• Non ci sono risultati.

Rootstock control of scion response to water stress in grapevine.

N/A
N/A
Protected

Academic year: 2021

Condividi "Rootstock control of scion response to water stress in grapevine."

Copied!
7
0
0

Testo completo

(1)

ContentslistsavailableatSciVerseScienceDirect

Environmental

and

Experimental

Botany

j o u r n a l ho me p ag e:w w w . e l s e v i e r . c o m / l o c a t e / e n v e x p b o t

Rootstock

control

of

scion

response

to

water

stress

in

grapevine

Sara

Tramontini

a,b,∗

,

Marco

Vitali

b

,

Luna

Centioni

b

,

Andrea

Schubert

b

,

Claudio

Lovisolo

b,c

aEuropeanFoodSafetyAuthority(EFSA),PlantHealthUnit(PLH),viaCarloMagno1/a,43126,Parma,Italy1

bUniversityofTurin,DepartmentofAgricultural,ForestandFoodSciences,(DISAFA)viaLeonardodaVinci44,10095,Grugliasco,Italy cPlantVirologyInstitute,NationalResearchCouncil(IVV-CNR),Grugliascounit,ViaLeonardodaVinci44,10095,Grugliasco,TO,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received26February2013

Receivedinrevisedform18April2013 Accepted22April2013 Keywords: Hydraulicconductance Mercuricchloride Stomatalconductance Transmembranepathway Vitisgenotypes Waterpotential

a

b

s

t

r

a

c

t

Rootstocksplayamajorroleingrapevinetolerancetowaterstressbycontrollingandadjustingthe watersupplytoshoottranspirationdemand.Thisstudyaimedtocharacterizetheinfluenceofrootstock genotypesintheadaptiveresponseofscionstowaterlimitingconditions.Theeffectofrootstockgenotype (140RuandSO4)wasobservedinthedifferentavailabilityofwaterprovidedtothescions(Cabernet Sauvignon,Grenache,Merlot,Syrah),whilescionsinfluencedstomatalcontrolofwatertranspiration. Implicationonthecell-to-cellcomponentofplantwatertransportinbothrootstockandscionimpacted onembolismsformationinrootsandonhydraulicsofleaves.Themainconclusionofthepresentstudy wasthatrootstockandsciongenotypesareabletoconfertotheplanttraitsofdroughtadaptability influencingrespectivelythecapacityofwaterextractionfromthesoilandthesensitivityofthestomatal control.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Thedehydrationobservedunder droughtconditionsappears

when an imbalance occurs between water extracted from the

substrateandwaterlostbytranspiration(Arocaetal.,2012). There-fore,inplantsthatareroutinelygrafted,suchasgrapevine(Vitis viniferaL.),rootstockeffectonscionperformancemustbe consid-eredinthestudyofadaptabilitytostressconditions.Rootstocks providetolerancetoexogenouslimitingfactors,biotic(e.g., soil-bornepests) andabiotic(e.g.,salinity, wateror oxygendeficit), whileinfluencingtheecophysiologicalbehaviourofthescionand itsberryquality(BavarescoandLovisolo,2000;Padgett-Johnson etal.,2000;Soaretal.,2006;Tramontinietal.,2012;deSouzaetal., 2009;IbacacheandSierra,2009;Rizk-Allaetal.,2011;Marguerit etal.,2012).Stomataare considereddirectresponsible of opti-mizing thebalancebetweencarbon gain and water loss ofthe plant(Rogiersetal.,2012),andthepatternsoftheirresponse,in termsoftimingandintensity,aregeneticallydetermined(Chaves etal.,2010).Significanteffortshave beendonein theselection of the optimal rootstock/scion combinations to satisfy specific

∗ Correspondingauthorat:EuropeanFoodSafetyAuthority(EFSA),PlantHealth Unit(PLH),viaCarloMagno1/a,43126,Parma,Italy.Tel.:+390521036878; fax:+3905210360878.

E-mailaddress:sara.tramontini@efsa.europa.eu(S.Tramontini).

1 Thepositionsandopinionspresentedinthisarticlearethoseoftheauthoralone

andarenotintendedtorepresenttheviewsorscientificworksofEFSA.

grapegrowingneeds(e.g.,Koundourasetal.,2008;Hamdanand Basheer-Salimia,2010; Komaret al.,2010).However,theeffect ofrootstock/scioninteractiononplantadaptationtostressisstill verymuchdebated(Gambettaetal.,2012).Sincedrought condi-tionsaffectwatertransportfromthesoilthroughtheplantintothe atmosphereinasoil–plant–aircontinuumthatisinterconnected byacontinuousfilm ofwater,measuringitsinfluenceonplant watertransportrequiresconsideringbothwaterextractionatthe soil–rootinterfaceandwaterreleaseattheleaf–airinterface(Janott etal.,2011).Althoughthekeyroleplayedbybothrootstockand scionisacknowledgedtheirrelativecontributionanddifferences obtainedbyspecificcombinationofgenotypesrequiresomefurther analysis.

