• Non ci sono risultati.

Exercize n.1 Given the functions g1

N/A
N/A
Protected

Academic year: 2021

Condividi "Exercize n.1 Given the functions g1"

Copied!
1
0
0

Testo completo

(1)

Exercize n.1 Given the functions g

1

(x) = x − 3, g

2

(x) = −(x + 2)

3

find th set {x ∈ R : g

1

(x) ≤ 0 and g

2

(x) ≤ 0}.

Compute

g

+1

(x) = max{0, g

1

(x)}

and

g

+2

(x) = max{0, g

2

(x)}.

Study the regularity in x = 0.

Compute

g

+1

(x)

2

, g

+2

(x)

2

.

Study the regularity in x = 0. Find F (x) = g

1+

(x) + g

2+

(x)

———————————————————————————–

A is an (n × n) symmetric matrix describing the coefficients of the quadratic terms.

a ∈ R

n

a ≤ 0 means a

i

≤ 0 ∀i = 1, . . . , n

Exercize n.2 Show the Cauchy-Shwarz inequality for the quadratic form

|Aλ · µ| ≤ ( √

Aλ · λ)( p Aµ · µ), for any λ, µ ∈ R

n

where A is a symmetric, positive semidefinite matrix.

Hint: Aλ · µ = Aµ · λ for any λ, µ ∈ R

n

.

Exercize n.3. Let A a symmetric matrix. Consider the quadratic form Ax · x.

Compute the gradient of F (x) = Ax · x, x ∈ R

n

, Compute the Hessian matrix of F (x) = Ax · x, x ∈ R

n

.

Exercize n.4. Quadratic Programming. Let A is a symmetric, positive definite matrix, x ∈ R

n

, c ∈ R

n

. Write the Karush-Kuhn-Tucker conditions for the QP minimization problem.

min 1

2 Ax · x + cx,

under the constraint Qx ≤ b, b ∈ R

m

Q is an (m × n) matrix.

Exercize n.5. Write the Karush-Kuhn-Tucker conditions for the minimization problem

min f (x) x ≥ 0, where f : R

n

→ R f is a differentiable function.

1

Riferimenti

Documenti correlati

[r]

 We conclude this section with the following result of the Perron-Frobenius theory, stated without proof (actually we shall give a proof of such result in the case A is

[r]

Corso di laurea in Matematica

The definition is the same as that for an ordinary function, and is best explained using limits:. Let a ∈

The mathematical representations characterized by the smallest number of nonzero parameters are called canonical forms.. • The most interesting canonical forms are

Form Output and Input measurements it is possible to evaluate/change the eigenvalue

Per dimostrare una importante proprietà della funzione di Eulero, premettiamo il seguente