• Non ci sono risultati.

(3) Dryja T.P . , McGee T.L . , Hahn L.B . , et al . Mutations within the rhodopsin gene in patients with autosomal dominant retinitis pigmentosa. N. Engl. J. Med. 1990 Nov 8; 323(19): 1302-7.

N/A
N/A
Protected

Academic year: 2021

Condividi "(3) Dryja T.P . , McGee T.L . , Hahn L.B . , et al . Mutations within the rhodopsin gene in patients with autosomal dominant retinitis pigmentosa. N. Engl. J. Med. 1990 Nov 8; 323(19): 1302-7."

Copied!
12
0
0

Testo completo

(1)

I

BIBLIOGRAFIA

(1) Kumar V., Abbas A.K., Fausto N., Aster J.C.. Le basi patologiche delle malattie. Malattie degli organi e degli apparati, 8° Ed. Elsevier, Milano, pp. 1344-1350 2008.

(2) Krill A.E . , Deutman A.F .. Dominant macular degenerations. The cone dystrophies. Am. J. Ophthalmol. 1972 Mar; 73(3): 352-69.

(3) Dryja T.P . , McGee T.L . , Hahn L.B . , et al . Mutations within the rhodopsin gene in patients with autosomal dominant retinitis pigmentosa. N. Engl. J. Med. 1990 Nov 8; 323(19): 1302-7.

(4) Grüning G . , Millan J.M . , Meins M ., et al. Mutations in the human peripherin/RDS gene associated with autosomal dominant retinitis pigmentosa. Hum. Mutat. 1994; 3(3): 321-3.

(5) Pannarale M.R., Grammatico B., Iannaccone A., et al. Autosomal- dominant retinitis pigmentosa associated with an Arg-135-Trp point mutation of the rhodopsin gene. Clinical features and longitudinal observations. Ophthalmology. 1996 Sep; 103(9): 1443-52.

(6) Neidhardt J . , Glaus E . , Lorenz B . , et al. Identification of novel mutations in X-linked RP families and implications for diagnostic testing. Mol. Vis. 2008 Jun 6; 14: 1081-93.

(7) Gouras P . , Flood M.T . , Kjeldbye H . . Transplantation of cultured

human retinal cells to monkey retina. An. Acad. Bras. Cienc. 1984

Dec; 56(4): 431-43.

(2)

II

(8) Sauvé Y., Klassen H., et al. Visual field loss in RCS rats and the effect of RPE cell transplantation. Exp. Neurol. 1998; 152: 243–250.

(9) Girman S.V., Wang S., Lund RD.. Cortical visual functions can be preserved by subretinal RPE cell grafting in RCS rats. Vision Res.

2003; 43: 1817–1827.

(10) Gias C., Jones M., Keegan D., et al. Preservation of visual cortical function following retinal pigment epithelium transplantation in the RCS rat using optical imaging techniques. Eur. J. Neurosci. 2007; 25:

1940–1948.

(11) Aramant R.B., Seiler M.J.. Retinal Transplantation - Advantages of Intact Fetal Sheets. Prog. Retin. Eye Res. Jan 2002; 21 (1): 57–73.

(12) Seiler M.J. and Aramant R.B.. Cell replacement and visual restoration by retinal sheet transplants Prog. Retin. Eye Res. Nov 2012; 31(6): 661–687.

(13) Radtke N.D . , Seiler M.J . , Aramant R.B . , Petry H.M . , Pidwell D.J ..

Transplantation of intact sheets of fetal neural retina with its retinal pigment epithelium in retinitis pigmentosa patients. Am. J.

Ophthalmol. 2002 Apr; 133(4): 544-50.

(14) Radtke N.D., Aramant R.B., Petry H.M., et al. Vision Improvement in Retinal Degeneration Patients by Implantation of Retina Together with Retinal Pigment Epithelium. Am. J. Ophthalmol. 2008; 146:

172–182.

(3)

III

(15) MacLaren R.E., Pearson R.A., MacNeil A., et al. Retinal repair by transplantation of photoreceptor precursors Ali RR. Nature. 2006;

444: 203–207.

(16) Pearson R.A., Barber A.C., Rizzi M., et al. Restoration of vision after transplantation of photoreceptors. Ali RR Nature. 2012; 485:

99–103.

(17) Li T

.

, Lewallen M

.

, Chen S

.

