• Non ci sono risultati.

Search for supersymmetry with Higgs boson to diphoton decays using the razor variables at s=13TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Search for supersymmetry with Higgs boson to diphoton decays using the razor variables at s=13TeV"

Copied!
25
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Search

for

supersymmetry

with

Higgs

boson

to

diphoton

decays

using

the

razor

variables

at

s

=

13 TeV

.The CMS Collaboration

CERN,Switzerland

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received1September2017

Receivedinrevisedform14November2017 Accepted1December2017

Availableonline31January2018 Editor: M.Doser

Keywords:

CMS Physics Higgs

An inclusive search for anomalous Higgs boson production in the diphoton decay channel and in association withatleast onejetispresented,usingLHCproton–proton collisiondata collectedbythe CMSexperimentatacenter-of-massenergyof13 TeVandcorrespondingtoanintegratedluminosityof 35.9 fb−1.TherazorvariablesM

RandR2,aswellasthemomentumandmassresolutionofthediphoton

system,areusedtocategorizeeventsintodifferentsearchregions.Thesearchresultisinterpretedinthe context ofstrongand electroweakproductionofsupersymmetricparticles. Weexcludebottom squark pair-production withmassesbelow 450 GeVfor bottomsquarksdecaying toabottomquark,aHiggs boson, and the lightest supersymmetric particle (LSP) for LSP masses below 250 GeV. For wino-like chargino–neutralinoproduction,weexcludecharginoswithmassbelow170 GeVforLSPmassesbelow 25 GeV.IntheGMSBscenario,weexcludecharginoswithmassbelow205 GeVforneutralinosdecaying toaHiggsbosonandagoldstinoLSPwith100%branchingfraction.

©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

The discovery of the Higgs boson [1–3], the first fundamen-tal scalar particle ever observed, has opened a newwindow for exploringphysicsnotdescribedbythestandardmodel(SM)of par-ticlephysics.Manymodelsofphysicsbeyondthestandardmodel (BSM) postulate the existence of cascade decays of heavy states involvingHiggsbosons[4,5].Intheminimalsupersymmetric stan-dard model(MSSM)[6],Higgs bosons maybe produced ina va-rietyofways. The bottom squark,the supersymmetricpartner of thebottomquark,producedviathestronginteraction,maydecay to a Higgs boson, quarks, and the lightest supersymmetric par-ticle (LSP). Similarly charginos or neutralinos produced through theelectroweak interaction maydecayto a Higgsboson andthe LSP. Ofparticular interestare scenarios withgauge-mediated su-persymmetrybreaking(GMSB),wherethelightestneutralinomay decaytoaHiggsbosonandthegoldstinoLSP (G)[7,8].Thedecay signaturedependsonwhetherthecharginoandneutralinomixed states are dominated by the wino or higgsino components, the respective supersymmetric partners of the W and Higgs bosons. Diagramsofsimplifiedmodels[9]forthescenariosconsideredare shown inFig. 1. In this paper, we denote the Higgs boson asH toindicatethat itistheparticleobservedbytheATLAS andCMS

 E-mailaddress:cms-publication-committee-chair@cern.ch.

experiments.IntheMSSM,thisparticleistypicallyassumedto cor-respond to the lighter ofthe two CP-even Higgs particles andis oftendenotedash.FortheGMSBscenario,weconsidersimplified models where Higgsino-like charginos andneutralinosare nearly mass-degenerateandbothchargino–neutralinoandneutralino-pair production result in very similar final state signatures, and are hereaftercollectivelyreferredtoaschargino–neutralinoproduction inthispaper.TheseexamplesofBSMproductionofHiggsbosons motivate an inclusive search foranomalous Higgsboson produc-tion that is broadlysensitive to a wide rangeof supersymmetric (SUSY)scenarios.Similarsearchesforsupersymmetricparticles de-caying to Higgs bosons have been performed by the ATLAS and CMScollaborationsinthepastusing8 TeVcollisiondataandcan befoundinreferences[10–12].

In thisLetter,we presentan updated search for supersymme-try events with at least one Higgs boson candidate decaying to two photons produced in association with at least one jet pro-ducedin13 TeVproton–protoncollisions.Thedatawerecollected bytheCMS experimentandcorrespondtoan integrated luminos-ityof35.9 fb−1[13].ThediphotondecaymodeoftheHiggsboson providesagoodcompromisebetweenbranchingfractionand back-ground rejection. The transverse momentum of the Higgs boson candidate, the expected mass resolution, and the razor variables MR andR2 [14,15],explained in detail in Section 4, are used to defineeventcategorieswhichgenericallyenhanceBSMsignals rel-ative to SM backgrounds. The potential signal is extracted from

https://doi.org/10.1016/j.physletb.2017.12.069

0370-2693/©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

Fig. 1. Diagramsdisplayingthesimplifiedmodelsthatarebeingconsidered.Upperleft:bottomsquarkpairproduction;upperright:wino-likechargino–neutralinoproduction; bottom:thetworelevantdecaymodesforhiggsino-likeneutralinopairproductionintheGMSBscenario.

the dominant nonresonant multijet background through a fit to thediphoton mass distribution. The resultsof the search are in-terpretedintermsofsimplifiedmodelsofbottomsquarkpair pro-ductionandchargino–neutralinoproduction.

2. TheCMSdetector,trigger,andeventreconstruction

The central feature of the CMS detector is a superconducting solenoidof 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker,aleadtungstatecrystalelectromagneticcalorimeter(ECAL), andabrassandscintillatorhadroncalorimeter(HCAL),each com-posed of a barrel and two endcap sections. Extensive forward calorimetrycomplementsthecoverageprovidedbythebarreland endcap detectors. Muons are measured in gas-ionization detec-tors embedded in the magnetsteel flux-return yoke outside the solenoid.AmoredetaileddescriptionoftheCMSdetector,together withadefinition ofthecoordinate systemusedandthe relevant kinematicvariables,canbefoundinRef.[16].

Signaleventcandidates are recordedusing adiphoton trigger, requiringthetransverseenergyoftheleadingandsubleading pho-tonsto belargerthan 30 GeVand18 GeV, respectivelyandtheir invariantmassto belarger than90 GeV.Additionalrequirements onthephotonshower shapeandisolation areimposedto reduce the background rateand improve the signal purity [17]. The ef-ficiencyof the trigger with respect to eventspassing the offline selectionismeasuredtobeabove98%.

Physicsobjectcandidatesarereconstructedusingaglobalevent description based on the CMS particle-flow (PF) algorithm [18], which identifies particles through an optimized combination of informationfrom thevarious detector subsystems. Photon candi-datesareselectedbyimposing“loose”requirementsontheshower shapeintheelectromagneticcalorimeter,theratioofenergy mea-suredin theHCAL tothe energymeasured in the ECAL,andthe isolation in a cone around the directionof the photon momen-tum[19]. The isolation requirementiscorrected forthe effectof multipleprotoncollisions inthesameoradjacentbunchcrossing (pileup)by subtractingthe averageenergyfrom pileupdeposited inthe isolation cone, estimatedby averaging the energydensity

overtheevent.Furthermore,photoncandidatesarerejectedifthey matchanelectroncandidatethatisnotconsistentwithonelegof aconversion.The photonselectionefficiencywas measuredtobe about90%[20]usingtagandprobemethods.Themeasuredenergy of photonsis corrected forclustering and localgeometric effects using an energyregression trainedon Monte Carlo(MC) simula-tion [19]. This regressiongives a significant improvement in the energyresolutionofthephotons(about30%)andprovides an es-timateoftheuncertaintyoftheenergymeasurementthatisused toseparateeventsintohigh- andlow-resolutioncategories.

The reconstructed vertex with the largest value of summed physics-object p2

T is takento be the primary pp interaction ver-tex (PV).The physics objects usedinthiscontext are theobjects returned bya jetfinding algorithm[21,22] appliedtoall charged tracksassociatedwiththevertexunderconsideration,plusthe cor-respondingassociatedmissingtransversemomentum.

ThechargedPFcandidatesassociatedwiththePVandthe neu-tral PF candidates are clustered into jets using the anti-kT algo-rithm [21] with a distance parameter R=0.4, as implemented in the FastJet package [22]. The jet momentum is determined as the vectorial sum of all particle momenta in the jet. Jet en-ergy corrections are derived based on a combination of simula-tion studies, accountingfor the nonlinear detector response and thepresenceofpileup,togetherwithin-situmeasurementsofthe energy balance in dijetand γ+jet eventsusing the methods de-scribed in Ref. [23]. Forthisanalysis, jetswith|η|<3.0 that do not overlap with anyidentified photon are selected by requiring R=(η)2+ (φ)2>0.5 between photonandjet candidates. The combined secondary vertex (CSVv2) tagging algorithm [24] is used to identify jets originating from the hadronization of b quarks. A loose workingpoint ischosen that yields an efficiency above 80% anda mistag rateforlight-flavor jetsthat is approxi-mately10%.Thenegativevectorsumofthereconstructed pTofall PFcandidatesinaneventdefinesthemissingtransverse momen-tum pmiss

T intheevent, anditsmagnitudeisreferred toaspmissT . Eventswithdetector- andbeam-relatednoisethatcanmimicevent topologieswithhighenergyandlarge pmiss

T arefilteredoutbyuse ofdedicatednoisereductionalgorithms[25–27].

