• Non ci sono risultati.

3.  Basic  aspects  of  skarn  deposits

N/A
N/A
Protected

Academic year: 2021

Condividi "3.  Basic  aspects  of  skarn  deposits"

Copied!
13
0
0

Testo completo

(1)

3.  Basic  aspects  of  skarn  deposits

This   chapter   is   divided   into   two   paragraphs   in   order   to   provide   useful   informa6on   concerning  skarn  deposits.   The  first  sec6on  summarizes  some  of  the  historical  papers  that   are  the   scien6fic   basis   for   the  actual  gene6c   model  for   skarn  deposits.   The  6tle   “Skarn   deposits:   Historical  bibliography   through   2013”   is  clearly   influenced   by   Burt   (1982)   that   shows  as  “many  observa6ons  and  ideas  in  recent  publica6ons  are  actually  50   or  even  100   years  old”.  Another  purpose  of  this  chapter   is  to  show  the  scien6fic  relevance  of  Campiglia   MariPma  skarn  deposit  on  the  actual  skarn  forma6on  model.  The  second  sec6on  describes   the  main  features  of  the  actual  gene6c  model  for  skarn  forma6on  and  ore  deposi6on.

3.1.  Skarn  deposits:  Historical  bibliography  through  2013

1847   -­‐   Descrip6on   of   garnet   masses  between   diorite  and   carbona6c   rocks  at   Turjinsk   copper  mine,  Urals  (Beamount,  1847).  The  garnet  is  produced  by  the  ac6on  of  the  diorite  on   the  limestone  and  then  compares  these  deposits  with  similar  deposits  in  Tuscany.

1864  -­‐  First  descrip6on  of  contact  deposit.  Von  Co[a  proposes  that  the  garnet  rocks  “are   probably,  for  the  most  part,  the  results  of  the  combina6on  of  the  lime  in  the  limestone  with   the  silicates  of  the  Bana6tes,  by  mel6ng  under  a  high  pressure,  and  subsequent  cooling-­‐off   in  enclosed  places”.  In  this  paper  is  depicted  an  image  of  Cava  del  Piombo  (Miniera  dei  Lanzi,   Campiglia  MariPma)  (Von  Co[a,  1864).

1868   -­‐   First   descrip6on   on   a  mineralogical  zoning   in   a   metasoma6c   rock.   The   zoning   descripted   was:   magma6c   rock  ⇒   ilvaite  ⇒   hedenbergite  ⇒   marble  host-­‐rock  (for   more   details  see  chapter  7)  (Vom  Rath,  1868).

1875  -­‐Törnebohm  used  for  the  first  6me  the  term  skarn  (grönskarn  to  indicate  pyroxene-­‐ garnet  rocks)  (Törnebohm,  1875).

1895  -­‐  One  of  the  first  examples  in  the  United  States.  Packard  proposed  a  gene6c  rela6on   between  igneous  rock  and  copper  deposits  at  Seven  Devils,  Idaho  (Packard,  1895).

1900   -­‐  Beck  cited  the  examples  of  Campiglia  MariPma  and  Elba  Island  as  the  “contact-­‐ metamorphic  ore  deposits”  (Beck,  1900).

(2)

1902  -­‐  “The  genesis  of  the  contact-­‐deposits  of  the  Kris6ana  type  thus  seems  to  be  due  to   the  aqueous  gas  above  the  cri6cal  temperature,  which  was  more  or  less  laden  with  metallic   compounds,  and,   under   heavy  pressure,   penetrated  the  limestone  adjacent   to  the  igneous   intrusive  body”.  The  origin  of  metals  derived  from  the  cooling  of  the  magma6c  body  and  not   from  the  carbona6c  rocks  (Lindgren,  1902).

1903     -­‐  First   classifica6ons  of  contact   deposits  on  the  basis  of   contained  ores  (Weed,   1903).

1905  -­‐  Lindgren  recognized  the  possible  role  of  halides  in  transpor6ng  metals  (Lindgren,   1905).

1907  -­‐  The  “endometamorphism”  of  intrusive  rocks  develops  by   the  addi6on  of  Ca  from   limestone.   The  skarns  could  not   form  by   direct   reac6on   between  magma  and   limestone,   because  the  magma6c  rock  has  too  low  Fe  content  (Kemp,  1907).