, et al. Multipotent stem cells isolated from the adult mouse retina are capable of producing functional photoreceptor cells. Cell Res. 2013 Jun; 23(6): 788-802.

(18) Siy U.H., Chan P.S., Cruz F.M.. Stem Cell Therapy: a Novel Approach for Vision Restoration in Retinitis Pigmentosa. Med Hypothesis Discov. Innov. Ophthalmol. 2013 Summer; 2(2): 52–55.

(19) Berson E.L . , Rosner B . , Sandberg M.A . , et al. A randomized trial of vitamin A and vitamin E supplementation for retinitis pigmentosa.

Arch. Ophthalmol. 1993 Jun; 111(6): 761-72.

(20) Sibulesky L., Hayes K.C . , Pronczuk A., et al. Safety of <7500 RE (<25000 IU) vitamin A daily in adults with retinitis pigmentosa. Am.

J. Clin. Nutr. 1999 Apr; 69(4): 656-63.

(21) Berson E.L., Rosner B., Sandberg M.A., et al. ω-3 intake and visual acuity in patients with retinitis pigmentosa receiving vitamin A.

Arch. Ophthalmol. 2012 Jun; 130(6): 707-11.

(4)

IV

(22) Algan B., Benichoux R., Marchal H.. On the preliminary results of the use of hyperbaric oxygenation in ocular pathology Bull. Soc.

Belge. Ophtalmol. 1973 Feb; 163(2): 183-94.

(23) Yu D.Y., Cringle S..J.. Retinal degeneration and local oxygen metabolism. Exp. Eye Res. 2005 Jun; 80(6): 745-51.

(24) Skogstad M., Bast-Pettersen R., Tynes T., et al. Treatment with hyperbaric oxygen. Illustrated by the treatment of a patient with retinitis pigmentosa. Tidsskr. Nor Laegeforen. 1994 Sep10; 114(21):

2480-3.

(25) Vingolo E.M., Rocco M., Grenga P., et al. Slowing the degenerative process, long lasting effect of hyperbaric oxygen therapy in retinitis pigmentosa. Graefes Arch. Clin. Exp. Ophthalmol.

2008 Jan; 246(1): 93-8.

(26) Pagon R.A. Retinitis pigmentosa. Surv. Ophthalmol. 1988; 33:

137–77.

(27) Le Roy C.. Où l’on rend compte de quelques tentatives que l’on a faites pour guérir plusieurs maladies par l’électricité. Hist. Acad. R.

Sci. (Paris), Mém. Math. Phys. 1755; 60: 87–95.

(28) Tassicker G.E.. Preliminary Report on a retinal stimulator. Br. J.

Physiol. Opt. 1956 13: 102-5.

(29) Matthaei M., Zeitz O., Keserü M., et al. Progress in the Development of Vision Prostheses. Ophthalmologica 2011; 225:

187–192.

(5)

V

(30) Dobelle W. H. and Mladejovsky M. G.. Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind. Physiol. Dec 1974;

243(2): 553–576.1.

(31) Maynard E.M., Nordhausen C.T., Normann R.A.. The Utah intracortical electrode array: a recording structure for potential braincomputer interfaces. Electroencephalogr. Clin. Neurophysiol.

1997; 102: 228–239.

(32) Veraart C., Raftopoulos C., Mortimer J.T., et al. Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode. Brain Res. 1998; 813: 181–186.

(33) Brelen M.E., De Potter P., Gersdorff M., et al. Intraorbital implantation of a stimulating electrode for an optic nerve visual prosthesis: case report. J. Neurosurg. 2006; 104: 593–597.

(34) Matthaei M., Zeitz O., Keserü M., et al. Progress in the Development of Vision Prostheses. Ophthalmol. 2011; 225: 187–192.

(35) Chow A.Y.. Artificial retina device US patent 5,016,633.

Publication N. US5016633 A May 21, 1991.

(36) Zrenner E., Stett A., Weiss S., et al. Can subretinal icrophotodiodes successfully replace degenerated photoreceptors? Vision Res. 1999 Jul; 39(15): 2555-67.

(37) Chow A.Y., Chow V.Y.. Subretinal electrical stimulation of the

rabbit retina. Neurosci. Lett. 1997; 225: 13–16.

(6)

VI

(38) Chow A.Y., Chow V.Y., Packo K.H., et al. The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa.

Arch. Ophthalmol. 2004; 122: 460–469.