(3)

3. Eventsimulation

SimulatedeventsamplesareusedtomodeltheSMHiggs back-groundsinthe search regions,andto calculatetheselection effi-cienciesforSUSYsignal models.Samples ofSMHiggs production via gluon fusion,vector boson fusion,associatedproduction with a W or a Z boson, bbH, and ttH are generated using the next-to-leading order (NLO) MadGraph5_amc@nlo v2.2.2 [28] event generator. The Higgs mass is assumed to be 125.0 GeV for the simulatedeventsamplesandiswithin theuncertaintyofthe cur-rentlybest measuredvalue [29].For thegluon fusion production mode, the sample is generated with up to two extra partons to modelinitial-stateradiation(ISR)calculatedatthematrixelement level withNLO accuracy withthe matching schemedescribed in reference[30]. The SUSY signal MC samplesare generated using MadGraph5_amc@nlo at leading order accuracy withup to two extrapartonsinthematrixelementcalculationswiththematching schemedescribedinreference[31].Inbothcases, pythia v8.2[32] is used to model the fragmentation and parton showering with theCUETP8M1tune[33].TheNNPDF3.0LOandNNPDF3.0NLO[34] partondistributionfunctions(PDFs)are usedfortheLOandNLO accuracy generators respectively. The SM Higgs background and bottom squark pair-production signal samples are simulated us-ing a Geant4-based model [35] of the CMS detector, while the chargino–neutralinoandneutralino-pairproductionsignalsamples are simulated with the CMS fastsimulation package [36]. While generally providing an accurate description, the fast simulation doessometimes yieldinaccuratepredictionsofthemissing trans-verse momentum tail. These inaccuracies are accounted for by larger systematic uncertainties for the signal yield prediction in therelevantphasespaceestimatedasthedifferencebetween sig-nal yields predicted using the generator level missingtransverse momentumandthemissingtransverse momentumreconstructed basedonthefastsimulation.Allsimulatedeventsincludethe ef-fectsof pileup andare processed withthe samechain of recon-structionprogramsusedforcollisiondata.

Toimprovethe MadGraph modelingofISR intheSUSYsignal MCsamples,weapplyacorrectionasafunctionofthe multiplic-ity ofISR jetsfor sbottom pair production, andas a function of the transverse momentum (pISRT ) of the chargino–neutralino sys-tem for chargino–neutralino production, derived from studies of tt and Z+jetsevents, respectively. The correction factorsvary be-tween0.92and0.51forISRjet multiplicitybetweenoneandsix, andbetween1.18and0.78forpISRT between125and600 GeV.The correction has a small effect on the signal yields atthe level of about1%. Thefull sizeofthiscorrection istakenasa systematic uncertainty.

TheHiggsproductioncrosssectionsareobtainedfromthe rec-ommendationsoftheLHCYellowReport4oftheLHCHiggsCross SectionWorkingGroup[37].TheSUSYsignalproductioncross sec-tionsarecalculatedtoNLOplus next-to-leadinglogarithmic (NLL) accuracy[38–43],assuming allSUSYparticles otherthanthose in therelevantdiagramtobetooheavytoparticipateinthe interac-tion.TheseNLO+NLLcrosssectionsandtheirassociated uncertain-ties[43]are usedtoderive theexclusionlimitson themassesof SUSYparticles.

4. Eventselectionandsearchcategories

We select events with two photons that satisfy the selection criteriadescribedabove.Bothphotonsmustbeinthebarrelregion oftheelectromagneticcalorimeter,with|η|<1.44,andhavepT> 20 GeV.AtleastoneofthetwophotonsmusthavepT>40 GeV.If multiplephotonpairsareidentified,thepairwiththelargestscalar

sumofthetransversemomentaischosenastheHiggsboson can-didateintheevent.TheHiggsbosoncandidatemassisrequiredto be between103 GeV and160 GeVinordertocoverasufficiently largebackgrounddominatedsidebandregion.

The Higgs boson candidate and any additional identified jets with pT>30 GeV and |η|<3.0 are clustered into two hemi-spheres (megajets)accordingtotheRazormegajetalgorithm[15], whichminimizesthesumofthesquared-invariant-massvaluesof thetwomegajets.Toconverge,thealgorithmrequiresatleastone such identifiedjet intheevent.Next,therazorvariables[14] MR andR2 arecomputedasfollows:

MR≡  (|pj1| + |pj2|)2− (pzj1+pzj2)2, (1) R2≡  MTR MR 2 , (2)

wherep isthemomentumofamegajet,pz isitslongitudinal

com-ponent, and j1 and j2 are usedtolabelthetwo megajets.Inthe definitionofR2,thevariableMR

T isdefinedas: MRT≡  pmiss T (p j1 T +p j2 T )− pTmiss· (p j1 T + p j2 T ) 2 . (3)

The razor variables MR and R2 provide discrimination between SUSY signalmodelsandSM backgroundprocesses withSUSY sig-nals typically having large values of MR and R2, while the SM backgroundexhibitsanexponentiallyfallingspectruminboth vari-ables.

The selected events are separated into four mutually exclu-sive categories. An eventis categorized as“HighPt” if the trans-verse momentum oftheselected Higgsboson candidateis larger than 110 GeV.Otherwise,iftheeventcontains twob-taggedjets whoseinvariantmassisbetween76and106 GeV,orbetween110 and140 GeV,itiscategorizedas“H(γ γ)–HZ(bb)”.Theremaining eventsarecategorizedas“HighRes”and“LowRes”ifthediphoton mass resolution estimate σM/M is smaller or larger than 0.85%,

respectively,where σM iscomputedas:

σM=

1 2



(σEγ1/Eγ1)2+ (σEγ2/Eγ2)2, (4) where 1,2 is the energy ofeach photon and σEγ1,2 isthe es-timated energyresolution foreach photon. Agraphical represen-tation of the categorization procedure is shown in Fig. 2. The “HighPt” category isolates SUSY events producing high-pT Higgs bosons; the “H(γ γ)–HZ(bb)” category isolates SUSY signalsthat producetwoHiggsbosonsoraHiggsbosonandaZbosoninthe finalstate;andtheHighResandLowRescategoriesfurtherimprove thediscrimination betweensignal andbackgroundinthe remain-ing eventsample.The “H(γ γ)–HZ(bb)”categorycombinesevents withtwo Higgsbosons ora Higgsboson anda Zboson inorder to achieve a sufficiently large numberof events in the sideband for the background estimationmethod described inSection 5 to remainunbiased.

Eacheventcategoryisfurtherdividedintobinsinthe MRand R2 variables, whichdefine the exclusivesearch regions. A signifi-cantexcessofevents abovetheSM expectationinoneorseveral bins would provide evidence ofBSM physics. The search regions are chosen based on an optimization procedure that maximizes theexpectedsensitivitytothesimplifiedbottomsquarkpair pro-ductionmodeldiscussedfurtherinSection7,andaresummarized inTable 1.Thebinsinthe MR andR2 variablesarekeptidentical forthe HighResandLowRescategories toallow forsimultaneous signal extraction,since theratio oftheeventyields in thesetwo categoriesdoesnotdependonthedetailsofthesignalmodel.

(4)

Table 1

Asummaryofthesearchregionbinsineachcategoryispresented.Thefunctionalformusedtomodelthe non-resonantbackgroundisalsolisted.Anexponentialfunctionoftheforme−amγ γ isdenotedas“single-exp”;alinear combination oftwoindependentexponentialfunctionsoftheform e−amγ γ andebmγ γ is denotedas“two-exp”; a modifiedexponentialfunctionoftheforme−amγ γb isdenotedas“mod-exp”;andaBernsteinpolynomialofdegree

n[44]isdenotedby“poly-n”.Thebinlabels9–13areusedforboththeHighResandLowRescategoriesbecausethe datainthesecategoriesarealwaysfittedsimultaneouslywithpotentiallydifferentnonresonantbackgroundmodels used.FurtherdetailsonthesimultaneousfitarediscussedinSection5.