1911  -­‐  Goldschmidt  generalized  the  use  of  the  term  skarn  (Goldschmidt,  1911).

1912  -­‐  The  volume  does  not  change  during  metasoma6c  processes  (aier  know  with  the   name  of  Lindgren’s  Law)  (Lindgren,  1912).

1917   -­‐   Kato   concluded,   based   on   the   Japanese   skarn,   that   “the   greater   part   of   the   elements  composing  the  lime-­‐silicate  minerals  and  the  en6rety  of  ore-­‐minerals  ...  have  been   derived   from   the   emana6ons  from   the  magma”.   Furthermore,   he   proposed   a  temporal   model  for  the  forma6on  of  skarn  minerals  with  the  “lime-­‐silicates  containing  li[le  or  no  iron   precedes  the  forma6on  of  those  skarn  minerals  rich  in  iron”  and  sulfides  are  s6ll  later  or,  in   part,  contemporaneous  (Kato,  1917).

1932  -­‐  Eskola  explained  the  “principle  of  enrichment  in  the  stablest  cons6tuents”.  During   mass  transfer  (metasoma6sm),  the  most  soluble  cons6tuents,  such  as  lime  and  alkalies,  are   extracted   and   the   least   soluble,   such   as   alumina   and   magnesia,   are   lei   behind,   as   in   aluminosilicate  rocks  and  magnesian  skarns  (Eskola,  1932).

1936   -­‐   Magnusson   divided   the   skarn   in   reac6on   skarn   (formed   during   regional   metamorphism)   and   in   metasoma6c   skarn   (all   the   others).   The   term   skarn   has   been  

(3)

extended  also  for  ore  minerals  (Magnusson,  1936).

1936   -­‐   First   defini6on   of   “perfect   mobility   of   components”   during   metasoma6sm   (Korzhinskii,  1936).

1942  -­‐  Knopf  proposed  a  strong  structural  control  on  mineraliza6on  (Knopf,  1942).

1945   -­‐   Korzhinskii   explained   the   metasoma6c   zoning   with   the   concept   of   mobile   components  previously  proposed  (Korzhinskii,  1945).  The  skarns  are  formed  as  the  result  of   interac6on   of  three  media:   limestone,   silicate  rocks,   and   postmagma(c   (italic   from   Burt,   1982)  solu6on.  Chemical  poten6al  diagrams  are  used  to  explain  the  zoning  observed.

1965   -­‐  Theory   of   systems  with   perfectly   mobile  components  and  processes  of  mineral   forma6on  (Korzhinskii,  1965).

This  paper  proposed  two  principals  items  for  understanding  skarn  deposits  that  strongly   influenced  the  modern  skarn  forma6on  model.  The  first  item  is  the  behavior  of  an  element   during  a  metamorphic  and/or  metasoma6c  processes  that  can  be  only   “inert”  or   “perfectly   mobile”.  In  metasoma6c  processes,  two  limi6ng  cases  are  to  be  dis6nguished:  1_  infiltra6on;   2_   diffusion.   In   infiltra6on  metasoma6sm,   “the  rate  of   percola6on   being   constant,   every   front   of   replacement   moves   with   a   constant   speed,   and   consequently   the   zones   of   replacement   grow  uniformly   in  the  direc6on  of  the  flow,   by   the  replacement   of   forward   zones   by   those   behind”   similar   to   a   “laboratory   chromatographic   column”.   In   diffusion   metasoma6sm   the   diffusion   of   components   proceed   through   a  stagnant   pore   solu6on.   “Because  the  concentra6on  of  the  pore  solu6on  changes  within  the  limits  of  every  zone,  the   composi6on  of  a  mineral  solid  solu6on  must  change  as  well”.  This  is  important  criterion  for   dis6nguishing  diffusion  from  infiltra6on  processes  in  which  “a  gradual  change  of  the  mineral   composi6on  cannot  take  place”.

The   second   item   inspect   the   interac6on   between   “bases”   and   “acids”   with   the   formula6on  of  the  principle  of  acid-­‐base  interac6on.  “Increasing  the  acidity   of  a  melt  or  an   acqueous  solu6on   decreases   the  bulk   ac6vity   coefficients  of   all  the  bases  and   increases   those   of   all   the   acids”.   “An   increase   in   the   basicity   causes   an   opposite   effect”.   These   phenomena  explained   for   example  because  “carbonates  and  other   basic   rocks  commonly   cause  the  precipita6on  of  the  ore  minerals  from  hydrothermal  solu6ons”  (Korzhinskii,  1965).