Theaimofthisstudywasthereforetoclarifytherelativeroleof rootstockandscioninthehydraulicresponsetolimitationsinwater availability.Inordertodoso,weevaluatedthedifferencesobserved betweentwograpevinerootstockgenotypes(considered represen-tativeoftwoofthemostwidespreadhybrids:Vitisberlandieri×Vitis rupestris,and V.berlandieri×Vitis riparia)and amongfourscion genotypes(cultivars),separatelyandincombination(i.e.ongrafted plants).Therelationshipbetweenstomatalconductance(gs)and

leafwaterpotential(leaf)wasusedtorankthesciongenotypes

fortheirabilitytowithstandwaterstress(Rogiersetal.,2012).Root hydraulicconductivity,intermsofshortandlongdistance trans-port(overmembranesandxylem,respectively)wasconsideredin ordertocharacterizetheresponsesoftherootstocks.Aquaporins playamajorroleintranscellularwatermovementbyfacilitating thetransportofwaterthroughcellmembranes(Kaldenhoffetal.,

0098-8472/$–seefrontmatter © 2013 Elsevier B.V. All rights reserved.

(2)

forces, limited by theresistanceproduced by cavitation events (Arocaetal.,2012).Forthisreason,ameasurementonthelevelof embolismsoftherootsystemwasconducted.Ourresultsshowthat therootstockcontrol(basedonroothydraulicconductance)and thescioncontrol(basedonstomatalconductance)followan addi-tivepatternincooperatingtoadaptationtodrought,confirmingthe grapevineasanoptimalmodelplantformolecularand physiologi-calstudiesonbothplantdroughtavoidanceandtolerance(Lovisolo etal.,2010).

2. Materialsandmethods

2.1. Plantmaterial

For those experiments requiring thedestruction of theroot system,theinvestigationwasconductedon2-year-oldplantsof twodifferentgrapevinerootstocks, onederivedfrom hybridiza-tion of V. berlandieri with the xerophylic species V. rupestris (140Ru),and theotherfromV. berlandieriwiththemesophylic speciesV. riparia (SO4),withthree replicatesfor genotype.The twogenotypeswereselectedascharacterizingtheextremesinthe resultsofLovisoloet al.(2008).Alltheotherexperimentswere conductedduringtwoconsecutiveyears (2011and2012)on 2-year-old(and 3-year-old thenextyear) plants of fourcultivars (CabernetSauvignon,Grenache,Merlot,Syrah)graftedonthetwo above-mentionedrootstocks,withfivereplicatesforeach combi-nationrootstock/cultivar.Thefourcultivarswereselectedtaking intoaccounttheirecophysiologicalcharacterizationobtainedby previous authors: Grenache is near-isohydric (Schultz, 2003; Santestebanetal.,2009),Merlotisanisohydric(WilliamsandBaeza, 2007;ShellieandGlenn,2008),Syrahisanisohydric(Schultz,2003; Rogiersetal.,2009;Santestebanetal.,2009),andCabernet Sauvi-gnon is classified as isohydric(Chalmers, 2007)or anisohydric (WilliamsandBaeza,2007),dependingfromtheauthors.Allplants weregrowninagreenhousewithnosupplementarylightor heat-ing,in 4Lpotsfilledwitha substratecomposedof sandy-loam soil/expandedclay/peatmixture(4:2:1involume),withafinalpH of7.3.AdditionalleavesofCabernetSauvignon,Grenache,Merlot, Syrahneededfortheexperimentondetachedleaveswerecollected fromtheexperimentalvineyardlocatedattheFacultyof Agricul-tureoftheUniversityofTurin(Grugliasco,Italy),fromplantsofthe sameclonalorigin.Tothisaim,matureleaves(10thnodeonwards) werecollectedinthemonthof July.Theseleaveswereusedin ordertostudystomatalbehaviourinabsenceofrootstockandshoot effects.

2.2. Leaf,rootandsoilwaterpotentials

Leaf water potential(leaf)and root water potential(root)

wereestimatedwithapressurechamber(Scholanderetal.,1965; model used:Soil MoistureEquipment Corp.,SantaBarbara, CA,

Wemeasuredhydraulicconductance,itstransmembranewater movementcomponent,andtheintensityofxylemembolization.

Allmeasurements were based ona destructive method witha

controlledtension–pressureapparatus(Lovisoloetal.,2002)and taken in sequence on thesame plantmaterial as described by

Lovisoloetal.(2008).Therootsystemwasgentlycleanedfrom soilunderwaterandcutattheinterfacebetweenrootandshoot. Aftermeasurementofweightandvolume,itwasimmersedintoa tension–pressurechamberfilledwithtapwateranditsstalkwas clampedwitharubbersleeve.Aninitialconductancewasmeasured byapplyinganegativepressureof−80kPafor5minthroughthe sleeve:thistensionsimulatesthesuctionforcesthatcausewater transpirativetransportinthepottedroots.Thesamepressurewas thenimposedfor5minafterhavingtreatedtherootwithasolution of0.05mMHgCl2 for60min(+15minforstabilizingthesystem)

inorder toinhibit mercury-sensitiveaquaporins.Thedifference betweenthisconductanceandthepreviousconductancedefines theportionof conductance sustainedby transmembranewater movement.Thesamepressurewasagainimposedforother5min afteraflushingof+100kPafor5mintothewholeroot,inorderto freethesystemfromembolisms.Thedifferencebetweenthisvalue andthepreviousdefinestheconductanceachievablebythesystem throughtheapoplasticpathwayinabsenceofembolisms. 2.4. Stomatalconductance

Inordertoexcludetherooteffectandtoconcentrateonthe characteristicsinducedbythegraftedcultivar,thismeasurement wasconductedondetachedleaves,treatedasself-contained func-tionalunits,asdescribedbyBrodribb(2009).Stomatalconductance (gs) was measured on fully developed leaves with a portable