Bin number Category MR(GeV) R2 Nonresonant bkg. model 0 HighPt ≥600 ≥0.025 single-exp 1 HighPt 150–600 ≥0.130 single-exp 2 HighPt ≥1250 0.000–0.025 single-exp 3 HighPt 150–450 0.000–0.130 poly-3 4 HighPt 450–600 0.000–0.035 poly-3 5 HighPt 450–600 0.035–0.130 single-exp 6 HighPt 600–1250 0.000–0.015 two-exp 7 HighPt 600–1250 0.015–0.025 single-exp 8 H(γ γ)–HZ(bb) ≥150 ≥0.0 single-exp 9 HighRes 150–250 0.000–0.175 mod-exp LowRes 150–250 0.000–0.175 poly-3 10 HighRes 150–250 ≥0.175 single-exp LowRes 150–250 ≥0.175 single-exp 11 HighRes ≥250 ≥0.05 single-exp LowRes ≥250 ≥0.05 poly-2 12 HighRes 250–600 0.000–0.05 poly-2 LowRes 250–600 0.000–0.05 mod-exp 13 HighRes ≥600 0.000–0.05 single-exp LowRes ≥600 0.000–0.05 single-exp

Fig. 2. A flowchart showing the event categorization procedure.

5. Backgroundprediction

Therearetwomainclassesofbackgroundeventsthatpassthe search selection criteria: SM Higgs production and nonresonant photon production, with either two promptly produced photons orone promptphotonandonejet thatiswrongly identifiedasa photon.TheSMHiggsbackgroundisestimatedfromtheMC sim-ulation,whilethenonresonantbackgroundpredictionisestimated usingafittothediphotonmassdistributionobservedindata.

Withineach search bin, we extract a potential signal by per-forming an unbinned extended maximum likelihood fit to the diphoton mass spectrum. An example of such a fit is shown in Fig. 3.The nonresonant background is modeled with a decaying functionalformgiveninTable 1foreachindividual searchregion bin. All parameters of the function are unconstrained in the fit. Thefunctionalformofthemodelusedforeach searchregionbin is selected on the basis of its Akaike information criterion (AIC) score [45], which quantifies the trade-off between

goodness-of-Fig. 3. ThediphotonmassdistributioninthesearchregionbinwithMR>600 GeV

andR2>0.025 intheHighPtcategory,alongwiththebackground-onlyfit(top) andthesignal-plus-backgroundfit(bottom).Thereddot-dashedcurverepresents the fittedbackgroundprediction;the greendashed curverepresents thebest-fit signal;andthebluesolidcurverepresentsthesumofthebest-fitsignalandthe background.

fit and model complexity. Each functional form is tested for fit biases with respect to a set of alternative models, all of which

(5)

Table 2

Thepredictedyieldsfor anexampleSUSYsignalandtheSMHiggsbosonbackgroundprocessesforeachsearch regionareshownforanintegratedluminositycorrespondingto35.9 fb−1.Thesignalyieldsgivenassumeabottom squarkmassof500 GeVandanLSPmassof1 GeV.ThecontributionsfromeachSMHiggsbosonprocessareshown separately,andthetotalisshownintherightmostcolumn,alongwithitsfulluncertainty.Thebinlabels9–13are usedforboththeHighResandLowRescategoriesastheyarealwaysfittedsimultaneously.

Bin Category Signal yield Expected SM Higgs yield

bb,b→bHχ0 1 ggH ttH VBF H VH bbH Total 0 HighPt 10.2 3.4 1.4 0.49 0.78 0.02 6.1±1.2 1 HighPt 0.2 1.7 0.58 0.18 1.8 0.01 4.3±0.8 2 HighPt 5.7 5.1 0.64 2.5 0.17 0.04 8.5±1.7 3 HighPt 0.2 55 0.96 11 6.3 0.41 74±21 4 HighPt 0.6 17 0.50 4.7 1.1 0.18 23±7 5 HighPt 0.6 3.5 0.61 0.55 0.59 0.04 5.3±1.2 6 HighPt 5.7 19 0.80 7.6 0.82 0.15 29±8 7 HighPt 4.0 5.4 0.46 1.1 0.45 0.02 7.4±2.1 8 H(γ γ)–HZ(bb) 0.9 0.76 1.3 0.12 0.25 0.19 2.6±0.4 9 HighRes 0.0 60 0.24 7.6 4.4 0.89 75±22 LowRes 0.0 30 0.11 3.8 2.3 0.50 36±11 10 HighRes 0.0 1.1 0.12 0.12 0.46 0.02 1.8±0.6 LowRes 0.0 0.44 0.07 0.08 0.27 0.01 0.9±0.2 11 HighRes 0.3 3.0 0.73 0.54 0.55 0.13 5.0±1.4 LowRes 0.1 1.8 0.38 0.29 0.22 0.06 2.7±0.8 12 HighRes 0.1 37 0.66 8.9 1.4 0.83 50±14 LowRes 0.1 21 0.33 4.7 0.79 0.42 26±6 13 HighRes 1.0 5.0 0.50 3.1 0.21 0.21 9.1±2.7 LowRes 0.5 3.3 0.29 1.5 0.13 0.10 5.2±1.5 adequately describe the data in the diphoton mass sideband

re-gion (103–121 GeV and 129–160 GeV). The shape of the Higgs boson resonance from SM Higgs production and from decays of SUSYsignalsismodeledwithadoubleCrystalBallfunction[46,47] withtwoindependenttailparametersthatisfittedtothediphoton massdistribution obtainedfromtheMC simulation.The parame-tersofeach doubleCrystal Ballfunction are heldconstant inthe signalextractionfitprocedure,withtheexceptionoftheparameter controllingthelocationofthepeak,whichisdiscussedfurtherin Section 6below. The normalizationofthe SM Higgsboson back-ground in each bin is predicted from the MC simulation and is constrained to that value in the fit within uncertainties. Forthe HighRes andLowRescategories, bins in the MR andR2 variables arefittedsimultaneously.Foragivensearchbin,therelativeyields in the HighRes and LowRes categories are observed in the sim-ulation tobe largely process independent andare therefore con-strainedaccordingtothesimulationprediction.Basedonthese in-dependentfitsineachsearchbin,weobtainamodel-independent searchresult, whichcan beusedtoevaluatewhethertheyield in anybinexhibitsastatisticallysignificantdeviationfromthe back-groundprediction.

Wealso performa combinedsimultaneous fitusingall ofthe searchbins,totestspecificSUSYsimplifiedmodelsignal hypothe-ses. Inthe combined fit, the yield in each bin forthe SM Higgs backgroundandthesignalmodelundertestareconstrainedtothe MC simulation predictions within uncertainties. These uncertain-tiesare modeled by useof nuisanceparameters that account for various theoretical andinstrumental uncertainties that can affect the SM Higgs boson background and SUSY signal normalization, andareprofiledinthefit.Amoredetaileddiscussionofsystematic uncertaintiescanbefoundbelowinSection6.TheMCsimulation predictionsfortheSMHiggsbosonbackgroundnormalizationare showninTable 2foreachbininthesearchregion.

6. Systematicuncertainties

There are broadly two types of systematic uncertainties. The firstanddominantsystematicuncertaintyisintheshapeand nor-malizationofthe nonresonant background.Thisis propagated by

Table 3

SummaryofsystematicuncertaintiesontheSMHiggs backgroundandsignalyieldpredictions,andthesizeof theireffectonthesignalyield.

