• Non ci sono risultati.

softoimiene find

N/A
N/A
Protected

Academic year: 2021

Condividi "softoimiene find"

Copied!
31
0
0

Testo completo

(1)

Logica Monadic

a ( MFOIMSO

)

solo per

lingnaggi

Coralterisiohe:

D Var . so-o

def

. mm

softoimiene find

di

IN

{

0,1 . ..- in - s

}

, done n e'

la lung

.

della Inga

D. formula

Q pero

'

essence :

it . i ( x

) tie

I

9, a 92 in pm. x ie' la letters "i "

three )

bls)

x cry

(2)

D 9. V

92=749

. A

-192 )

D

9.

9,

=

ill

,

Vez

D Ix

(4)

= '

Hehe )

D x -- y

D z

-- X th

Dirty

D

y -- x - k

D costard O

D Pred . ol' successor

y=S(

x) I y=xtL

D

Constant

' mum . 1,2, . . -

D lastly

(3)

G.:

(

nfosgtunghe che

iniziano con " a" e

hanno almer

3 "b "

NO) n

F

x. . xr , xz

( blu

) n

blxzlrblxs

) A xetxz

I

Axztxz A X. tX3

)

in pos. 8 de' "or"

(x) E in

pm . x de

' "

a

"

BH = in

pm . x ie

' "

b"

(4)

b-

.:

L

= at

bt

"

!

• •*

bb*

:÷¥¥¥ '

(8)

n

Fl ( last (e)

n

ble )

n

7

(

bat ^

V. ylycx only

)

)

n

try /

eye l boy ) ) ) )

(5)

b- . : ( =

auth

, nzD mom e'

possible

ntilitzare

MFO

Utilizziamo la

MSO :

✗ probkma

Fp /

Plo

)

A

_VÉ( Pix

) # iplxts)

) nltx /

(

1)

A Flllostlllnplel ) )

aaaaa c-

L

8 1 23

(6)

( = a2kt I

Utilize

ions

to

MSO :

Fp (

Plo

)

A

Kr flash ( Pix

) > Parts

D)

n

ke lol

1)

A Fl ( last 111

n

Piel ) )

a or or a E L

0 1 2 3

(7)

b- . : L=

let h /

lo

)

+ MFO

Deco ) v

1101

D

F

( last 1×1^41×1

an

) )

D

th (

e 1×1

(

earth

vhlxti

)

) )

D V-

( lk

) a 1×+11

)

D

V.

that (

e (

HIV 11×+1

)

) )

mom wanna

D

V-

(

1×1

(

e 1×+1

)vl(

+1)

) )

bene se ooo

"

lost

"

(8)

L =

let h / G)

+

Deco ) v

1101

D

F

( last 1×1

n

@

in vain

) )

D

th (

e 1×1

(

earth v hlxti)

) )

D f

( llx

) a 1×+11

)

D

V.

that Alaska ) (

el

HIV llxtl

)

) )

DV-xtalxlnlosk.tl (

e 1×+1

)

v la

+111 )

(9)

Calcolabilitoi

Tes oh. Church :

I

1. Non ie'

formalisms

per

modell

are

colcolo

meccano

pin

'

potent delle

TM

z .

Ogni algoritmo puñessere codified

com TM

(

o

formalisms

equiv.)

Sinonimi :

Algo

, TM ,

programmer

,

procedural

- . .

(10)

Le MT possono essence

enumerate {

MT

} ⇐ IN

(11)

Problems :

richest

d.

colcololalgontm.co

)

di f

: IN IN

in

generale parziale ( oppfneins.am

'

numerals.li )

Fm

( fin )=pt )

la fun

indef

.

IN

IN

(12)

F

algo

. 1Mt. prog.) de

⇐ f computable

breakable )

(

Problem

.

coleola

f risdvibile

lcakolabile

)

(13)

/ { f

: IN IN

} /

7

/ { f.

IN

{

0.1

} } I

=

1 PANI /

= z "" '

/ INI

=

I {

MT

} /

IN

(14)

Deidiklitoi

IN

{

0,1

}

IN

" "

¥1m )={

01 seriesseries

(15)

Is computable Talgo de caledon Is Prob

. dead.

bile

S ricors.no (

deciolible )

(16)

y

m c- S

II 's

In ) =

{

1 s

I 's cakobob (

Talgo

per I

's )

Pre

, semi -

deaétbile

S ricorsvamenk enumerable (

semi -

dec

.

)

(17)

tzt 1/2=1

:

S ric

.sr.enum.rs ' r

. enum .

Corollary :

is nice .

:

see . A - S

're

.

> Sr . e. A S ' r - e .

nsr.e.tl 'S

'm

- e .

