/m

Quindi per trovare ξ massimo pongo nell’equazione x=0 e t=0 , per cui avró tale valore massimo quando il sin(ϕ) é pari a 1, cioé quando ϕ é uguale a π2.

L’equazione finale sará pertanto :

ξ(x, t) = ξ0 sin

99.36x + 628t +π 2



Valutiamo la potenza media trasmessa sulla corda. Ricordando che <P>=12ρ ξ02ω2v e sostituendo , si ottiene P = 62.31 W .

(37)

Esercizio 3.3

L’equazione di un’onda trasversale che si propaga in una corda tesa é ξ = 2 cos[π(0.5x − 200t)].

(a) Determinare ampiezza, lunghezza d’onda , frequenza , periodo e velocitá di propagazione dell’onda.

(b) Trovare la tensione, sapendo che la corda e’ lunga 0.90 m e ha massa 0.45 kg .

Soluzione

Dall’equazione data si deduce che ξ0 = 2, k = 0.5π, ω = 200π.

Sapendo che k= 2 πλ ed ω= 2 πT , si trova:

T =2 π

ω = 10 ms Mentre f é pari all’inverso del periodo T:

f = 1

T = 100 Hz La velocitá di propagazione dell’onda e’ data da:

v = ω

k = 400 m/s

Per determinare la tensione agente sulla corda utilizziamo l’espressione:

v = s

T ρ Quindi, ponendo ρ = ml:

v = rT l

m , → v2=T l

m, → T = m v2

l = 8 × 104N

(38)

Esercizio 3.4

Un’onda sonora piana armonica di pulsazione ω = 2 · 103e intensitá I = 10−6W/m2si puó propagare in tre mezzi: aria, acqua, ferro, per i quali densitá e velocitá di propagazione sono rispettivamente :

Aria → ρ1= 1.29 Kg/m3 v1= 344 m/s Acqua → ρ2= 103Kg/m3 v2= 1493 m/s F erro → ρ3= 7.8 · 103Kg/m3 v3= 5130 m/s.

Calcolare nei tre mezzi i valori della lunghezza d’onda λ e dell’ampiezza ξ dell’onda di spostamento.

Soluzione

Per definizione di lunghezza d’onda:

λ = 2π/k = 2πv/ω

con k il numero d’onda definito come k = ωv. La lunghezza d’onda dell’onda nei tre rispettivi mezzi vale dunque:

λ1= 2π · 344ms

2 · 103 rads = 1080 · 10−3= 1.08 m λ2= 2π · 1493ms

2 · 103 rads = 4688 · 10−3= 4.7 m λ3= 2π · 5130ms

2 · 103 rads = 16108 · 10−3= 16 m Si puó procedere adesso col calcolo dell’ampiezza dell’onda di spostamento.

L’intensitá dell’onda è definita come potenza media su unitá di superficie:

I =hP i Σ Sapendo che l’intensitá in questo caso é anche pari a

I =1 2ρξ20ω2v con :

ρ → densitá del mezzo

ξ0→ Ampiezza iniziale dell’onda ω → pulsazione dell’onda

v → velocità di propagazione dell’onda si ottiene :

I = hP i m2 = 1

2ρξ02ω2v

A questo punto si può procedere con la determinazione del valore numerico dell’ampiezza dell’onda di spostamento nei rispettivi mezzi :

ξ20= 2I

ρω2v → ξ0= s 2I

ρω2v = 1 ω

s2I vρ Nell’aria:

Nel ferro:

ξ3= 1 ω

s 2I

v3ρ3 = 1.1 · 10−10m

(39)

Esercizio 3.5

Un altoparlante produce nell’aria a 20un suono di frequenza f = 2·103Hz e intensitá I1= 5.6·10−4 Wm2 a distanza r1= 6 m. Nell’ipotesi di emissione isotropa calcolare l’intensitá I2alla distanza r2= 30 m e l’am- piezza dell’onda di spostamento ξ a r1= 6 m e r2= 30 m. Per la velocità del suono si usi il valore 343 m/s.