1966  -­‐  Skarn  deposits  are  produced  by  postmagma6c  hydrothermal  fluids  similar  to  those   that  produce  other  types  of  ore  deposits.  A  limestone  rock  near  a  pluton  is  the  main  factor  

(4)

for  skarn  development  (Buseck,  1966).

1968   -­‐   Korzhinskii   explained   “The   Theory   of   Metasoma6c   Zoning”   star6ng   from   the   Lindgren’s  volume  Law  and  from  the  two  end-­‐members  in  metasoma6c  processes  (diffusion   vs  infiltra6on)  (Korzhinskii,  1968).

1968  -­‐  Zharikov  described  a  rela6on  between  chemical  composi6on  of  skarn  minerals  (Fe/ Mg  ra6o  in  pyroxene  and  Fe/Al  ra6o  in  garnet)  and  the  metals  recovered.  He  a[ributes  this   to  varia6on  in  the  acidity  of  skarn-­‐forming  fluids  (Zharikov,  1968).

1969  -­‐  Perry  studied  calcic  and  magnesian  skarn  near  porphyry  copper  at  Christmas  mine,   Arizona.  He  found  a  volume  loss  during  skarn  forma6on  (Perry,  1969).

1970  -­‐  Bartholomé  cannot  exclude  the  possibility  that  much  iron  could  be  leached  from   earlier  crystallized  rocks  (Bartholomé,  1970).

1970  -­‐  Bartholomé  &  Evrard  analyzed  the  Temperino  mine  skarn  and  they  suggested  that   ilvaite-­‐bearing  skarn  are  formed  under  higher  values  of  f(CO2)  than  the  more  common  skarn  

consis6ng  of  an  inner  andradite  and  outer  hedenbergite  zones  (Bartholomé  &  Evrard,  1970).   1974   -­‐   Burt   described   the  metasoma6c   zoning  sequences  commonly   found  in  Ca-­‐Fe-­‐Si   exoskarns  on  observa6ons  also  of  italian  skarns.  In  agreement  with  Korzhinskii,  he  explained   the  forma6on  of  skarn  as  the  result  of  the  chemical  poten6al  between  host-­‐rocks  and  skarn-­‐ forming   solu6on.   The   relevance   of   the   end-­‐member   model   (diffusion   vs   infiltra6on)   is   difficult  to  assess  (Burt,  1974).

1974   -­‐  The  C,  H,   O  and  S  isotope  were  used  to  understand  the  genesis  of  Darwin  mine,   California  (Rye  et  al.,  1974).

1977   -­‐   First   review  paper   on  skarn  deposits  (Burt,   1977).   Burt  proposed  different  skarn   classifica6on  based   on  the  dimension,   structure,   host-­‐rock  and  ore  metals.  Described   the   forma6on  of  a  typical  skarn  in  5  different  stage.  1)  Intrusion  of  an  intermediate  to  grani6c   magma   probably   at   shallow   depth.   2)   Contact   metamorphism   (dehydrata6on   and   decarbona6on)  of  the  country  rocks,  and  results  in  a  volume  decrease  (ground  prepara6on).   Crystalliza6on   of   the   intrusive   proceeds  to   comple6on.   3)   Early   anhydrous  zoned   skarn  

(5)

forma6on  due  to  release  of  Fe  and  Si  rich  fluids  from  the  magma,  or  to  the  arrival  of  fluids   from  a  deeper  source.  4)  Metalliferous  ore  deposi6on.  Ore  deposi6on  is  confined  to  earlier-­‐ formed   skarn,   some   of   which   remains   barren.   5)   Late   hydrothermal   altera6on   with   destruc6on  of  early   anhydrous  skarn  minerals  and  con6nued  ore  deposi6on  (for   example   ilvaite  replace  garnet  and  clinopyroxene).  During  stages  4  and  5  above  the  ore-­‐bearing  fluid   presumably   changes   from   magma6c   to   convec6ve   meteoric.   He   described   a   systema6c   chemical  composi6on  varia6on  in  the  skarn  minerals  as  a  func6on  of  the  distance  from  an   intrusion.   Burt   cited   also   the   “classic   exoskarn   zoning   sequence”   of   Temperino   mine   (Campiglia  MariPma)  (Burt,  1977).