GasExchangeFluorescenceSystem(GFS-3000,HeinzWalzGmbH, Effeltrich,Germany).Measurementswereconductedbyclamping theleavesintheleafchamber,wherephotosyntheticactive radia-tion,(PAR:1200␮molm−2s−1)andtemperature(25◦C)werekept constant.Azero-pointforCO2wassetatthebeginningofeachday

ofmeasurements.Inthecaseoftheexperimentonattachedleaves, aftermeasuringgs,thesameleafwasusedformeasuringleaf.The

collectionofdatawasconcentratedwithintwoweeks(between 31Mayand15June2012)inordertominimizeanypotential sea-sonalfluctuation(Alsinaetal.,2011).Inthecaseoftheexperiment ondetachedleaves,sevenleavesperreplicatewereexcisedunder waterandimmediatelyplaced in50mLtubeswiththeirpetiole immersedindeionisedwater.Leaveswerekeptinthelaboratory underconstantartificiallight(400␮molm−2s−1PAR)and temper-ature(24–27◦C)andtranspirationwascontinuouslymonitoredon oneofthem.Whentheleafreacheda steadystatein transpira-tion(usuallyafter20min,withacoefficientofvariation<3%for 3min,Nardini and Salleo,2005),all tubeswere simultaneously emptiedfromwater.Sixmeasurementsofleafwerethentaken witha4-minintervalontheremainingleaves.Lateron,in analy-sisofthecorrelationbetweengs andleaf,itwasdecidednotto

(3)

Fig.1. Relationshipbetweensoilwaterpotential(soil,MPa)andleafwaterpotential(leaf,MPa)onvineplantsoffourcultivars(CabernetSauvignon,Grenache,Merlot

andSyrah)pottedonthesamesubstrateandgraftedontwodifferentrootstocks:140Ru(filledsquares)andSO4(emptycircles).Thefigurereferstodatacollectedduring twoyears:2011(a)and2012(b)betweenendofMayandbeginningofAugust.Eachtrendlinelabelisborderedwiththesamestyleofthelinetowhichitrefers.

considerthefirsttwo measurementsof gs due totheobserved

‘Iwanoffeffect’describedby Düring(1993),whichproduced an increaseingsimmediatelyafterremovaloftheleaffromwater.

Fourreplicatemeasurementsweredoneforeachcultivar. 2.5. Transmembranewaterpathinleaves

Inordertocomparethefourcultivarsfortheirtransmembrane

water movement on foliar tissues, the methodology proposed

byTerashima and Ono (2002)wasfollowed and adapted. Each detachedleafwasdividedintwopartsalongthemedianvein.The halfwithoutpetiolewasusedascontrolandthehalfwith peti-olewasleftabsorbinga solutionof50mMof HgCl2 for 60min

beforethemeasurement.Duringthisperiod,theleafwasexposed tolight(1000␮molm−2s−1)tohelpuptakeofthesolutionthrough thepetiolebytranspiration. Fromeach half-leaf20 foliar disks withadiameterof1.2cmwereobtainedwithacircularcutterand weighted.Thediskswerefloatedon40mLofdeionizedwaterina Petridishwiththeadaxialsurfaceupwardsandwereshakengently for15min.Theywerethendriedonabsorbingpaperfor5minand weightedagain.Twelvereplicateleaveswereusedforeach culti-var.Theincreaseinturgidityoftheleafdiscswascalculatedwith thefollowingequation:

Averageweightincrease=



(finalweight−initialweight) initialweight



×100

Theobtainedvaluewastreatedasameasureofthehydraulic conductivityoftheplasmamembraneoftheleafdisc,suchasa rea-sonableapproximationofthetransmembranecomponentofwater transport,independentfromwatermovementviavasculature. 2.6. Statisticalanalysis

Data wereexpressed bymeans and correspondingstandard

errors.Resultsweresubmittedtoone-wayANOVAusingthe statis-ticalsoftwarepackageSPSS(version20,SPSSInc,Cary;NC,USA). Correlated variables were interpolated in figures by regression curvesplottedbymeansofMicrosoftExcel©software.

3. Results

3.1. Rootstock–soilandleafwaterpotentials

Inordertocharacterizerootstockcomponentsofthecontrol ofstresseffects,weanalysedtherelationshipbetweensoil and leaf,duringtwoconsecutiveyears,inplantsgraftedon140Ruor

SO4.Atthesamevaluesofleaf,plantsgraftedon140Rushowed

morenegativesoilthanplantsgraftedonSO4.Thisdifferencewas

increasinglyevidentwithlowerleafandwasnotinfluencedbythe

scioncultivar(Fig.1).Plantdevelopment,measuredasleafarea, wasnotdifferentbetweenthetworootstocks(datanotshown).

3.2. Rootstock–roothydraulicconductanceandtransmembrane waterpath

Thediverserelationshipbetweensoilandleaf,observedinthe

tworootstockssuggesteddifferencesinthehydraulicconductance oftherootsystem.Weanalysedthisparameterinexcisedrootsof notgraftedplantsof140RuandSO4,atthesametimeevaluating thecomponentofconductancecontrolledbyxylemembolization. Roothydraulicconductance,measuredat−80kPaontheexcised rootbeforeandafterHgtreatment,wasalwayshigherin140Ru thaninSO4.However,Hgtreatmentreducedtheconductanceby 56% in 140Ruand 16% in SO4,a result not farfromthe range recentlyobtainedonrootstocks byGambetta etal.(2012)after H2O2aquaporininhibition.Pressureflushinginducedanincrease

ofconductanceof197%and369%respectively(Fig.2).