(39) Yvonne H., Luo L.. A review and update on the current status of retinal prostheses (bionic eye). British. Medical. Bulletin, 2014, 1–14.

(40) Zrenner E., Stett A., Weiss S. et al. Can subretinal microphotodiodes successfully replace degenerated photoreceptors.

Vision Res. 1999; 39: 2555–67.

(41) Zrenner E.. Will retinal implants restore vision? Science 2002; 295:

1022–1025.

(42) Gekeler F., Kobuch K., Schwahn H.N.. Subretinal electrical stimulation of the rabbit retina with acutely implanted electrode arrays. Graefes Arch. Clin. Exp. Ophthalmol. 2004; 242: 587–96.

(43) Sachs H.G., Gabel V.P.. Retinal replacement – the development of microelectronic retinal prostheses – experience with subretinal implants and new aspects. Graefes Arch. Clin. Exp. Ophthalmol.

2004; 242: 717–23.

(44) Sachs H.G., Schanze T., Wilms M. et al. Subretinal implantation and testing of polyimide film electrodes in cats. Graefes Arch. Clin.

Exp. Ophthalmol. 2005; 243: 464–8.

(7)

VII

(45) Gekeler F., Szurman P., Grisanti S. et al. Compound subretinal prostheses with extra-ocular parts designed for human trials:

successful long-term implantation in pigs. Graefes. Arch. Clin. Exp.

Ophthalmol. 2007; 245: 230–41.

(46) Zrenner E., Bartz-Schmidt K.U., Benav H., et al. Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc. Biol. Sci. 2010; 278:1489-97.

(47) Stingl K., Bach M., Bartz-Schmidt K.U., et al. Safety and efficacy of subretinal visual implants in humans: methodological aspects. Clin.

Exp. Optom. 2013; 96: 4–13.

(48) Rizzo J.F.,Wyatt J., Loewenstein J. et al. Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays. Invest. Ophthalmol. Vis. Sci. 2003; 44: 5355–

61.

(49) Kelly S.K., Shire D.B., Chen J., et al. Realization of a 15-channel, hermetically-encased wireless subretinal prosthesis for the blind.

Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009; 200–3.

(50) Shire D.B., Kelly S.K., Chen J., et al. Development and implantation of a minimally invasive wireless subretinal neurostimulator. IEEE Trans. Biomed. Eng. 2009; 56: 2502–11.

(51) Jong M.O., Lyndon C.. The bionic eye: a review. Clin. Experim.

Ophthalmol. 2012; 40: 6–17.

(8)

VIII

(52) Eckmiller R., Neumann D., Baruth O.. Tunable retina encoders for retina implants: why and how J. Neural. Eng. 2005;2: S91–S104.

(53) Hornig R., Zehnder T., Velikay-Parel M., et al. Artificial Sight: Basic Reaserch, Biomedical Engineering, and Clinical Advances Springer- Verlag. 2007; 111–28.

(54) Güven D., Weiland J.D., Fujii G., et al. Long-term stimulation by active epiretinal implants in normal and RCD1 dogs. J. Neural. Eng.

2005; 2: S65–73.

(55) Caspi A., Dorn J.D., McClure K.H., et al. Feasibility study of a retinal prosthesis: spatial vision with a 16-electrode implant. Arch.

Ophthalmol. 2009; 127: 398–401.

(56) Nanduri D., Humayun M.S., Greenberg R.J., et al. Retinal prosthesis phosphene shape analysis. Med. Biol. Soc. 2008; 1785-8.

(57) Humayun M.S., Dorn J.D., Ahuja A.K., et al. Preliminary 6 month results from the Argus II epiretinal prosthesis feasibility study. Med.

Biol. Soc. 2009; 4566-8.

(58) Da Cruz L., Coley B.F., Dorn J., et al. The Argus II epiretinal prosthesis system allows letter and word reading and long-term function in patients with profound vision loss. Br. J. Ophthalmol.

2012 May; 97(5): 632-6.

(59) Rizzo S., Belting C., Cinelli L., et al. The Argus II Retinal Prosthesis:

Twelve-Month Results. Am. J. Ophtalmol. 2014 June; 157(6): 1282-

90.

(9)

IX

(60) Stronks H.C., Dagnelie G.. The functional performance of the Argus II retinal prosthesis. Expert Rev. Med. Device 2014 Jan; 11(1):

23-30.