Uncertainty source Size (%) Integrated luminosity 2.5 PDFs/renormalization/factorization scales 15–30 Trigger and selection efficiency 3 Jet energy scale 1–5 Photon energy scale 1

σM/M categorization 10–24

b tagging efficiency 4 ISR modeling (signal only) 1 Fastsim pmiss

T modeling (signal only) 1–34

profiling the normalization andshape parameters ofthe nonres-onant background functional form in an unconstrained way.The second andsubdominant type ofsystematicuncertaintyisin the predictionsoftheSMHiggsbackgroundinthevarioussearchbins. Theseshape uncertaintiesare propagatedthroughtheuseof sev-eralindependentnuisanceparameters,whereboththeoreticaland instrumental effects aretaken intoaccount. Thenuisance param-eters are constrainedin the fit using log-normal prior functions, whose width reflects the size of the systematicuncertainty. The independentsystematiceffectsconsideredincludemissing higher-order corrections, PDFs, trigger andselection efficiencies, jet en-ergyscaleuncertainties,btaggingefficiencies,andtheuncertainty intheintegratedluminosity.Theuncertaintyduetojetenergy res-olution uncertainties were also estimatedand were found to be negligible.Thetypicalsizeoftheseeffectsontheexpectedlimitis summarizedinTable 3.Duetoeffects ofpileupandtransparency loss intheECALcrystals,weobservesome simulation mismodel-ingoftheestimatedmassresolution,whichresultsinasystematic uncertainty of 10–24% in the prediction of the SM Higgs back-ground andSUSY signal yields inthe HighRes andLowResevent categories. The systematicuncertaintyinthephoton energyscale isimplementedasaGaussian-distributednuisanceparameterthat shiftstheHiggsbosonmasspeakposition,constrainedinthefitto lie withinapproximately1%ofthenominalHiggsbosonmass ob-served insimulation.Thesystematicuncertaintyforthemodeling

(6)

Table 4

Thenonresonantbackgroundyields,SMHiggsbosonbackgroundyields,bestfitsignalyields,and observedlocalsignificanceinunitsofstandarddeviations(σ)areshownforthesignalplus back-groundfitineachsearchregionbin.TheSMHiggsbosonbackgroundyieldsareslightlyaltered withrespecttothepre-fitpredictionsfromTable 2.Theuncertaintiesincludebothstatisticaland systematiccomponents.Thenonresonantbackgroundyieldscorrespondtotheyieldwithinthemass windowbetween122and129 GeVandareintendedtoestimatethebackgroundunderthesignal peak.TheobservedsignificanceforthebinsinHighResandLowRescategoriesareidenticalbecause theyaretheresultofasimultaneousfit.Thesignificanceiscomputedusingtheprofilelikelihood, wherethesignreflectswhetheranexcess(positivesign)ordeficit(negativesign)isobserved.

Bin Category Yields Obs.local significance(σ) Nonresonant bkg SM Higgs Best fit signal

0 HighPt 36±2 6.1±1.0 4.8±6.7 0.7 1 HighPt 37±2 4.3±0.7 −11±6 −1.4 2 HighPt 24±2 8.4±1.6 −5.1±5.3 −0.9 3 HighPt 790±27 74±21 14±41 0.4 4 HighPt 160±15 24±6 10±15 0.6 5 HighPt 34±2 5.2±1.2 12±8 1.6 6 HighPt 127±3 29±5 1.1±7.9 0.1 7 HighPt 40±3 7.4±2.0 −0.3±7.4 −0.0 8 H(γ γ)–HZ(bb) 65±3 2.6±0.4 8±8 1.0 9 HighRes 1792±17 77±24 −9±44 −0.2 LowRes 2108±28 43±17 −4±19 10 HighRes 44±3 1.9±0.6 1±8 0.1 LowRes 68±3 1.0±0.3 0±3 11 HighRes 127±4 5.2±1.4 −8±12 −0.6 LowRes 158±10 3.0±1.2 −4±7 12 HighRes 1066±19 51±16 10±34 0.2 LowRes 1310±14 29±9 5±18 13 HighRes 151±5 9.5±3.1 2±11 0.2 LowRes 193±5 5.8±2.1 1±6

oftheISRforthesignalprocessisalsopropagatedandisbelow1%. Forchargino–neutralinoandneutralino-pairproductionsignal pro-cesses,thefastsimulationwasusedtopredictsignalyieldsandan additionalsystematicuncertaintyispropagatedforinaccuraciesin themodelingofthemissingtransverse momentumtail.This sys-tematicuncertaintyrangesbetween1% and34% dependingonthe searchregionbin.

7.Resultsandinterpretations

Thefitresultsforall searchregionbinsaresummarizedin Ta-ble 4, along with the data yields, fitted background, and signal yields.AnexamplefitresultforthesearchbinwithMR>600 GeV andR2>0.025 intheHighPt categoryisshowninFig. 3.The ob-servedsignalsignificanceineachbinissummarizedinFig. 4forall thesearchregionbins,whicharestatisticallyindependent.Noneof the14binsexhibitsadeviationfromthe backgroundexpectation largerthantwostandarddeviations.

Weinterpret thesearch resultsin termsof limitsonthe pro-ductioncross section timesbranching ratioforsimplified models ofbottomsquarkpair-productionandchargino–neutralino produc-tion.Diagramsof thesesimplifiedmodels areshownin Fig. 1.In thecase ofbottom squark pair production,we consider the sce-nariowherethebottomsquarkdecaystoabottomquark andthe next-to-lightestneutralino(χ0

2),andtheχ20 decaystoaHiggs bo-sonandtheLSP(χ10),andtheproductioncrosssectionsare com-putedatNLOplusnext-to-leading-log(NLL)precisionwithallthe othersparticlesassumedtobe heavyanddecoupled [38–43].We restrictourselvestothescenariowherethemasssplittingbetween theχ0

2 andtheχ10 is130 GeV,slightlyabovethresholdtoproduce an on-shell Higgsboson. In thecase ofchargino–neutralino pro-duction,weconsidertwodifferentscenarios.Inthefirstone,pure wino-like charginos (χ1±) and the next-to-lightest neutralino χ0 2 aremass-degenerateandareproducedtogether,withthechargino decaying to a W boson and the LSP (χ0

1) and the χ20 decaying to a Higgs boson and the LSP (χ0

1). The production cross

sec-Fig. 4. Theobservedsignificanceinunitsofstandarddeviationsisplottedforeach

searchbin.Thesignificanceiscomputedusingtheprofilelikelihood,wherethesign reflectswhetheranexcess(positivesign)ordeficit(negativesign)isobserved.The categoriesthatthebinsbelongtoarelabeledatthebottom.Thebinsinthe High-ResandLowRescategoriesarefittedsimultaneouslyandyieldasinglecombined significance.Theyellowandgreenbandsrepresentthe±1and±2standard devia-tionregions,respectively.(Forinterpretationofthereferencestocolorinthisfigure legend,thereaderisreferredtothewebversionofthisarticle.)

tionsarecomputedatNLOplusnext-to-leading-log(NLL)precision in a limit of mass-degenerate wino χ0

2 and χ1±, light bino χ10, and with all the other sparticles assumed to be heavy and de-coupled[48–50].Inthesecond scenario,we considera GMSB [7, 8]simplifiedmodelwhereHiggsino-likecharginosandneutralinos arenearlymass-degenerateandareproducedinpairsthroughthe followingcombinations:χ0

1χ20,χ10χ1±,χ20χ1±,andχ1±χ1∓.Because of the mass degeneracy, both the χ20 andthe χ1± will decay to 

χ0

1 andother low-pT (soft) particles, leading to a signature with aχ0

1 pair.Eachχ10 willsubsequentlydecaytoaHiggsbosonand thegoldstino(G),whichistheLSP,ortoaZbosonandthe gold-stino. We consider the case where the branching fraction ofthe

(7)

Fig. 5. Theobserved95%CLupperlimitsonthebottomsquarkpairproductioncross section(top)andwino-likechargino–neutralinoproductioncrosssection(bottom) areshown.Thesolidanddottedblackcontoursrepresenttheobservedexclusion regionandits±1standarddeviations(1σ)oftheirexperimentaland theoretical uncertainties,whiletheanalogous redcontoursrepresenttheexpectedexclusion regionandits1σ band.(Forinterpretationofthereferencestocolorinthisfigure legend,thereaderisreferredtothewebversionofthisarticle.)



χ10→HG decayis 100%,andthecasewhere thebranching frac-tionoftheχ0

1→HG andχ10→ZG decaysareeach50%.Thecross sections for higgsino pair production are computed at NLO plus NLLprecisioninalimitofmass-degeneratehiggsinoχ20,χ1±,and 

χ0

1 withall theothersparticlesassumedtobe heavyand decou-pled[48–50].Followingtheconventionofrealmixingmatricesand signedneutralinoorcharginomasses[51],wesetthemassofχ0 1 (χ0

2) to positive (negative) values. The product of the third and fourthelements ofthecorresponding rowsoftheneutralino mix-ing matrix N is +0.5 (−0.5). The elements U12 and V12 ofthe charginomixingmatricesaresetto 1.