(18)

Teo.

di

Rice : f-

=

{

tutte le

f. computability

=

{ fi lie IN } f. =L

da. cahokiai

-esima

P

C- F ooltoinsieme

off

. comp . TM

de

ooololisfoms

monarda

proprietor

.

s={

If

EP

}

S ricommwo

(

B. okc .

)

(

P

=P

n D=

F)

(19)

Per insane teo. di Rice :

1. Il

problem

a

riguonda

MT

(

form

. equiv.

) generate

2.

Il problem

a

rigmarole proprietor

'

della fun

.

Cahokia

Grove

d- fonnobzzare il problem

. com inn

formula logica

che

ma

solo fy

(20)

Riduzirone :

Dim. dead. di

problemaoconosawdo

:

Roope

dec# moto

.

>

P2

dee

.

mom

loconosco re

calcolab

.

c- P

,rlx

)EPz

(21)

Rishi Ps ( ) :

y r (X) 11 r calc .

ool

pisolvipzly

)

11 R-sohinpzes.de perdi Pz

dec .

return sol

(22)

b- . :

R : data una generico gramm. reg . G ,

dire

se ( (G) = Pz :

dato

un

adama

FSA A , dire ae (

(A)

=

motto

.

re

(G)

: ritorno

algorithmic amate

FSA A

corrisponobnte ILIA

/ =L

Call Risohips (

a

)

:

A RIG

) Ps dec

.

sol

Risohipz (A)

return sol

(23)

Rid .

per

indec

. :

Pz

sconoociutooospeltoinokc.pe

not

INDIE .

Pz roospelto

Indec .

Per

asswrdo

, sin Pz olec .

Allora

7 Risohipz .

Dosso naivete :

Risolnipslx )

:

y rlx)

Pz inobc

.

sol

Pisohipz

(y

)

return

sod

assuredo

(24)

b- .

:R=

Problems : stabilise se un

generico programmer

A

accede

a war. mom initialized .

µ

B.

=

Hating

Problem

→ Pz

(ns.toinolec.

)

Risohi

HPLA

: generico programmer

)

:

RIA )

:

A '

HAI

µ A'

=

{ Y=×

A ;; Hvar.

od

Roshi KIAM

nomina

}

.

return ool %

return A'

assurdo

(25)

Diagonalizes

zone : ohimosha inobc .

ragionomob

per assurdo

"

Questa Gosei falsa

"

(26)

Foot

corse da

fore

:

1 .

Caprine

se il

prob

. e'

drums

.

(

lapin

quod

é l'

input help

.

)

2 .

Provoke Rice

(

se ai pno'

appliance )

3 .

Region

are

out problem

or

(

Riohvzione , trouble

algo

. ,

diagonalize

oveione

)

(27)

G- . : Problems : oapere se una generico

f

: IN IN

calculable

guests f. oodolisfa

:

V-

( (

so

fasts )

1

(

20

( ft

) > 37

( fat

-1-1

( fat

-100 )

) ) ) )

INPUT :

f

none'

Chimo

Si

puri applicore

Rice .

(28)

V.

ltKAÉHAÉHH→

( ✗IMMA# 181×1>37

V

Ifat

-1-1

( fat

-100 )

) ) ) ) f-

( ft

) > 37

( fat

=/ 1-

( fat

< 100 )

) )

CASOI :

flx

) =L

V-

( ft

) > 37 V T

)

= T

CASO 2 :

flx

) -1-1

V-

( fk

) > 37 V

f

1×1<100

)

= T

(29)

P = F =

{ f

}

=

{

tutte le

f.

calc.

}

Dec . per Rice

(30)

Prob

: Sia data in

input

ima

fun

.

cokolobile fy

ai

stabiliser

se

Down

,

of fy

= 21N

(

insane dei pani

)

V.

( fylx

-

)

-1-1

Fz /

= Zz

) )

-

fun

.

def

. in

poi

INPUT :

fy

sipno

' more Rice

?

Si

(31)

fly ;-)

=L

HEIN fj¢P

trip

fy

,

,H={

11-

aliment

Poi

fy.ie p

( Pto

n

Pt f) indec

-

per

Rice

Riferimenti

Documenti correlati

[r]

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma,

Answer: As a basis of Im A, take the first, fourth and fifth columns, so that A has rank 3. Find a basis of the kernel of A and show that it really is a basis... Does the union of

If S is not a linearly independent set of vectors, remove as many vectors as necessary to find a basis of its linear span and write the remaining vectors in S as a linear combination

 The kernel knows where a signal handler returns, but the signal handler does not know.  The signal handler must operate in a compatible way with the original

[r]

To construct the other three vectors as requested we need to find a basis of W and orthogonalize it... However in this case the calculations are so easy that it can be

Note that such D’s are precisely those wich are not contained in the linear span L(A, B). To find concretely such a D the shortest