1981   -­‐  Another   review  paper   on  skarn  deposits  (Einaudi  et  al.,  1981).   In  this  paper   are   discussed  the  classifica6on  of  skarn  deposits,  the  forma6on  stages  of  different  skarn  types   and   the   chemical   characteris6cs   of   the   skarn   minerals.   Furthermore,   the   authors   summarized  the  new  data  on  fluid  inclusion  studies  and  mineral  equilibria  for  different  skarn   deposits  (Einaudi  et  al.,  1981).

1986   -­‐   Mathema6cal  trea6ses  and  numerical  simula6ons  of   a  typical  self-­‐organiza6on   phenomena   in   the   skarn:   the   fingering   instabili6es   (Chadam   et   al.,   1986).   They   demonstrated   that   a   fluid   flow   with   planar   front   can   spontaneously   development   in   elongated  finger  with  a  favoured  amplitude  and  shape.

1987  -­‐  Geochemical  self-­‐organiza6on  in  reac6on-­‐transport  systems  (Ortoleva  et  al.,  1987).   The   genera6on   of   a   self-­‐organiza6on   pa[ern   comes   about   when   a   given   feedback   is   triggered  by   noise  and  driven  by   disequilibrium.  The  authors  proposed  different   examples,   two  of   them   regard   skarn   deposits  (the  reac6ve   infiltra6on   instability   and   the  Ostwald-­‐ Liesegang   cycle).   The  first   process  cause   the  development   of   finger   or   scallop,   while   the   second  can  produce  banded  skarn  (Ortoleva  et  al.,  1987).

1992   -­‐  Review  paper   that  resumed  the  typologies,  the  chemical  characteris6cs  and  the   mechanism  of  forma6on  for  skarn  deposits  (Meinert,  1992).

1995   -­‐   Systema6c   major-­‐   and   trace-­‐element   varia6ons   in   plutons   associated   with   different  skarn  types.  This  paper  suggest  that  the  composi6on  and  petrologic  evolu6on  of  a   magma  are  the  primary  controls  on  skarn  type  mineraliza6on  and  metal  content  (Meinert,   1995).

(6)

1995   -­‐   During   skarn   forma6on   the   external   zone   at   the   contact   with   skarn   and   the   carbona6c   host-­‐rock  is  characterized  by   the  reac6on  of   decarbona6on  causing  increase  in   permeability   with   the   movement   of   the   fluids   parallel   to   the   contact.   The   so-­‐called   metasoma6c   fronts   are   parallel   to   the   direc6on   of   flow,   and   so   are   be[er   termed   metasoma6c  sides  (Yardley  &  Lloyd,  1995).

1999  -­‐  LA-­‐ICP-­‐MS  analysis  of  fluid  inclusions  from  a  range  of  magma6c-­‐hydrothermal  ore   deposits  (Heinrich  et  al.,  1999).   These  data  showed  different   behavior   between  Na,   K,  Fe,   Mn,  Zn,  Rb,  Cs,  Ag,  Sn,  Pb  and  Tl  that  preferen6ally   par66on  into  the  brine  (probably   as  Cl   complexes)  whereas  Cu,  As,  Au  (probably  as  S  complexes)  and  B  selec6vely  par66on  into  the   vapor  phase.

1999  -­‐  The  processes  for  skarn  development  can  also  generate  peculiar  carbona6te  melts   (Lentz,  1999).

2005  -­‐  Another  review  paper  resumed  the  typologies,  the  chemical  characteris6cs  and  the   mechanism  of  forma6on  of  skarn  deposits  (Meinert  et  al.,  2005).  

2005   -­‐   Experimental   studies   performed   at   the   vapor-­‐liquid   equilibrium   curve   of   the   system  H2O-­‐NaCl±HCl  with  add  of  chlorides  (FeCl2,  ZnCl,  CuCl,  AgCl)  and  oxides  (As2O3,  Sb2O3  

and  SiO2).  The  results  obtained  were  compared  to  natural  examples  (Pokrovski  et  al.,  2005).  