FollowingtheCLs procedure[52–54],we usetheprofile likeli-hoodratio test statisticandthe asymptoticformula [55] to eval-uate the 95% confidence level (CL) observed andexpected limits onthesignalproductioncrosssections.Forthebottomsquarkpair production model, the limits are shown on the left of Fig. 5 as a functionofthe bottom squarkmassandthe LSP mass.We

ex-Fig. 6. The observed 95% CL upper limits on the production cross section for

higgsino-like chargino–neutralinoproduction areshown.Thecharginos and neu-tralinos undergoseveralcascadedecays producingeitherHiggsorZ bosons.We presentlimitsinthescenariowherethebranchingfractionoftheχ0

1→HG decay is100%(top)andthescenariowherethebranchingfractionoftheχ0

1→HG and



χ0

1→ZG decaysareeach50%(bottom).Thedottedandsolidblackcurves repre-senttheexpectedandobservedexclusionregion,andthegreenandyellowbands representthe±1and±2standarddeviationregions,respectively.Theredsolidand dottedlinesshowthetheoreticalproductioncrosssectionanditsuncertaintyband. (Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderis re-ferredtothewebversionofthisarticle.)

clude bottom squarks with massesbelow about 450 GeV for all LSPmassesbelow250 GeV.Forthewino-likechargino–neutralino productionsimplifiedmodel,thelimitsare shownontherightof Fig. 5 asa function of thechargino mass andthe LSP mass. We exclude charginomassesbelowabout170 GeVforallLSPmasses below 25 GeV. Forthe higgsino-likechargino–neutralino produc-tionsimplifiedmodels,thelimitsareshowninFig. 6asafunction ofthecharginomassforthecasewherethebranchingfractionof the χ10→HG decayis 100% on theleft, and forthe casewhere the branching fractionofthe χ0

1 →HG andχ10→ZG decays are both50%,ontheright. Weexcludecharginosbelow205 GeVand 130 GeVintheformerandlattercases,respectively.

8. Summary

AsearchforanomalousHiggsbosonproductionthroughdecays ofsupersymmetricparticles isperformedwiththeproton–proton collisiondatacollectedin2016bytheCMSexperimentattheLHC.

(8)

Thesample corresponds toan integratedluminosity of35.9 fb−1 at the center-of-mass energy √s=13 TeV. Higgs boson candi-datesare reconstructed frompairsof photonsinthe centralpart ofthe detector. The razorvariables MR andR2 are used to sup-pressStandard Model(SM) Higgsbosonproductionandother SM backgrounds.Thenon-resonantbackgroundisestimatedthrougha fittothediphoton massdistributionindata,whiletheSM Higgs backgroundispredictedusingsimulation.Weinterprettheresults interms of production cross section limits on simplified models ofbottomsquarkpairproductionandchargino–neutralino produc-tion.Weexcludebottomsquarkmassesbelow450 GeVforbottom squarksdecayingtoabottomquark,aHiggsboson,andthe light-estsupersymmetricparticle (LSP)forLSP massesbelow250 GeV andassumingamasssplittingbetweentheχ20andχ10of130 GeV. For wino-like chargino–neutralino production, we improved the search sensitivityby afactor oftwo withrespectto previous re-sults [11] and we exclude charginos with mass below 170 GeV forLSPmassesbelow25 GeV. IntheGMSB scenario,we exclude charginoswithmassbelow205 GeVforneutralinosdecayingtoa HiggsbosonandagoldstinoLSP (G)with100%branchingfraction. Finally,we exclude charginos with mass below 130 GeVfor the casewherethebranchingfractionsoftheχ0

1 →HG andχ10→ZG decaysare50%each.

Acknowledgements

WecongratulateourcolleaguesintheCERNaccelerator depart-ments for the excellent performance of the LHC and thank the technicalandadministrativestaffs atCERN andatother CMS in-stitutes for their contributions to the success of the CMS effort. Inaddition,wegratefullyacknowledgethecomputingcentersand personneloftheWorldwideLHCComputingGridfordeliveringso effectivelythecomputinginfrastructure essential toour analyses. Finally, we acknowledge the enduring support for the construc-tionandoperationofthe LHCandtheCMSdetectorprovided by thefollowingfundingagencies:BMWFWandFWF(Austria);FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIEN-CIAS(Colombia);MSESandCSF(Croatia);RPF(Cyprus);SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Fin-land,MEC,andHIP(Finland);CEAandCNRS/IN2P3(France);BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hun-gary);DAEandDST (India);IPM(Iran);SFI(Ireland);INFN (Italy); MSIPandNRF (RepublicofKorea);LAS(Lithuania);MOE andUM (Malaysia); BUAP,CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland);FCT(Portugal);JINR(Dubna);MON,RosAtom,RAS,RFBR andRAEP (Russia);MESTD(Serbia); SEIDI,CPAN,PCTI andFEDER (Spain);SwissFundingAgencies(Switzerland);MST(Taipei); ThEP-Center, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey);NASUandSFFR(Ukraine);STFC (UnitedKingdom);DOE andNSF(USA).

Individuals have received support from the Marie-Curie pro-gramandtheEuropeanResearchCouncilandHorizon2020Grant, contract No. 675440 (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foun-dation;the BelgianFederal Science PolicyOffice; the Fonds pour laFormation àla Recherche dansl’Industrie etdans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth andSports(MEYS) of theCzech Republic; the Council ofScience andIndustrial Research,India;the HOMING PLUSprogramofthe Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science

Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/ 02861,Sonata-bis2012/07/E/ST2/01406;theNationalPriorities Re-search Program by Qatar National Research Fund; the Programa Clarín-COFUND del Principado de Asturias; the Thalis and Aris-teia programs cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chula-longkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Welch Foundation, contract C-1845;andthe WestonHavens Foundation (USA).

References

[1] ATLASCollaboration,Observationofanewparticleinthesearchforthe Stan-dardModelHiggsbosonwiththeATLASdetectorattheLHC,Phys.Lett.B716 (2012)1,https://doi.org/10.1016/j.physletb.2012.08.020,arXiv:1207.7214. [2] CMSCollaboration,Observationofanewbosonatamassof125GeVwith

theCMSexperimentattheLHC,Phys.Lett.B716(2012)30,https://doi.org/10. 1016/j.physletb.2012.08.021,arXiv:1207.7235.

[3] CMSCollaboration, Observation of anew boson with mass near125 GeV inpp collisionsat √s=7 and 8TeV, J.High EnergyPhys. 06(2013) 081, https://doi.org/10.1007/JHEP06(2013)081,arXiv:1303.4571.

[4] M.Monaco,M.Pierini,A.Romanino,M.Spinrath,Phenomenologyofminimal unifiedtreelevelgaugemediationattheLHC,J.HighEnergyPhys.07(2013) 078,https://doi.org/10.1007/JHEP07(2013)078,arXiv:1302.1305.

[5]J. Duarte, C. Peña, A. Wang, M. Pierini, M. Spiropulu, Squark-mediated Higgs+jetsproductionattheLHC,arXiv:1703.06544,2017.

[6] S.Dimopoulos,H.Georgi,SoftlybrokensupersymmetryandSU(5),Nucl.Phys. B193(1981)150,https://doi.org/10.1016/0550-3213(81)90522-8.

[7] S.Dimopoulos,M.Dine,S.Raby,S.D.Thomas,Experimentalsignaturesof low-energy gaugemediatedsupersymmetrybreaking,Phys. Rev.Lett.76 (1996) 3494,https://doi.org/10.1103/PhysRevLett.76.3494,arXiv:hep-ph/9601367. [8] K.T.Matchev, S.D.Thomas,Higgsand Z bosonsignaturesofsupersymmetry,

Phys. Rev. D62 (2000)077702, https://doi.org/10.1103/PhysRevD.62.077702, arXiv:hep-ph/9908482.

[9] LHCNewPhysicsWorkingGroup,D.Alves,etal.,SimplifiedmodelsforLHC new physicssearches,J. Phys. G39(2012) 105005, https://doi.org/10.1088/ 0954-3899/39/10/105005,arXiv:1105.2838.

[10] ATLASCollaboration,Searchfordirectpairproductionofacharginoanda neu-tralinodecayingtothe125GeVHiggsbosonin√s=8 TeV pp collisionswith theATLASdetector,Eur.Phys.J.C75(2015)208,https://doi.org/10.1140/epjc/ s10052-015-3408-7,arXiv:1501.07110.

[11] CMSCollaboration,Searchesforelectroweakneutralinoandchargino produc-tioninchannelswithHiggs,Z,andWbosonsinppcollisionsat8 TeV,Phys. Rev.D90(2014)092007, https://doi.org/10.1103/PhysRevD.90.092007,arXiv: 1409.3168.

[12] CMSCollaboration,SearchforSUSYwithHiggsintheDiphotonFinalState Us-ingtheRazorVariables,TechnicalReportCMS-PAS-SUS-14-017,CERN,Geneva, 2015,https://cds.cern.ch/record/2047472.

[13] CMSCollaboration,CMSLuminosityMeasurementforthe2016DataTaking Pe-riod,CMSPhysicsAnalysisSummaryCMS-PAS-LUM-17-001,CERN,2017,http:// cdsweb.cern.ch/record/2257069.

[14] CMSCollaboration,Inclusivesearchforsupersymmetryusingthe razor vari-ables inpp collisions at √s=7 TeV, Phys. Rev.Lett. 111(2013) 081802, https://doi.org/10.1103/PhysRevLett.111.081802,arXiv:1212.6961.