Fig.2.Hydraulicconductancemeasuredonexcisedrootof140Ru(filledboxes)and SO4(emptyboxes)duringthreesequentialtreatments:(i)depressurizingatthe api-calcutwithavacuumapplicationof−80kPa,(ii)treatingwithHganddepressurizing at−80kPa,and(iii)imposingapressureflushingof+100kPaontheHg-treatedroots. Means±standarderrors.Differencesweretestedwithineachtreatmentseparately. Valueswithdifferentlettersdiffersignificantly(P≤0.05).

(4)

Fig.3.Relationshipbetweenstomatalconductance(gs,mmolH2Om−2s−1)andleafwaterpotential(leaf,MPa)onvineplantsofCabernetSauvignon(a),Grenache(b),

Merlot(c)andSyrah(d)graftedontwodifferentrootstocks:140Ru(filledsquares)andSO4(emptycircles).Thefiguresrefertodatacollectedbetween31Mayand15June 2012.Eachtrendlinelabelisborderedwiththesamestyleofthelinetowhichitrefers.

3.3. Scion–stomatalconductanceonattachedleaves

Whileassessingthepatternofgs/leafindetachedscioncultivar

leaves, weestablished ingrafted plants whetherthe genotype-dependentpatternsofgsadaptationtoleafwaterstatuswouldbe

affectedbytherootstock.Asituationconsistenttoallthefour cul-tivarscanbeobserved:atthesamelevelofleaf,infact,plants

graftedon140Rutendtohavehighergsvaluesthanplantsofthe

samecultivargraftedonSO4(Fig.3).Thiswasobservedatleaf

levelshigherthan−1MPa;onlyGrenache(Fig.3b)expressedthis conditionforleafvaluesmorenegativethan−1.1MPa.Theresult

ofatwowayANOVAconductedongsvaluesforthetwofactors

‘cultivar’and‘rootstock’confirmedthatthedifferenceinthemean valuesamongthedifferentcultivarswasgreaterthanwouldhave beenexpectedbychanceafterallowingforeffectsofdifferences inrootstocks(P=0.031)andthatthedifferenceinthemeanvalues

amongthedifferentrootstockswasgreaterthanwouldhavebeen expectedbychanceafterallowingforeffectsofdifferencesin cul-tivars(P=0.037),butwithoutastatisticallysignificantinteraction between‘cultivar’and‘rootstock’(P=0.559).Whenthedatawere clusteredperrootstock(Fig.4),itwasmoreevidentthat,onboth rootstocks,gsofMerlotwasthelessinfluencedbyleafwhilethe

oppositewasforSyrah,whileCabernetSauvignonandGrenache confirmedtheintermediateconditionalreadyobservedatFig.3, thelatterpresentingstrongvariationsofgswhengraftedon140Ru

andminimalvariationswhenonSO4(Fig.4). 3.4. Scion–stomatalconductanceondetachedleaves

Thenextstepwastofocusonthescioncultivarcontrolofgs,

whichwasmeasuredonprogressivelydryingleaves(Fig.5).For thecultivarsCabernetSauvignonandGrenache,thedynamicsofgs

Fig.4.Relationshipbetweenstomatalconductance(gs,mmolH2Om−2s−1)andleafwaterpotential(leaf,MPa)onvineplantsofCabernetSauvignon(crosses),Grenache

(emptydiamonds),Merlot(filledsquares)andSyrah(emptycircles)graftedontwodifferentrootstocks:140Ru(a)andSO4(b).Thefiguresrepresentthesamedatashown inFig.3.Eachtrendlinelabelisborderedwiththesamestyleofthelinetowhichitrefers.

(5)

Fig.5.Dynamicsofstomatalconductance(gs,mmolH2Om−2s−1)measuredon

progressivelydrying,detachedleavesofCabernetSauvignon(crosses),Grenache (emptydiamonds),Merlot(filledsquares)andSyrah(emptycircles).Theinitial pointsrefertoleaveswiththeirpetioleimmersedinwater(negativeminute num-bers),thefollowingrefertomeasurementstakenatincreasingtimeafterextraction fromwater(emptyarrow).Theblackarrowsindicatethemomentsatwhichtheleaf waterpotential(leaf,MPa)wasmeasured(a).Relationshipbetweengsandleaf

showncalculatedonthesameleaves,basedonmeasurementstakenwhen indi-catedbyblackarrows(b).Eachpointisthemeanof4measures±standarderrors. Inframeb,eachtrendlinelabelisborderedwiththesamestyleofthelinetowhich itrefers.

overtime(40min)almostoverlapped,andshowedthelowestgs

valuesforthewholetimeframeamongallcultivars.Merlotwasthe leastrespondingtotheincreasingwaterstressconditions.Syrah,on thecontrary,initiallyhadthehighestgsvalues,but,afterasteep

decline,reachedthesamelowlevelsofCabernetSauvignonand Grenache(Fig.5a).Fromthegs/leafcurvesobtainedonthesame

leaves,furtherinformationonthecultivarbehaviourwasobtained (Fig.5b).Asconcernsleaf,GrenacheandSyrahrepresentedthe

twoextremes,theformerwiththelessnegative,andthelatterwith themostnegativeleafvalues.Thesteepnessoftheinterpolation

curveswashigherforMerlotandCabernetSauvignon,andinthe lattercasegsvaluesdroppeddownby60%betweenthe8thandthe

20thminwhileleafremainedaboutconstantat−2.0MPa.

