• Non ci sono risultati.

Exercize n.1 Given the functions g1

N/A
N/A
Protected

Academic year: 2021

Condividi "Exercize n.1 Given the functions g1"

Copied!
1
0
0

Testo completo

(1)

Exercize n.1 Given the functions g

1

(x) = x − 3, g

2

(x) = −(x + 2)

3

find th set {x ∈ R : g

1

(x) ≤ 0 and g

2

(x) ≤ 0}.

Compute

g

+1

(x) = max{0, g

1

(x)}

and

g

+2

(x) = max{0, g

2

(x)}.

Study the regularity in x = 0.

Compute

g

+1

(x)

2

, g

+2

(x)

2

.

Study the regularity in x = 0. Find F (x) = g

1+

(x) + g

2+

(x)

———————————————————————————–

A is an (n × n) symmetric matrix describing the coefficients of the quadratic terms.

a ∈ R

n

a ≤ 0 means a

i

≤ 0 ∀i = 1, . . . , n

Exercize n.2 Show the Cauchy-Shwarz inequality for the quadratic form

|Aλ · µ| ≤ ( √

Aλ · λ)( p Aµ · µ), for any λ, µ ∈ R

n

where A is a symmetric, positive semidefinite matrix.

Hint: Aλ · µ = Aµ · λ for any λ, µ ∈ R

n

.

Exercize n.3. Let A a symmetric matrix. Consider the quadratic form Ax · x.

Compute the gradient of F (x) = Ax · x, x ∈ R

n

, Compute the Hessian matrix of F (x) = Ax · x, x ∈ R

n

.

Exercize n.4. Quadratic Programming. Let A is a symmetric, positive definite matrix, x ∈ R

n

, c ∈ R

n

. Write the Karush-Kuhn-Tucker conditions for the QP minimization problem.

min 1

2 Ax · x + cx,

under the constraint Qx ≤ b, b ∈ R

m

Q is an (m × n) matrix.

Exercize n.5. Write the Karush-Kuhn-Tucker conditions for the minimization problem

min f (x) x ≥ 0, where f : R

n

→ R f is a differentiable function.

1

Riferimenti

Documenti correlati

Per dimostrare una importante proprietà della funzione di Eulero, premettiamo il seguente

Corso di laurea in Matematica

The definition is the same as that for an ordinary function, and is best explained using limits:. Let a ∈

The mathematical representations characterized by the smallest number of nonzero parameters are called canonical forms.. • The most interesting canonical forms are

[r]

 We conclude this section with the following result of the Perron-Frobenius theory, stated without proof (actually we shall give a proof of such result in the case A is

[r]

Form Output and Input measurements it is possible to evaluate/change the eigenvalue