In  par6cular,   the  data  reported  for  natural  examples  porphyry  Cu  and  skarn  deposits  (see   e.g.,   Audétat   et   al.,   2008;   Heinrich   et   al.,   1999;   Baker,   2004)   implies   much   higher   concentra6ons  of  sulfur  in  the  vapor  phase  than  in  the  coexis6ng  liquid.

2005   -­‐   Review   paper   on   metal  transport   in   hydrothermal   systems   (Williams-­‐Jones   &   Heinrich,  2005).

2006  -­‐  Recogni6on  on  fractal  geometries  for  two  different  rhythmic-­‐banded  metasoma6c   rocks   (Rusinov   et   al.,   2006).   On   the   basis   of   fractal   analysis   the   authors   dis6nguished   diffusion  metasoma6c  rock  (quartz-­‐gold-­‐silver  veins;  Dukat  deposit,  Russian  Northeast)  from   infiltra6on   metasoma6c   rock   (wollastonite-­‐hedenbergite   skarn;   Dal’negorsk   deposit,   Primorye)  (Rusinov  et  al.,  2006).

(7)

2007   -­‐  The  depth  of  pluton  emplacement   plays  a  key   role  for   the  forma6on  of  a  skarn   deposit.   The  authors,  on  the  basis  of  Japanese  ore  deposits,  concluded  that  Pb-­‐Zn  and  Mo   deposits  are  related  to  intrusion  emplaced  at  pressure  below  1  kbar,  Cu-­‐Fe  and  Sn  at  1-­‐2   kbar,  W  deposits  at  2-­‐3  kbar  while  barren  skarn  are  related  to  pluton  emplaced  at  pressure   above  3  kbar  (Uchida  et  al.,  2007).

2008   -­‐   Experimental  study   on  synthe6c   fluid  inclusion  of   the   behaviour   of   Cu   and   Zn   under  boiling  condi6ons  (550-­‐650°C;  35-­‐100  MPa)  in  sulfur-­‐bearing  and  sulfur-­‐free  systems   (Nagaseki  &   Hayashi,  2008).  In  sulfur-­‐bearing  systems,  Cu  preferen6ally   par66ons  into  the   vapour  phase,  whereas  Zn  s6ll  prefer  the  liquid  phase.

2008  -­‐  Theore6cal  model  for  explain  the  development  of  rhythmically  banded  skarn  and   the   rela6onships   with   the   natural   example   of   wollastonite-­‐hedenbergite   banded   skarn   (Dal’negorsk  Deposit,  Primorye)  (Rusinov  &  Zhukov,  2008).  

2008   -­‐  Fluid  inclusion  study   in  garnet,   pyroxene  and  sphalerite  in  the  distal  skarn  of  El   Mochito,  Honduras  (Samson  et  al.,  2008).  This  paper  indicated  that  the  skarn-­‐forming  fluids,   also  for  distal  skarn,  have  magma6c   signature  and  do  not  represent  a  mixture  with  basinal   brine.  The  Zn  and  Pb  contents  in  the  deposits  have  similar  ra6os  that  in  the  fluids.

(8)

3.2.  The  current  skarn  forma@on  model

Classifica@on

Skarn  deposits  are  studied  since  1847  (Beamount,  1847)  and  several  classifica6ons  have   been   proposed.   The  most   widely   used  classifica6on  is  based   on  ore  type  (for   review  see   Meinert   et   al.,   2005).   The   term   Pb-­‐Zn   skarn   (Einaudi   et   al.,   1981)   instead   of   Zn   skarn   (Meinert  et  al.,  2005)  is  more  used  in  scien6fic  li[erature.

Stages  of  skarn  forma@on

The   forma6on   of   a   typical   skarn   deposit   related   to   a   magma6c   intrusion   involve   subsequent  (but  probably  con6nuos)  stages.

1.The  first  stage  is  the  intrusion  of  magma  (typically   with  temperature  of  900-­‐700°C  but   possibly   up   to   >1200°C).   The   intrusion   causes   metamorphism   in   the   host   rocks  with   extension  and  temperature  depending  on  the  depht  of  pluton  emplacement  (Burt,  1977;   Meinert  et  al.,  2005;  Fig.  8  A).