3.5. Scioncell-to-cellpath

Thepreviousobservationsconcerningdifferencesamong culti-varsatleaflevelwereintegratedwithinformationontheputative cell-to-cellwaterpathway(Fig.6),asdonefortherootstocksat theroot level. Hg treatment significantly decreased leaf water uptake inall cultivars. Cabernet Sauvignonand Grenache were stronglyaffectedbyHgtreatment,losingrespectively30%and67% oftheuptakecapacityoftheirfoliartissues.MerlotandSyrahalso

Fig.6.Averageincreaseofleafdiskweight(%)afterimmersioninwaterorHgCl2

solutionforthefourcultivarsCabernetSauvignon(lightgrey-filledboxes),Grenache (dark grey-filledboxes),Merlot(black-filled boxes)and Syrah(empty boxes). Means±standarderrors.Differencesweretestedwithineachtreatmentseparately. Valueswithdifferentlettersdiffersignificantly(P≤0.05).

presentedareduction,albeitlower,ofwateruptake,of28and20% respectively.

4. Discussion

Rootstocksareknowntoplayamajorroleingrapevine toler-ancetowaterstressbycontrollingandadjustingthewatersupply toshoottranspirationdemand(Carbonneau,1985;Soaretal.,2006; Alsinaet al.,2011;Marguerit et al.,2012).Thisstudy aimedto characterizetheinfluenceofrootstocksgenotypesintheadaptive responseofscionstowaterlimitingconditions.

WhatshowninFig.1suggestedthat140Rudepletesthewater soilreservesfasterthanSO4.Thiscouldbeexplainedbyitsveryhigh vigour,incomparisonwiththemoderatevigourofSO4(Gambetta etal.,2012),requiringtheextractionofgreateramountsofwater inordertocompensatethewaterlossesforcanopytranspiration (Jones,2012).140Ruisalsocharacterizedbyahighadaptationto waterdeficit,whileforSO4theclassificationvariesconsiderably withthestudy:fromhigh(e.g.,Carbonneau,1985;Ciramietal., 1994),tomedium(e.g.,Delas,1992;Whiting,2005),tolow(e.g.,

Southey,1992;Dry,2007)andverylow(Galet,1998).Thehigher droughttoleranceof140Rucouldnotbecompletelyexplainedwith itscapacitytoexplorelargeranddeepersoilvolumesconferred bya moredeveloped rootsurface,asthelimitedsubstrate vol-ume(potconditions)andwateravailabilitywerethesameforboth genotypes.Valuabledetailswereprovidedbythesecond experi-ment,onnon-graftedrootstockplants(Fig.2).Theintrinsichigher stressresistanceof140RuthanSO4wasparalleltohigher conduc-tanceoftheexcisedroots(−80kPa),tohighercell-to-cellwater transportandtohigherresistancetoxylemcavitationprocesses, inagreementwithobservationsmadebyLovisolo etal.(2008). Thehigherputativeaquaporinactivity,orabundance,observedon 140Ru,couldnotonlyproduceamoreefficientrecoveryinxylem conduitre-fillingafterdrought-inducedembolisms(Lovisoloetal., 2008;Vandeleuretal.,2009)butalsoexplainthetoleranceofthis genotypetohighertensions()observedongraftedplantsatany levelofwateravailability(Fig.1).However,thecapacityof140Ru toextractwaterfromthesubstrateandtorecoverfromcavitation eventsmoreeasilythanSO4wasnotsubstantiallyreflectedonthe slightlyhighergsatagivenleaf,observedonthefourgrafted

culti-vars(Fig.3).Thislimiteddifferenceontheexpectedperformances atscionlevelmakesustohypothesizethemediationbychemical signaling,andmainlyABA(Soaretal.,2006;Margueritetal.,2012).

(6)

leaves,wherestomatalclosuredelayedtheleafdropbelowthe

thresholdof−2MPa(Fig.5b),couldnotbeexplainedwithinthe contextoftheabove-mentionedhydraulicforcesandcouldimply theinvolvementofcomplexhormonalsignallinginwholeplants, so that Cabernet Sauvignon assumes isohydric or anisohydric behaviour,dependingontheexperimentalconditions.Grenache,in spiteofitsgs/leafcurvesresemblancetoCabernetSauvignonon

wholeplants,presentedthetighteststomatalcontrolonexcised leaves(Fig.5)andthehighesteffectofHg-treatmentamongthe fourcultivars.Thisresultisconsistentwithwhatwasobservedin CabernetSauvignon,withamorecharacterizedisohydricity, prob-ablysupportedbythepredominanceofahydrauliccontrol.Syrah, asexpected,displayedabehavioroppositetoGrenache,butonly onexcisedleaves,withthehighestvaluesofgs,andthemost

dra-maticleafdrop(Fig.5),andthelowestpercentagelossinwater

uptake onHg-treated leaves. However,onwholeplants, there-foreatlessnegativeleaf,thesamecultivarexpressedabehaviour

closertoGrenache(near-isohydric)thantoMerlot(anisohydric), supportingtheresultsobtainedundermoderatewaterstressby

Pouetal.(2012).Finally,Merlotshowedthelowestvariationsof gsbothinwholeplants,andinexcisedleaves,confirmingthe

gen-eralidentificationsasanisohydriccultivar.Thescarceeffectofthe Hgtreatment,similarasobservedinSyrah,suggeststhatthelow transmembranewatertransportcapacitynegativelyaffected sto-matalcontrol,limitingtranspirationintheformerandfavoringsoil waterdepletioninthelatter.