Soluzione

Si tratta di emissione isotropa, quindi si sta parlando di onde sonore sferiche.

Siccome siamo in condizioni di emissione isotropa allora P1(r1) = P2(r2) da cui, applicando la definizione di intensitá dell’onda, si ottiene :

I1Σ1= I2Σ2

La condizione di emissione isotropa impone che l’onda in questione sia un’onda sferica e quindi la superficie Σ sará una sfera e quindi Σ = 4πr2. Si puó quindi riscrivere l’intensitá come

I14πr21= I24πr22 ovvero

I2= I1

r1

r2

!2

= 5.6 · 10−4 6 30

!2

= 2.24 · 10−5W m2

Si ricordi che :

I = P Σ = 1

2ρω2ξ02v

I = 1

2ρω2ξ02v → ξ20= 2I

ρω2v → ξ0= 1 ω

s2I ρv = 1

2πν s2I

ρv

ξ0,r1= 1 2π · 2 · 103

r2 · 5.6 · 10−4

1.29 · 343 = 1, 26 · 10−7m ξ0,r2 = 1

2πν s

2I2 ρv = 1

2πν s

2I1 ρv ·1

5 = ξ0,r1·1

5 = 0.254 · 10−7m

(40)

Capitolo 4

Onde elettromagnetiche

(41)

Esercizio 4.1

Una superficie metallica è investita da un fascio di luce proveniente da un laser di diametro d = 3 mm.

Sapendo che l’intensità incidente è pari a 14 × 106W/m2, calcolare la potenza del laser. Si osserva che il 25 % dell’energia viene assorbita , il restante 75 % è riflessa. Determinare il valore dell’ampiezza del campo elettrico incidente e il valore dell’ampiezza del campo magnetico riflesso. Calcolare la forza esercitata dalla radiazione sulla superficie.

Soluzione

Calcolo la potenza:

P = IiΣ = Iiπ d 2

!2

= 99 W Sapendo che l’intensità di un onda elettromagnetica è data da:

Ii =1

2E02ε0c → E0=r 2Ii

ε0c = 1 × 105V /m

Dato che il 75 % dell’energia è riflessa, essendo l’energia di un onda elettromagnetica direttamente proporzionale all’intensità, l’intensità riflessa sarà il 75 % della totale:

Ir= 0.75 Ii= 10.5 × 106W/m2 Allora il campo magnetico sarà:

Br=Er c =1

c r 2Ir

ε0c = 3 × 10−4T

Per ottenere la forza cerchiamo la pressione di radiazione, essa sarà dovuta sia all’ onda riflessa (a cui sarà associato un fattore 2), sia a quella assorbita:

Prad= 2Ir c +Ia

c = (2 · 0.75 + 0.25)Ii

c = 0.08 P a → F = PradΣ = Pradπ d 2

!2

= 5.6×10−7N

(42)

Esercizio 4.2

Nel vuoto un’onda EM piana si propaga lungo la direzione x. Il campo elettrico è espresso da:

Ey = E0 sin(kx − ωt) ,

con E0= 300 V /m. Quali sono l’ampiezza e la direzione del campo magnetico associato all’onda?

Determinare l’intensità dell’onda. Se l’onda incide su un foglio perfettamente assorbente di area

Σ = 2 m2, qual’è la forza su di esso? Si ripetano i calcoli nel caso la stessa onda si propaghi in un mezzo con indice di rifrazione n = 2.

Soluzione

In un onda elettromagnetica deve essere soddisfatto: k × E = ωB, dove k e riretto nella direzione di propagazionbe dell’onda. Quindi, considerando un sistema di riferimento in cui ˆux× ˆuy= ˆuz come mostrato nella Figura 4.1, B è diretto nella direzione positiva z. Inoltre: B0= Ec0 = 1 × 10−6T = 1 µT .