2.During   crystalliza6on   the  magma6c   body   releases   hydrothermal  fluids.   Usually,   the   skarns  develop   at   the  expense  of   carbona6c   rocks  (Fig.   8   B).   The  pluton   emplacement   depth  controls  the  size  and  morphology  of  skarn  bodies.  The  deeper  skarns  are  small  and   ver6cally  oriented  compared  to  the  shallower   ones  that  are  laterally   extensive  (Fig.  8  C).   Structural   sePng   can   cause   varia6ons   from   this   idealised   model.   These   features   are   influenced  by  the  different  behaviour  (duc6le  vs  bri[le)  of  carbonate  rocks  at  depth.  The   early   anhydrous  skarn  minerals  are  garnet  and  pyroxene  with  subordinate  and  variable   amounts  of  wollastonite,  olivine,  and  other  phases.  During  the  prograde  skarn  forma6on   the  temperature  can  exceed  700°C  except  for  Cu  and  Pb-­‐Zn  skarns  (Sn  and  W  skarn:  Fluid   Inclusion   (FI)   Th   >   700   °C,   Kwak  &   Tan,   1981;   Cu,   Pb-­‐Zn  skarns:   FI  typical  300°C   <   Th  <  

550°C;   Meinert   et   al.,   2005   and   references  therein)   with   salinity   up   to   50   wt%   NaCl   equivalent.  The  ore  deposi6on  starts  during  this  stage  (scheelite  and  oxides  earlier   than   sulfides).  Distal  skarn  can  be  produced  by  hydrothermal  fluids  from  deeper  source  (e.g.,   Burt,  1977;  Samson  et  al.,  2008).

3.The  cooling  of   the  pluton  with   circula6on   of   meteoric   waters  can   cause  retrograde   altera6on   with   overprints   of   hydrated   phases   on   previously   formed   anhydrous   skarn   minerals.  The  most  common  phases  in  this  stage  are  epidote,  amphibole,  chlorite,  ilvaite,   carbonates,   etc.   Fluid   inclusion   studies  on   retrograde  minerals  show   temperature   and   salinity  significantly  lower  than  during  prograde  skarn  stage  (several  hundred  degrees  with  

(9)

salinity  <  25  wt%  NaCl  equivalent;  Meinert  et  al.,  2005).  Also  in  this  last  phase  the  depth  is   an  important  parameter  because  the  retrograde  altera6on  (Fig.  8  D)  is  more  extensive  in   shallow  environments.   In  this  stage  the  deposi6on  of  ore  minerals  comes  to  end  (Burt,   1977;  Einaudi  et  al.,  1981;  Ray  &  Webster,  1991;  Meinert,  1992;  Meinert  et  al.,  2005;  Fig.   8).

Fig.  8:  Evolu(onary  stages  A  ➝  B  ➝  C  ➝  D  of  pluton-­‐associated  skarn  deposits  (Meinert  et  al.,  2005). A:  Metamorphism  of  host-­‐rock  during  emplacement  of  magma(c  body;  B:  Different  types  of  skarn  at  the   contact  between  two  lithologies;  C:  Morphologies  and  size  of  skarn  bodies;  D:  Late  hydrothermal  altera(on  on  

(10)

Fluid  inclusion  composi6on  (e.g.,  KCl/CaCl2,   KCl/NaCl)  and  isotopic  data  (e.g.,  C,  O,  H,   S)  

are  inherently   powerful  tracers  of  skarn-­‐forming  processes  (e.g.,  Rye  et  al.,  1974;   Taylor   &   O'Neil,  1977;  Kwak  &  Tan,  1981,  Bowman,  1998;  Lentz,  1998;  Meinert  et  al.,  2005;  Samson  et  

al.,  2008).  These  data  suggest   that   several  skarn  deposits  form  from  diverse  fluids  sources  

(from   magma6c   to   meteoric   to   typical   sedimentary   values;   Meinert   et   al.,   2005   and   references  therein).  

Magma@c  rocks  related  to  skarn  deposits

Meinert  (1992;  1995)  has    recognised  various  chemical  composi6on  in  plutons  associated   with   different   skarn   types   iden6fying   systema6c   major-­‐   and   trace-­‐element   varia6ons   in   plutons  associated  with  Fe,  Au,  Cu,  Pb-­‐Zn,  W,  Mo  and  Sn  skarns  (Fig.  9).