Theobservationsdoneonwholeplantsandonexcisedleaves allowedtoobtainamorecompletepictureofthecultivareffect on thehydraulic dynamics involved at plant and at leaf level. Further studies will be needed in order to integrate the cur-rentresultswithadditionaldetailsonthecomponentofvariation duetohydraulicandhormonalsignalingbetweenthescionand rootstock(Margueritet al.,2012).From thecombination ofthe obtainedresults,wecouldinterprettherootstockeffectas ‘quan-titative’: the ability of roots to supply water relative to shoot transpirationdemanddisplacedreciprocallytherootstockcurves tohigher/lowerparallel positions.On theotherhand,thescion effectwas‘qualitative’:thefeedbackloop betweengs andleaf

producedatleaflevelmodifiedtheslopeofthecurves.

5. Conclusions

Fromthepresentstudy,itwasconcludedthatrootstockand sciongenotypesareabletoconfertotheplanttraitsofdrought adaptabilityinfluencingthecapacityofwaterextractionfromthe soilandsensitivityofthestomatalcontrol.Onbothcomponents (rootsandcanopy)thetranscellularpathwayseemstohavestrong relationshipswithstrategiesrelatedtowatertranslocation.Further researchwillbeneededinordertoidentifythepotentialuseof thisinformationinstudiesofstresstoleranceandadaptabilityof rootstocksandcultivarstospecificecologicalconditions.

hydraulicconductivity.Vitis39,89–92.

Brodribb,T.J.,2009.Xylemhydraulicphysiology:thefunctionalbackboneof terres-trialplantproductivity.PlantScience177,245–251.

Carbonneau,A.,1985. Theearlyselectionofgrapevinerootstocksforresistanceto droughtconditions.AmericanJournalofEnologyandViticulture36,195–198.

Chalmers, Y.M., 2007. Influence of sustaineddeficit irrigationonphysiology andphenoliccompoundsinwinegrapesandwine.AdelaideUniversity,PhD thesis. http://digital.library.adelaide.edu.au/dspace/bitstream/2440/50101/1/ 02whole.pdf.

Chaves,M.M.,Zarrouk, O.,Francisco,R.,Costa, J.M., Santos,T., Regalado,A.P., Rodrigues,M.L.,Lopes,C.M.,2010.Grapevineunderdeficitirrigation:hintsfrom physiologicalandmoleculardata.AnnalsofBotany105,661–676.

Cirami,R.,Furkaliev,J.,Radford,R.,1994. Summerdroughtandvinerootstocks. AustralianGrapegrowerandWinemaker–AnnualTechnicalIssue336,145.

Daniels,M.J.,Mirkov,T.E.,Chrispeels,M.J.,1994.Theplasmamembraneof Arabidop-sisthalianacontainsamercury-insensitiveaquaporinthatisahomologofthe tonoplastwaterchannelproteinTIP.PlantPhysiology106,1325–1333.

Delas,J.J.,1992. CriteriausedforrootstockselectioninFrance.In:Wolpert,J., Walker,M.A.,Weber,E.,AmericanSocietyforEnologyViticulture:Davis(Eds.), ProceedingsofRootstockSeminar:AWorldwidePerspective.Reno,NV,USA,pp. 83–89.

deSouza,C.R.,Bassoi,L.H.,LimaFilho,J.M.P.,Silva,F.F.S.da,Viana,L.H.,Dantas,B.F., Pereira,M.S.,Ribeiro,P.R.,de,A.,2009.Waterrelationsoffield-growngrapevines intheSãoFranciscoValley.Brazil,underdifferentrootstocksandirrigation strategies.ScientiaAgricola66,436–446.

Dry,N.,2007. GrapevineRootstocks:SelectionandManagementforSouth Aus-tralianVineyards.LythrumPress(Adelaide),Stepney,Australia,pp.85.

Düring,H.,1993. RapidstomatalandphotosyntheticresponsesofVitisberlandieri leavesafterpetioleexcisioninwater.Vitis32,63–68.

Galet,P.,1998.GrapeVarietiesandRootstockVarieties.Oenoplurimedia,Chaintré, France,pp.315.

Gambetta,G.A.,Manuck,C.M.,Drucker,S.T.,Shaghasi,T.,Fort,K.,Matthews,M.A., Walker,M.A.,McElrone,A.J.,2012.Therelationshipbetweenroothydraulicsand scionvigouracrossVitisrootstocks:whatroledorootaquaporinsplay?Journal ofExperimentalBotany63,6445–6455.

Gaspar,M.,Sissoef,I.,Bousser,A.,Roche,O.,Mahe,A.,Hoarau,J.,2001. Transient variationsofwatertransferinducedbyHgCl2inexcisedrootsofyoungmaize plants:newdataontheinhibitionprocess.AustralianJournalofPlantPhysiology 28,1175–1186.

Hachez,C.,Zelazny,E.,Chaumont,F.,2006.Modulatingtheexpressionofaquaporin genesinplanta:akeytounderstandtheirphysiologicalfunctions?Biochimica etBiophysicaActa(BBA)–Biomembranes1758,1142–1156.

Hamdan,A.,Basheer-Salimia,R.,2010. Preliminarycompatibilitybetweensome table-grapevinescionsandphylloxera-resistantrootstockcultivars.Jordan Jour-nalofAgriculturalSciences6,1–10.

Ibacache,G.A.,Sierra,C.B.,2009. Influenceofrootstocksonnitrogen,phosphorus andpotassiumcontentinpetiolesoffourtablegrapevarieties.ChileanJournal ofAgriculturalResearch69,503–508.