Quindi, calcolo l’intensità:

I =1

2E02ε0c = 119, 5 W/m2 Dato che l’onda è completamente assorbita:

Prad= Ii

c = 3, 9 × 10−7P a → F = PradΣ = 7, 9 × 10−7N Nel caso in cui n = 2,

n = c

v → v = c

2 Calcolo l’ampiezza del campo magnetico nel mezzo:

B0=E0

v = 2 × 10−6T = 2 µT L’intensità dell’onda, sapendo che n =√

εr: Imezzo= 1

0εrv E02=1 2ε0n2 c

nE02=1

0n c E02= 2Ivuoto= 239 W Quindi la pressione di radiazione, e la conseguente forza sul foglio saranno:

Prad mezzo=Imezzo

v =nIvuoto c n

= n2Ivuoto

c = 4Prad vuoto = 1.56 × 10−6P a F = PradΣ = 3, 12 × 10−6N

(43)

Esercizio 4.3

Un’onda elettromagnetica piana polarizzata ellitticamente di intensità I = 20 W/m2si propaga lungo l’asse x in una lastra di vetro con indice di rifrazione n = 1.5. Il rapporto tra le ampiezze delle due componenti del campo elettrico E0y/E0z vale√

3. Scrivere l’equazione dell’onda sapendo che la sua lunghezza d’onda nel mezzo è λ = 0, 4 × 10−6m.

Soluzione

L’equazione dell’onda essendo polarizzata ellitticamente nel piano zy sarà:

(Ey= E0y sin(kx − ωt)

Ez= E0zsin(kx − ωt + π2) (2)

Inizialmente calcolo k e ω:

k = 2π

λ = 1.57 × 107rad/m e ω = v k = c

nk = 3, 14 × 1015rad/sec Inoltre sapendo l’intensità totale, posso dire che la somma tra l’intensità su z e quella su y sia corrispondente a quella totale:

Itot= Iy+ Iz = 20 W/m2 Sapendo che E0y/E0z=√

3,ed essendo l’intensità proporzionale al quadrato del campo elettrico:

E0y2

E0z2 = 3 → Iy Iz

= 3 → Iy = 3Iz Ottengo, allora, il sistema:

(Iy+ Iz= 20 Iy= 3Iz

(Iz= 5 W/m2 Iy= 15 W/m2 Calcolo E0z e E0z, sapendo che n =√

εre che v = nc:

I =1

0εrvE02= 1 2

nE02 Z0

→ E0=

r2Z0I

n →

 E0y=

q2Z0Iy

n = 86.80 V /m E0z=

q2Z0Iz

n = 50.11 V /m con Z0=qµ

0

ε0 = 376.73 Ω , impedenza del vuoto.

Riferimenti

Documenti correlati

Un fascio di luce passa dalla regione A alla regione B di un mezzo con indice di rifrazione n 1 attraverso una spessa lastra di materiale il cui indice di rifrazione è n

Un fascio di luce monocromatica con lunghezza d'onda (nel vuoto) λ 0 = 500nm incide normalmente sopra una pellicola di spessore d = 1µm ed indice di rifrazione n = 1.4. Una parte

Calcolare il flusso ed il flusso medio nel tempo del vettore di Pointing di un onda elettromagnetica piana il cui capo elettrico varia secondo la legge # E(x, t) = E y cos(k

Un prisma di vetro, con indice di rifrazione 1, 5, ha come sezione un triangolo isoscele avente angoli alla base di 70 °.. Un raggio di luce entra nel prisma parallelo alla base

Facciamo entrare un fascio, composto da particelle che hanno tutte la stessa velocità (selettore di velocità) e la stessa carica, ma masse diverse, in direzione

L'unica differenza è che, mentre l'accelerazione di gravità è indipendente dalla massa del corpo, l'accelerazione impressa dal campo elettrico dipende dalla

La luce, i raggi X, le onde radio, ecc., sono tutte onde elettromagnetiche, ossia consistono in vibrazioni dei campi elettrico e magnetico che si propagano nello

Mettendo a contatto due metalli diversi (rame e zinco) alla stessa temperatura, si stabilisce fra di essi una differenza di potenziale (Alessandro Volta