[15] CMSCollaboration,Searchforsupersymmetrywithrazorvariablesinpp col-lisionsat√s=7 TeV,Phys.Rev.D90(2014)112001,https://doi.org/10.1103/ PhysRevD.90.112001,arXiv:1405.3961.

[16] CMSCollaboration,TheCMSexperimentattheCERNLHC,J.Instrum.3(2008) S08004,https://doi.org/10.1088/1748-0221/3/08/S08004.

[17] CMS Collaboration, Measurements ofProperties ofthe Higgs Bosoninthe DiphotonDecayChannelwiththeFull2016DataSet,TechnicalReport CMS-PAS-HIG-16-040,CERN,Geneva,2017,https://cds.cern.ch/record/2264515. [18] CMS Collaboration, Particle-flow reconstruction and global event

descrip-tionwith theCMSdetector,J.Instrum.12 (2017)P10003,http://dx.doi.org/ 10.1088/1748-0221/12/10/P10003,arXiv:1706.04965.

[19] CMS Collaboration,Performance ofphoton reconstructionand identification withtheCMSdetectorinproton–protoncollisionsat√s=8 TeV,J.Instrum. 10 (2015) P08010, https://doi.org/10.1088/1748-0221/10/08/P08010, arXiv: 1502.02702.

[20] CMS Collaboration,Electron and Photon PerformanceinCMSwith the Full 2016 DataSample,CMSDetectorPerformance SummaryCMS-DP-2017-004, CERN,2017,https://cds.cern.ch/record/2255497.

(9)

[21] M.Cacciari,G.P.Salam,G.Soyez,Theanti-ktjetclusteringalgorithm,J.High

Energy Phys. 04 (2008)063, https://doi.org/10.1088/1126-6708/2008/04/063, arXiv:0802.1189.

[22] M.Cacciari,G.P.Salam,G.Soyez,FastJetusermanual,Eur.Phys.J.C72(2012) 1896,https://doi.org/10.1140/epjc/s10052-012-1896-2,arXiv:1111.6097. [23] CMSCollaboration,JetenergyscaleandresolutionintheCMSexperimentin

ppcollisionsat8 TeV, J.Instrum.12(2017)P02014,https://doi.org/10.1088/ 1748-0221/12/02/P02014,arXiv:1607.03663.

[24] IdentificationofbQuarkJetsattheCMSExperimentintheLHCRun2,CMS PhysicsAnalysisSummaryCMS-PAS-BTV-15-001,CERN,2016,http://cds.cern. ch/record/1751454.

[25] CMS Collaboration,Missing transverseenergy performance ofthe CMS de-tector, J. Instrum. 6 (2011) P09001, https://doi.org/10.1088/1748-0221/6/09/ P09001,arXiv:1106.5048.

[26] CMSCollaboration,Searchfornewphysicsinthemultijetandmissing trans-versemomentumfinalstateinproton–protoncollisionsat√s=7 TeV,Phys. Rev.Lett.109(2012)171803,https://doi.org/10.1103/PhysRevLett.109.171803, arXiv:1207.1898.

[27] CMSCollaboration,PerformanceoftheCMSmissingtransversemomentum re-constructioninppdataat√s=8 TeV,J.Instrum.10(2015)P02006,https:// doi.org/10.1088/1748-0221/10/02/P02006,arXiv:1411.0511.

[28] J.Alwall,R.Frederix,S.Frixione,V.Hirschi,F.Maltoni,O.Mattelaer,H.-S.Shao, T.Stelzer,P.Torielli,M.Zaro,Theautomated computationoftree-leveland next-to-leading orderdifferentialcross sections,and theirmatching to par-tonshowersimulations,J.HighEnergyPhys.07(2014)079,https://doi.org/10. 1007/JHEP07(2014)079,arXiv:1405.0301.

[29] G.Aad,et al.,ATLAS andCMS,Combinedmeasurementofthe Higgsboson massinpp collisionsat√s=7 and8TeVwiththeATLASandCMS experi-ments,Phys.Rev.Lett.114(2015)191803,https://doi.org/10.1103/PhysRevLett. 114.191803,arXiv:1503.07589.

[30] R.Frederix, S. Frixione, Mergingmeets matching in MC@NLO, J. High En-ergyPhys.12(2012)061,https://doi.org/10.1007/JHEP12(2012)061,arXiv:1209. 6215.

[31] J.Alwall,S.Höche,F.Krauss,N.Lavesson,L.Lönnblad,F.Maltoni,M.L.Mangano, M.Moretti,C.G.Papadopoulos,F.Piccinini,S.Schumann,M.Treccani,J.Winter, M.Worek,Comparativestudyofvariousalgorithmsforthemergingofparton showersandmatrixelementsinhadroniccollisions,Eur.Phys.J.C53(2008) 473,https://doi.org/10.1140/epjc/s10052-007-0490-5,arXiv:0706.2569. [32] T.Sjöstrand,S.Mrenna,P.Skands,AbriefintroductiontoPYTHIA8.1,Comput.

Phys.Commun.178(2008)852,https://doi.org/10.1016/j.cpc.2008.01.036. [33] P.Skands,S.Carrazza,J.Rojo,TuningPYTHIA8.1:theMonash2013tune,Eur.

Phys.J.C74(2014)3024,https://doi.org/10.1140/epjc/s10052-014-3024-y. [34] R.D.Ball,etal., NNPDF,Partondistributionsfor theLHCRun II,J.High

En-ergyPhys.04(2015)040,https://doi.org/10.1007/JHEP04(2015)040,arXiv:1410. 8849.

[35] S.Agostinelli, et al., GEANT4, GEANT4—a simulation toolkit,Nucl. Instrum. MethodsA506(2003)250,https://doi.org/10.1016/S0168-9002(03)01368-8. [36] S.Abdullin,P.Azzi,F.Beaudette,P.Janot,A.Perrotta,Thefastsimulationofthe

CMSdetectoratLHC,J.Phys.Conf.Ser.331(2011)032049,https://doi.org/10. 1088/1742-6596/331/3/032049.

[37] D.deFlorian,et al.,HandbookofLHCHiggsCrossSections:4. Deciphering theNatureoftheHiggsSector,CERNReportCERN-2017-002-M,2016,https:// doi.org/10.23731/CYRM-2017-002,arXiv:1610.07922.

[38] W.Beenakker,R.Höpker,M.Spira,P.M.Zerwas,Squarkand gluino produc-tionathadroncolliders,Nucl.Phys.B492(1997)51,https://doi.org/10.1016/ S0550-3213(97)80027-2,arXiv:hep-ph/9610490.

[39] A. Kulesza, L. Motyka, Threshold resummation for squark–antisquark and gluino-pairproductionattheLHC,Phys.Rev.Lett.102(2009)111802,https:// doi.org/10.1103/PhysRevLett.102.111802,arXiv:0807.2405.

[40] A.Kulesza,L.Motyka,Softgluonresummationfortheproductionofgluino– gluinoandsquark–antisquarkpairsattheLHC,Phys.Rev.D80(2009)095004, https://doi.org/10.1103/PhysRevD.80.095004,arXiv:0905.4749.

[41] W.Beenakker,S.Brensing,M.Krämer,A.Kulesza,E.Laenen,I.Niessen, Soft-gluonresummation for squark and gluino hadroproduction, J. High Energy Phys. 12 (2009) 041, https://doi.org/10.1088/1126-6708/2009/12/041, arXiv: 0909.4418.

[42] W. Beenakker,S. Brensing, M.Krämer, A.Kulesza, E.Laenen,L. Motyka, I. Niessen,Squark andgluinohadroproduction,Int.J.Mod. Phys.A 26(2011) 2637,https://doi.org/10.1142/S0217751X11053560,arXiv:1105.1110. [43] C. Borschensky, M. Krämer,A. Kulesza,M. Mangano, S.Padhi, T. Plehn,X.

Portell,Squarkandgluinoproductioncrosssectionsinpp collisionsat√s=

13,14,33and100 TeV,Eur.Phys.J.C74(2014)3174,https://doi.org/10.1140/ epjc/s10052-014-3174-y,arXiv:1407.5066.

[44] CMSCollaboration,ObservationofthediphotondecayoftheHiggsbosonand measurementofitsproperties,Eur.Phys.J.C74(2014)3076,https://doi.org/ 10.1140/epjc/s10052-014-3076-z,arXiv:1407.0558.

[45] H.Akaike,Anewlookatthestatisticalmodelidentification,IEEETrans.Autom. Control19 (6)(1974)716,https://doi.org/10.1109/TAC.1974.1100705. [46] M.J.Oreglia,AStudyoftheReactionsψ→γ γψ,Ph.D.Thesis,Stanford

Uni-versity, 1980, http://www.slac.stanford.edu/pubs/slacreports/slac-r-236.html, SLACReportSLAC-R-236,seeAppendixD.