Janott,M.,Gayler,S.,Gessler,A., Javaux,M., Klier,C.,Priesacket,E.,2011. A one-dimensionalmodelofwaterflowinsoil–plantsystemsbasedonplant architecture.PlantandSoil341,233–256.

Javot,H.,Maurel,C.,2002. Theroleofaquaporinsinrootwateruptake.Annalsof Botany(Lond)90,301–313.

Jones,H.G.,2012.Howdorootstockscontrolshootwaterrelations?NewPhytologist 194,301–303.

Kaldenhoff,R.,RibasCarbo,M.,FlexasSans,J.,Lovisolo,C.,Heckwolf,M.,Uehlein, N.,2008. AquaporinsandPlantWaterBalance.Plant.CellandEnvironment31, 658–666.

Knipfer,T.,Besse,M.,Verdeil,J.L.,Fricke,W.,2011. Aquaporin-facilitatedwater uptakeinbarley(HordeumvulgareL.)roots.JournalofExperimentalBotany62, 4115–4126.

Komar,V.,Vigne,E.,Demangeat,G.,Lemaire,O.,Fuchs,M.,2010.Comparative per-formanceofvirus-infectedVitisviniferacv.Savagninrosegraftedontothree rootstocks.AmericanSocietyforEnologyandViticulture61,68–73.

Koundouras,S.,Tsialtas,I.T.,Zioziou,E.,Nikolaou,N.,2008.Rootstockeffectsonthe adaptivestrategiesofgrapevine(VitisviniferaL.cv.Cabernet-Sauvignon)under contrastingwaterstatus:leafphysiologicalandstructuralresponses. Agricul-ture,Ecosystems&Environment128,86–96.

(7)

Lee,S.H.,Chung,G.C.,Steudle,E.,2005. Lowtemperatureandmechanicalstresses differentlygateaquaporinsofrootcorticalcellsofchilling-sensitivecucumber and-resistantfigleafgourd.Plant,Cell&Environment28,1191–1202.

Lovisolo,C.,Hartung,W.,Schubert,A.,2002. Whole-planthydraulicconductance androot-to-shootflowofabscisicacidareindependentlyaffectedbywater stressingrapevines.FunctionalPlantBiology29,1349–1356.

Lovisolo,C.,Perrone,I.,Carra,A.,Ferrandino,A.,Flexas,J.,Medrano,H.,Schubert,A., 2010.Drought-inducedchangesindevelopmentandfunctionofgrapevine(Vitis spp.)organsandintheirhydraulicandnon-hydraulicinteractionsatthe whole-plantlevel:aphysiologicalandmolecularupdate.FunctionalPlantBiology37, 98–116.

Lovisolo,C.,Tramontini,S.,Flexas,J.,Schubert,A.,2008.Mercurialinhibitionofroot hydraulicconductanceinVitisspp.rootstocksunderwaterstress. Environmen-talandExperimentalBotany63,178–182.

Marguerit,E.,Brendel,O.,Lebon,E.,VanLeeuwen,C.,Ollat,N.,2012. Rootstock controlofsciontranspirationanditsacclimationtowaterdeficitarecontrolled bydifferentgenes.NewPhytologist194,416–429.

Maurel,C.,Verdoucq,L.,Luu,D.-T.,Santoni,V.,2008. Plantaquaporins:membrane channelswithmultipleintegratedfunctions.AnnualReviewofPlantBiology59, 595–624.

Moshelion,M.,Becker,D.,Biela,A.,Uehlein,N.,Hedrich,R.,Otto,B.,Levi,H.,Moran, N.,Kaldenhoff,R.,2002. Plasmamembraneaquaporinsinthemotorcellsof Samaneasaman:diurnalandcircadianregulation.PlantCell3,727–739.

Miyazawa,S.-I.,Yoshimura,S.,Shinazaki,Y.,Maeshima,M.,Miyake,C.,2008.

DeactivationofaquaporinsdecreasesinternalconductancetoCO2diffusion intobaccoleavesgrownunderlongtermdrought.FunctionalPlantBiology35, 553–564.

Nardini,A.,Salleo,S.,2005. Waterstress-inducedmodificationsofleafhydraulic architectureinsunflower:co-ordinationwithgasexchange.Journalof Experi-mentalBotany56,3093–3101.

Padgett-Johnson,M.,Williams,L.E.,Walker,M.A.,2000.TheinfluenceofVitisriparia rootstockonwaterrelationsandgasexchangeofVitisviniferacv.Carignanescion undernon-irrigatedconditions.AmericanJournalofEnologyandViticulture51, 137–143.

Postaire,O.,Tournaire-Roux,C.,Grondin,A.,Boursiac,Y.,Morillon,R.,Shäffner,A.R., Maurel,C.,2010.APIP1aquaporincontributestohydrostaticpressure-induced watertransportinboththerootandrosetteofArabidopsis.PlantPhysiology152, 1418–1430.

Pou,A.,Medrano,H.,Tomás,M.,Martorell,S.,Ribas-Carbó,M.,Flexas,J.,2012. Aniso-hydricbehaviouringrapevinesresultsinbetterperformanceundermoderate waterstressandrecoverythanisohydricbehaviour.PlantandSoil359,335–349.

Pou,A.,Medrano,H.,Flexas,J.,Tyerman,S.,2013.AputativeroleforTIPandPIP aqua-porinsindynamicsofleafhydraulicandstomatalconductancesingrapevine underwaterstressandre-watering.Plant,Cell&Environment36,828–843.