Fig.  9:  Correla(on  between  composi(on  of  plutonic  rocks  and  associated  skarn  deposit  types (modified  aLer  Meinert,  1992)

Sn  skarns  are  associated  with  the  most  silica-­‐rich  igneous  rocks,  thus  having  the  strongest   crustal  signature.   Similar   features  are  shown   also  by   Mo  and   W  skarn   deposits  that   are   typical  exploited  for  both  elements.  Iron,  Cu,  and  Au  skarns  are  gene6cally  associated  with   less  evolved  magma6c  rocks.  Gold-­‐skarn  plutons  are  significantly  more  reduced  than  typical   Fe-­‐  and  Cu-­‐skarn  plutons.  The  Pb-­‐Zn  skarn-­‐related  plutons  are  intermediate  between  the  Fe-­‐ Cu-­‐Au  group  and  the  Sn-­‐W-­‐Mo  group.   The  Pb-­‐Zn  skarn  are  commonly   distal  is  respect   to   their  causa6ve  pluton  (Meinert,  1995).  Other  authors  (e.g.,  Uchida  et  al.,  2007)  pointed  out   the  importance  of  the  depth  of  pluton  emplacement  for  style  of  ore  deposi6on  (Fig.  10).

(11)

Fig.  10:  Al2O3/(CaO+Na2O+K2O)  molar  ra(o  of  grani(c  rocks  vs  total  Al  content  in  bio(te  and  types  of  skarn   deposits  (modified  aLer  Uchida  et  al.,  2007).  Note:  The  Al  content  in  bio(te  have  direct  posi(ve  correla(on  with  

the  pluton  emplacement  depth  (Uchida  et  al.,  2007).

The  metasoma@c  column  model

Several  authors  have  discussed   the   mechanism   of   fluid   transport   during   metasoma6c   processes   (infiltra6on   vs   diffusion;   e.g.,   Korzhinskii,   1965,   1968;   Chadam   et   al.,   1986;   Ortoleva  et  al.,  1987;  Rusinov  et  al.,  2006).  In  recent  years,  the  forma6on  of  skarn  has  been   considered  a  process  related  to  the  infiltra6on  of  metasoma6c  fluids  (Meinert  et   al.,   2005   and  references  therein)  but  the  debate  is  s6ll  open  (Burt,  1977;  Rusinov  &  Zhukov,  2008).  

The  model  of  infiltra6on  (Fig.   11)  explains  skarn  mineral  zoning  along  the  fluid  path  in   agreement   with   “The   Theory   of   Metasoma6c   Zoning”   (Korzhinskii,   1968   and   references   therein).   A  single  fluid-­‐flow  event  can  produce  mul6ple  propaga6ng  reac6on  fronts,   each   traveling  at  different  velocity   from  the  fluid  source.  This  process  causes  an  increase  in  the   separa6on  of   different   fronts  along   the  fluid   path.   The  skarn  mineral  zoning  reflects  the   rela6ve  mobility   of   Si  >   Fe,   Mg   and   Mn  >   Al.   The   inner   front   (slower   traveling   reac6on)   replaces   the   external   previously   formed   skarn   zone   (fastest   traveling   reac6on).   In   the   peripheral  skarn   zone  at   the  contact   with  the  carbonate  host-­‐rock   a  transient   secondary   porosity  develops  and  the  metasoma6c  fluid  flows  orthogonal  to  the  contact  (metasoma6c   sides;  Yardley  &  Lloyd,  1995).

Increasing depth of pluton emplacement

1 kbar 2 kbar 3 kbar

(12)

Fig.  11:  Schema(c  illustra(on  of  the  propaga(on  of  mul(ple  reac(on  fronts  during  progressive  fluid  flow (Meinert  et  al.,  2005).

This  mechanism   focuses  the   fluid   flow   and   accelerates   reac6ons  (reac6ve  infiltra6on   instability;  Ortoleva  et  al.,  1987)  and  results  in  fingered  (or  scalloped)  reac6on  fronts.  This   transient  aquifer  may  focus  fluid  flow  even  more  efficiently  into  the  6ps  of  the  skarn  fingers   (or  scallops),  amplifying  the  lobate  nature  of  skarn  deposits  (Meinert  et  al.,  2005).