[47] J.Gaiser,CharmoniumSpectroscopyfromRadiativeDecaysofthe J/ψandψ, Ph.D.Thesis,SLAC,1982,http://www-public.slac.stanford.edu/sciDoc/docMeta. aspx?slacPubNumber=slac-r-255.html.

[48] W.Beenakker,M.Klasen,M.Krämer,T.Plehn,M.Spira,P.M.Zerwas, Produc-tionofcharginos,neutralinos,andsleptonsathadroncolliders,Phys.Rev.Lett. 83 (1999) 3780, https://doi.org/10.1103/PhysRevLett.83.3780, arXiv:hep-ph/ 9906298,Erratum:Phys.Rev.Lett.100(2008)029901,https://doi.org/10.1103/ PhysRevLett.100.029901.

[49] B.Fuks,M.Klasen,D.R.Lamprea,M.Rothering,Gauginoproductioninproton– protoncollisionsatacenter-of-massenergyof8TeV,J.HighEnergyPhys.10 (2012)081,https://doi.org/10.1007/JHEP10(2012)081,arXiv:1207.2159. [50] B.Fuks,M.Klasen,D.R.Lamprea,M.Rothering,Precisionpredictionsfor

elec-troweaksuperpartner production at hadron colliders with Resummino,Eur. Phys. J. C 73 (2013) 2480, https://doi.org/10.1140/epjc/s10052-013-2480-0, arXiv:1304.0790.

[51] P.Z.Skands,etal.,SUSYLesHouchesaccord:interfacingSUSYspectrum calcu-lators,decaypackages,andeventgenerators,J.HighEnergyPhys.07(2004) 036,https://doi.org/10.1088/1126-6708/2004/07/036,arXiv:Hep-Ph/0311123. [52]A.L.Read,Presentationofsearchresults:theC Ls technique,in:DurhamIPPP

Workshop:AdvancedStatisticalTechniquesinParticlePhysics,Durham, UK, 2002,p. 2693,J.Phys.G28(2002)2693.

[53] T.Junk,Confidencelevelcomputationforcombiningsearcheswithsmall statis-tics,Nucl.Instrum.MethodsA434(1999)435, https://doi.org/10.1016/S0168-9002(99)00498-2,arXiv:hep-ex/9902006.

[54] ATLAS and CMSCollaborations, Procedure for the LHC HiggsBosonSearch CombinationinSummer2011,TechnicalReportATL-PHYS-PUB-2011-011, CMS-NOTE-2011-005,CERN,2011,http://cds.cern.ch/record/1379837.

[55] G.Cowan,K.Cranmer,E.Gross,O.Vitells,Asymptoticformulaefor likelihood-basedtestsofnewphysics,Eur.Phys.J.C71(2011)1554,https://doi.org/10. 1140/epjc/s10052-011-1554-0,arXiv:1007.1727.

TheCMSCollaboration

A.M. Sirunyan,A. Tumasyan

YerevanPhysicsInstitute,Yerevan,Armenia

W. Adam, F. Ambrogi, E. Asilar,T. Bergauer, J. Brandstetter, E. Brondolin,M. Dragicevic, J. Erö,M. Flechl,

M. Friedl,R. Frühwirth1,V.M. Ghete, J. Grossmann, J. Hrubec, M. Jeitler1, A. König, N. Krammer,

I. Krätschmer,D. Liko, T. Madlener,I. Mikulec, E. Pree, D. Rabady, N. Rad, H. Rohringer, J. Schieck1,

R. Schöfbeck, M. Spanring, D. Spitzbart,J. Strauss, W. Waltenberger,J. Wittmann, C.-E. Wulz1, M. Zarucki

InstitutfürHochenergiephysik,Wien,Austria

V. Chekhovsky, V. Mossolov,J. Suarez Gonzalez

(10)

E.A. De Wolf,D. Di Croce, X. Janssen,J. Lauwers, M. Van De Klundert, H. Van Haevermaet,

P. Van Mechelen,N. Van Remortel

UniversiteitAntwerpen,Antwerpen,Belgium

S. Abu Zeid,F. Blekman, J. D’Hondt, I. De Bruyn, J. De Clercq, K. Deroover, G. Flouris, D. Lontkovskyi,

S. Lowette,S. Moortgat, L. Moreels,A. Olbrechts, Q. Python, K. Skovpen, S. Tavernier,W. Van Doninck,

P. Van Mulders,I. Van Parijs

VrijeUniversiteitBrussel,Brussel,Belgium

H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella,L. Favart, R. Goldouzian, A. Grebenyuk,

G. Karapostoli,T. Lenzi,J. Luetic, T. Maerschalk, A. Marinov, A. Randle-conde,T. Seva, C. Vander Velde,

P. Vanlaer,D. Vannerom, R. Yonamine,F. Zenoni, F. Zhang2

UniversitéLibredeBruxelles,Bruxelles,Belgium

A. Cimmino,T. Cornelis, D. Dobur,A. Fagot, M. Gul, I. Khvastunov,D. Poyraz, C. Roskas, S. Salva,

M. Tytgat,W. Verbeke, N. Zaganidis

GhentUniversity,Ghent,Belgium

H. Bakhshiansohi,O. Bondu, S. Brochet,G. Bruno, A. Caudron, S. De Visscher, C. Delaere, M. Delcourt,

B. Francois,A. Giammanco, A. Jafari,M. Komm, G. Krintiras, V. Lemaitre,A. Magitteri, A. Mertens,

M. Musich, K. Piotrzkowski,L. Quertenmont,M. Vidal Marono, S. Wertz

UniversitéCatholiquedeLouvain,Louvain-la-Neuve,Belgium N. Beliy

UniversitédeMons,Mons,Belgium

W.L. Aldá Júnior, F.L. Alves,G.A. Alves,L. Brito, M. Correa Martins Junior,C. Hensel, A. Moraes,M.E. Pol,

P. Rebello Teles

CentroBrasileirodePesquisasFisicas,RiodeJaneiro,Brazil

E. Belchior Batista Das Chagas, W. Carvalho,J. Chinellato3, A. Custódio, E.M. Da Costa, G.G. Da Silveira4,

D. De Jesus Damiao,S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, M. Melo De Almeida,

C. Mora Herrera,L. Mundim,H. Nogima, A. Santoro, A. Sznajder,E.J. Tonelli Manganote3,

F. Torres Da Silva De Araujo,A. Vilela Pereira

UniversidadedoEstadodoRiodeJaneiro,RiodeJaneiro,Brazil

S. Ahujaa,C.A. Bernardesa, T.R. Fernandez Perez Tomeia,E.M. Gregoresb,P.G. Mercadanteb,

S.F. Novaesa, Sandra S. Padulaa,D. Romero Abadb,J.C. Ruiz Vargasa

aUniversidadeEstadualPaulista,SãoPaulo,Brazil bUniversidadeFederaldoABC,SãoPaulo,Brazil

A. Aleksandrov, R. Hadjiiska,P. Iaydjiev, M. Misheva, M. Rodozov,M. Shopova, S. Stoykova, G. Sultanov

InstituteforNuclearResearchandNuclearEnergyofBulgariaAcademyofSciences,Bulgaria

A. Dimitrov,I. Glushkov, L. Litov, B. Pavlov,P. Petkov

UniversityofSofia,Sofia,Bulgaria

W. Fang5, X. Gao5

(11)

M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen,M. Chen, Y. Chen, C.H. Jiang, D. Leggat, H. Liao,Z. Liu,

F. Romeo,S.M. Shaheen, A. Spiezia, J. Tao, C. Wang,Z. Wang, E. Yazgan, H. Zhang, J. Zhao

InstituteofHighEnergyPhysics,Beijing,China

Y. Ban, G. Chen, Q. Li, S. Liu,Y. Mao, S.J. Qian, D. Wang,Z. Xu

StateKeyLaboratoryofNuclearPhysicsandTechnology,PekingUniversity,Beijing,China

C. Avila,A. Cabrera, L.F. Chaparro Sierra, C. Florez, C.F. González Hernández,J.D. Ruiz Alvarez

UniversidaddeLosAndes,Bogota,Colombia

B. Courbon, N. Godinovic, D. Lelas,I. Puljak, P.M. Ribeiro Cipriano, T. Sculac

UniversityofSplit,FacultyofElectricalEngineering,MechanicalEngineeringandNavalArchitecture,Split,Croatia