Rizk-Alla,M.S.,Sabry,G.H.,AdbEl-Wahab,M.A.,2011.Influenceofsomerootstocks ontheperformanceofredglobegrapecultivar.TheJournalofAmericanScience 7,71–81.

Rogiers,S.Y.,Greer,D.H.,Hatfield,J.M.,Hutton,R.J.,Clarke,S.J.,Hutchinson,P.A., Somers,A.,2012. Stomatalresponseofananisohydricgrapevinecultivarto evaporativedemand,availablesoilmoistureandabscisicacid.TreePhysiology 32,249–261.

Rogiers,S.Y.,Greer,D.H.,Hutton,R.J.,Landsberg,J.J.,2009. Doesnigh-time transpi-rationcontributetoanisohydricbehaviourinaVitisviniferacultivar?Journalof ExperimentalBotany60,3751–3763.

Santesteban,L.G.,Miranda,C.,Royo,J.B.,2009.Effectofwaterdeficitandrewatering onleafgasexchangeandtranspirationdeclineofexcisedleavesoffourgrapevine (VitisviniferaL.)cultivars.ScientiaHorticulturae121,434–439.

Scholander,P.,Hammel,H.,Edda,D.,Bradstreet,E.,Hemmingsen,E.,1965. Sap pressureinvascularplants.Science148,339–346.

Schultz,H.R.,2003.Differencesinhydraulicarchitectureaccountfornear-isohydric andanisohydricbehaviouroftwofield-grownVitisviniferaL.cultivarsduring drought.Plant,CellandEnvironment26,1393–1405.

Shellie,K.,Glenn,D.M.,2008. Winegraperesponsetokaolinparticlefilmunder deficitandwell-wateredconditions.ActaHorticulturae792,587–591.

Soar,C.J.,Dry,P.R.,Loveys,B.R.,2006. Scionphotosynthesisandleafgasexchange inVitisviniferaL.cv.Shiraz:mediationofrootstockeffectsviaxylemsapABA. AustralianJournalofGrapeandWineResearch12,82–96.

Southey,J.M.,1992. Grapevinerootstockperformanceunderdiverseconditionsin SouthAfrica.In:Wolpert,J.,Walker,M.A.,Weber,E.,AmericanSocietyfor Enol-ogyViticulture:Davis(Eds.),ProceedingsofRootstockSeminar:AWorldwide Perspective.Reno,NV,USA,pp.27–51.

Terashima,I.,Ono,K.,2002. EffectsofHgCl2onCO2dependenceofleaf photosyn-thesis:evidenceindicatinginvolvementofaquaporinsinCO2diffusionacross theplasmamembrane.PlantandCellPhysiology43,70–78.

Tramontini,S.,VanLeeuwen,C.,Domec,J.C.,Destrac-Irvine,A.,Basteau,C.,Vitali,M., Mosbach-Schulz,O.,Lovisolo,C.,2012.Impactofsoiltextureandwater avail-abilityonthehydrauliccontrolofplantandgrape-berrydevelopment.Plantand Soil,http://dx.doi.org/10.1007/s11104-012-1507-x.

VanAs,H.,2007.IntactplantMRIforthestudyofcellwaterrelations,membrane per-meability,cell-to-cellandlongdistancewatertransport.JournalofExperimental Botany58,743–756.

Vandeleur,R.K.,Mayo,G.,Shelden,M.C.,Gilliham,M.,Kaiser,B.N.,Tyerman,S.D., 2009. Theroleofplasmamembraneintrinsicproteinaquaporinsinwater transportthroughroots:diurnalanddroughtstressresponsesreveal differ-entstrategiesbetweenisohydricandanisohydriccultivarsofgrapevine.Plant Physiology149,445.

Whiting,J.R.,2005.Grapevinerootstocks.In:Dry,P.R.,Coombe,B.G.(Eds.), Viticul-ture:vol.1–Resources.WinetitlesPtyLtd.,Ashford,Australia,pp.167–188.

Williams,L.E.,Baeza,P.,2007.Relationshipsamongambienttemperatureandvapor pressuredeficitandleafandstemwaterpotentialsoffullyirrigated,field-grown grapevines.AmericanJournalofEnologyandViticulture58,173–181.

Wudick, M.M.,Luu, D.-T., Maurel, C.,2009. A lookinside: localization pat-ternsandfunctionsofintracellularplantaquaporins.NewPhytologist184, 289–302.

Riferimenti

Documenti correlati

I tre fratelli, pur nella complessità della realizzazione artistica, incarnano ciascuno un “tipo” di atteggiamento verso il mon- do e la realtà: Dimitrij è un giovane generoso

the concavity is positive (resp. negative) or equal to zero, and the point lies below (resp. above) the function, then the linear approximation is given by a tangent to the

To be precise, given a three-dimensional Lorentzian manifold satisfying the topological massive gravity equations, we provide necessary and suffi- cient conditions on the

The results of Experiment 1 show that suffix priming is observed when derived words (e.g., teacher) are primed by complex nonwords that include the same suffix (e.g., sheeter),

We have chosen to limit discussion to two broad classes of biasing: those whose objective is direct computation of the gradient of the free energy (∂F/∂z) at local points throughout

The policy framework analysis was also the opportunity to define the main assets of a new TEL project at a European Level: Emma, the European Multiple Moocs Aggregator, an

“In conclusion, our meta-analysis shows, that venous super-drainage, that is, performing a second venous anastomosis between the superficial venous system and a recipient vein,

Thirty-two opera singers (17 female and 15 male) were enrolled for the assessment of body composition by bio impedance, of cardiovascular fitness by submaximal exercise test on a