(61) Dorn J.D., Geruschat D., Dagnelie G., et al. Functional vision and quality of life of Argus II retinal prosthesis system users as measured by the functional low-vision observer reted assestement (FLORA).

Invest. Ophtalmol. Vis. Sci. 53, ARVO Abstract 5511 (2012).

(62) Pisanelli D.M., Maceratini R., Ricci F.L.. A survey of telemedicine in Italy J. Telemedicine and Telecare n.1, pp. 125-130, 1995.

(63) www.medic4all.it

(64) Vitacca M., Comini L., Assoni G., et al. Tele-assistance in patients with amyotrophic lateral sclerosis: long term activity and costs Disabil. Rehabil. Assist. Technol. 2012 Nov; 7(6): 494-500.

(65) Paneroni M., Colombo F., Papalia A., et al. Is Telerehabilitation a Safe and Viable Option for Patients with COPD? A Feasibility Study.

COPD. 2014 Aug 5.

(66) www.salute.gov.it

(10)

X

INDICE DELLE FIGURE

FIGURA 1. In grassetto i principali siti di impianto di una protesi di

stimolazione visiva. Pag. 13

FIGURA 2. Esempio di impianto corticale. Pag. 15

FIGURA 3. Array mostrato rispetto alla dimensione di un centesimo (A), osservazione al microscopio (B) dei singoli pixel (C), impianto nello spazio sottoretinico (D).

Pag. 18

Figura 4. Foto fundus mostrano impianto retinico di silicio artificiale su 6 diversi pazienti e fluorangiografia del paziente 3. Pag. 19

FIGURA 5. Impianto esterno e intra-oculare. Pag. 21

FIGURA 6. Tasks eseguiti dai pazienti impiantati con Array ON e OFF.

Pag. 22

(11)

XI

FIGURA 7. (A) Posizionamento del cavo di alimentazione intradermico impiegato nello studio pilota (2005-2009). (B) Impianto usato nel trial

clinic con tecnologia wireless. Pag. 23

FIGURA 8. Prototipo di protesi retinica ermetica. Pag. 24

FIGURA 9. Progetto di impianto di seconda generazione. Pag. 25

FIGURA 10. Protesi epiretinica con 60 elettrodi. Pag. 27

FIGURA 11 . Componenti esterne dell'impianto epiretinico. Pag. 28

FIGURA 12. Paziente durante lo svolgimento di un esercizio alla lavagna

magnetica. Pag. 32

FIGURA 13. (A) Elettrodi non attivi per mancanza di stimolazione luminosa. (B) Elettrodi in bianco attivi corrispondenti alla figura sulla

lavagna. Pag. 33

FIGURA 14. Paziente durante una sessione di Orientamento e Mobilità

segue la linea di demarcazione tra marciapiede e asfalto. Pag. 34

(12)

XII

INDICE DELLE TABELLE

TABELLA 1. Costo di 10 sedute presso la clinica. Pag. 46

TABELLA 2. Costi per due sedute riabilitative domiciliari. Pag. 47

TABELLA 3. Costo totale per 8 sedute presso la clinica e 2 domiciliari.

Pag. 48 TABELLA 4. Costi delle sedute riabilitative con la Telemedicina.

Pag. 50

Riferimenti

Documenti correlati

light exposure [70], and we have detected monofuran-A2E and monoperoxy-A2E in RPE from human eyes and in eyecups from mice with null mutations in Abcr -/- [35], the gene

Voronoi and power spectral analysis applied to averaged, registered (a) cone and (b) retinal pigment epithelium images of Subject 5 at 38 temporal retina.. Averaging contained

Visual cycle proteins associated with forms of retinal degeneration include RPE65 (Leber congenital amaurosis, LCA; severe retinitis pigmentosa, RP); CRALBP and 11cRDH (encoded

(B) The retinal pigment epithelium that underlies the retina is responsible for the turnover of photoreceptor outer segments (POS) by their phagocytosis and is critical

Eighteen months after the initial presentation, multimodal retinal evaluation showed an even greater improvement of the retinal involvement and light perception at the affected

Since 1844, when Karl Bruch described a 'structureless membrane' between the retina and choroid,' almost all anatomical examinations have been by light microscopy or

Abstract: As the retinal pigment epithelium (RPE) ages, a number of structural changes occur, including loss of melanin granules, increase in the density of residual

1) In the first three groups the drusen shown are the small hard, hyalinised variety. 2) In group IV the admixture of membranous debris causes a hyalinised druse to break down.