Transport  of  metals

The  phisico-­‐chemical  characteris6cs  of  fluids  are  cri6cal  factors  for  our  understanding  of   the   transport   mechanisms   genera6ng   ore  deposits.   In   the  last   years  the  composi6on   of   natural   and   synthe6c   fluid   inclusions   were   analysed   and   experimental   studies   were   performed   in   different   magma6c-­‐hydrothermal   condi6ons   (e.g.,   Drummond   &   Ohmoto,   1985;  Hemley  et  al.,  1986;  Hedenquist  &  Lowenstern,  1994;  Audétat  et  al.,  1998;  Heinrich  et  

al.,  1999;  Ulrich  et  al.,  1999;  Baker,  2004;  Pokrovski  et  al.,  2005;  Williams-­‐Jones  &  Heinrich,  

2005;  Audétat  et  al.,  2008;  Nagaseki  &  Hayashi,  2008;  Pokrovski  et  al.,  2008;  Samson  et  al.,   2008;  Pokrovski  et  al.,  2013).

The   fluids  exsolved   early   from   magma6c   body   can   be  immiscible   brine  and   vapor   or   intermediate  density   fluids  (depend   of   the   emplacement   depth)   with   complex   chemical   composi6on.  The  most  abundant  component  is  H2O  with  Cl-­‐  and  S-­‐complexes  and  CO2  as  is  

shown  for   the  presence  of   many   daughter   minerals  in  fluid  inclusions  (e.g.,  halite,   sylvite,   pyrite,  chalcopyrite;  Williams-­‐Jones  &  Heinrich,  2005  and  references  therein;  Fig.  12).

(13)

Fig.  12:  Example  of  fluid  immiscibility  illustrated  by  the  model  system  NaCl  +  H2O  (Heinrich  et  al.,  2004).

Several  data  exist   from   porphyry   deposits  but   unfortunately,   no   complementary   data   exist   for   skarn  deposits  (Baker   et   al.,   2004).   For   this  reason  the  behaviour   of  metals  and   metalloids  in  skarn-­‐forming  fluids  is  discussed.  In  general,  these  elements  (e.g.,  Fe,  Mn,  Pb,   Zn)   are  enriched   in   the  liquid/brine  phase  and   show  strongly   posi6ve  correla6on  with   Cl   concentra6on.  Cl  and  in  par6cular  S  seem  to  have  strong  influence  on  the  par66oning  of  Cu,   Au  and  minor  Ag  in  the  vapor  phase  (e.g.,  Audétat  et  al.,  1998;  Heinrich  et  al.,  1999;  Baker  et  

al.,   2004;   Pokrovski  et   al.,   2005;   Williams-­‐Jones  &   Heinrich,   2005;   Audétat   et   al.,   2008;  

Nagaseki  &  Hayashi,  2008;  Pokrovski  et  al.,  2008;  Samson  et  al.,  2008,  Pokrovski  et  al.,  2013;   Fig.  13).

Fig.  13:  LeL:  Par(oning  of  metals  between  vapor  and  coexis(ng  brine  (Audétat  et  al.,  1998).  Right:   Comparison  between  esperimental  KD  values  for  Cu  and  Zn  (both  S-­‐bearing  and  S-­‐free  experiments)  with  natural  

Riferimenti

Documenti correlati

[r]

[r]

Se i tre punti sono sulla semiretta verticale con origine sull’asse x la funzione d coincide con la distanza euclidea ristretta ai punti della semiretta (la cosa ` e ovvia

Operiamo delle manipolazioni algebriche sul polinomio che definisce C per ridurre a forma canonica la conica.. Questi sono tutti e soli gli aperti non vuoti

Conditions de la brévétabilité Le brevet logiciel en Europe Le brevet en quelques chiffres Le brevet en une

c) les plans, principes et méthodes dans l’exercice d’activités intellectuelles, en matière de jeu ou dans le domaine des activités économiques, ainsi que les

c) les plans, principes et méthodes dans l’exercice d’activités intellectuelles, en matière de jeu ou dans le domaine des activités économiques, ainsi que les

The incidence of gastric cancer cells with intestinal phenotypic expression in early differentiated cases is higher than in undifferentiated cases, sug- gesting that gastric