Z. Antunovic, M. Kovac

UniversityofSplit,FacultyofScience,Split,Croatia

V. Brigljevic,D. Ferencek, K. Kadija,B. Mesic, A. Starodumov6, T. Susa

InstituteRudjerBoskovic,Zagreb,Croatia

M.W. Ather,A. Attikis, G. Mavromanolakis, J. Mousa,C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski

UniversityofCyprus,Nicosia,Cyprus

M. Finger7, M. Finger Jr.7

CharlesUniversity,Prague,CzechRepublic E. Carrera Jarrin

UniversidadSanFranciscodeQuito,Quito,Ecuador

A.A. Abdelalim8,9, Y. Mohammed10, E. Salama11,12

AcademyofScientificResearchandTechnologyoftheArabRepublicofEgypt,EgyptianNetworkofHighEnergyPhysics,Cairo,Egypt

R.K. Dewanjee, M. Kadastik, L. Perrini, M. Raidal, A. Tiko, C. Veelken

NationalInstituteofChemicalPhysicsandBiophysics,Tallinn,Estonia

P. Eerola, J. Pekkanen,M. Voutilainen

DepartmentofPhysics,UniversityofHelsinki,Helsinki,Finland

J. Härkönen,T. Järvinen, V. Karimäki, R. Kinnunen, T. Lampén,K. Lassila-Perini, S. Lehti, T. Lindén,

P. Luukka, E. Tuominen, J. Tuominiemi,E. Tuovinen

HelsinkiInstituteofPhysics,Helsinki,Finland

J. Talvitie, T. Tuuva

LappeenrantaUniversityofTechnology,Lappeenranta,Finland

M. Besancon, F. Couderc,M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud,

P. Gras, G. Hamel de Monchenault, P. Jarry,I. Kucher, E. Locci, M. Machet, J. Malcles,G. Negro, J. Rander,

A. Rosowsky, M.Ö. Sahin,M. Titov

IRFU,CEA,UniversitéParis-Saclay,Gif-sur-Yvette,France

A. Abdulsalam, I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, C. Charlot,

(12)

G. Ortona,P. Paganini, P. Pigard,S. Regnard, R. Salerno, J.B. Sauvan, Y. Sirois, A.G. Stahl Leiton, T. Strebler,

Y. Yilmaz,A. Zabi, A. Zghiche

LaboratoireLeprince-Ringuet,Ecolepolytechnique,CNRS/IN2P3,UniversitéParis-Saclay,Palaiseau,France

J.-L. Agram13,J. Andrea, D. Bloch,J.-M. Brom, M. Buttignol,E.C. Chabert, N. Chanon, C. Collard,

E. Conte13,X. Coubez, J.-C. Fontaine13, D. Gelé, U. Goerlach,M. Jansová, A.-C. Le Bihan, N. Tonon,

P. Van Hove

UniversitédeStrasbourg,CNRS,IPHCUMR7178,F-67000Strasbourg,France S. Gadrat

CentredeCalculdel’InstitutNationaldePhysiqueNucleaireetdePhysiquedesParticules,CNRS/IN2P3,Villeurbanne,France

S. Beauceron,C. Bernet, G. Boudoul,R. Chierici, D. Contardo, P. Depasse,H. El Mamouni, J. Fay, L. Finco,

S. Gascon,M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh, M. Lethuillier,L. Mirabito,

A.L. Pequegnot, S. Perries,A. Popov14,V. Sordini, M. Vander Donckt, S. Viret

UniversitédeLyon,UniversitéClaudeBernardLyon1,CNRS-IN2P3,InstitutdePhysiqueNucléairedeLyon,Villeurbanne,France

A. Khvedelidze7

GeorgianTechnicalUniversity,Tbilisi,Georgia

Z. Tsamalaidze7

TbilisiStateUniversity,Tbilisi,Georgia

C. Autermann,S. Beranek, L. Feld, M.K. Kiesel, K. Klein, M. Lipinski, M. Preuten,C. Schomakers, J. Schulz,

T. Verlage

RWTHAachenUniversity,I.PhysikalischesInstitut,Aachen,Germany

A. Albert, E. Dietz-Laursonn,D. Duchardt, M. Endres, M. Erdmann,S. Erdweg, T. Esch, R. Fischer, A. Güth,

M. Hamer,T. Hebbeker,C. Heidemann, K. Hoepfner, S. Knutzen,M. Merschmeyer, A. Meyer,P. Millet,

S. Mukherjee,M. Olschewski, K. Padeken,T. Pook, M. Radziej, H. Reithler,M. Rieger, F. Scheuch,

D. Teyssier,S. Thüer

RWTHAachenUniversity,III.PhysikalischesInstitutA,Aachen,Germany

G. Flügge,B. Kargoll, T. Kress,A. Künsken, J. Lingemann, T. Müller, A. Nehrkorn, A. Nowack,C. Pistone,

O. Pooth,A. Stahl15

RWTHAachenUniversity,III.PhysikalischesInstitutB,Aachen,Germany

M. Aldaya Martin,T. Arndt, C. Asawatangtrakuldee, K. Beernaert,O. Behnke, U. Behrens,

A. Bermúdez Martínez, A.A. Bin Anuar, K. Borras16,V. Botta, A. Campbell,P. Connor,

C. Contreras-Campana, F. Costanza, C. Diez Pardos,G. Eckerlin, D. Eckstein, T. Eichhorn, E. Eren,

E. Gallo17, J. Garay Garcia, A. Geiser, A. Gizhko, J.M. Grados Luyando, A. Grohsjean, P. Gunnellini,

A. Harb,J. Hauk, M. Hempel18, H. Jung,A. Kalogeropoulos, M. Kasemann,J. Keaveney, C. Kleinwort,

I. Korol,D. Krücker, W. Lange, A. Lelek,T. Lenz, J. Leonard, K. Lipka,W. Lohmann18, R. Mankel,

I.-A. Melzer-Pellmann,A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, E. Ntomari, D. Pitzl,R. Placakyte,

A. Raspereza,B. Roland, M. Savitskyi,P. Saxena, R. Shevchenko,S. Spannagel, N. Stefaniuk,

G.P. Van Onsem,R. Walsh, Y. Wen,K. Wichmann, C. Wissing, O. Zenaiev

DeutschesElektronen-Synchrotron,Hamburg,Germany

S. Bein,V. Blobel, M. Centis Vignali, T. Dreyer, E. Garutti, D. Gonzalez, J. Haller, A. Hinzmann,

M. Hoffmann,A. Karavdina, R. Klanner, R. Kogler,N. Kovalchuk, S. Kurz, T. Lapsien, I. Marchesini,

(13)

P. Schleper, A. Schmidt, S. Schumann,J. Schwandt, J. Sonneveld,H. Stadie,G. Steinbrück, F.M. Stober,

M. Stöver, H. Tholen, D. Troendle,E. Usai, L. Vanelderen,A. Vanhoefer, B. Vormwald

UniversityofHamburg,Hamburg,Germany

M. Akbiyik, C. Barth,S. Baur, E. Butz, R. Caspart, T. Chwalek, F. Colombo, W. De Boer,A. Dierlamm,

B. Freund, R. Friese,M. Giffels, A. Gilbert, D. Haitz,F. Hartmann15,S.M. Heindl, U. Husemann, F. Kassel15,

S. Kudella, H. Mildner, M.U. Mozer,Th. Müller, M. Plagge, G. Quast, K. Rabbertz, M. Schröder,I. Shvetsov,

G. Sieber, H.J. Simonis,R. Ulrich, S. Wayand, M. Weber, T. Weiler, S. Williamson,C. Wöhrmann, R. Wolf

InstitutfürExperimentelleKernphysik,Karlsruhe,Germany

G. Anagnostou, G. Daskalakis,T. Geralis,V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, I. Topsis-Giotis

InstituteofNuclearandParticlePhysics(INPP),NCSRDemokritos,AghiaParaskevi,Greece

S. Kesisoglou, A. Panagiotou, N. Saoulidou

NationalandKapodistrianUniversityofAthens,Athens,Greece

I. Evangelou, C. Foudas,P. Kokkas, S. Mallios, N. Manthos, I. Papadopoulos,E. Paradas, J. Strologas,

F.A. Triantis

UniversityofIoánnina,Ioánnina,Greece

M. Csanad, N. Filipovic,G. Pasztor

MTA-ELTELendületCMSParticleandNuclearPhysicsGroup,EötvösLorándUniversity,Budapest,Hungary

G. Bencze,C. Hajdu, D. Horvath19,Á. Hunyadi, F. Sikler,V. Veszpremi, G. Vesztergombi20,A.J. Zsigmond

WignerResearchCentreforPhysics,Budapest,Hungary

N. Beni, S. Czellar, J. Karancsi21,A. Makovec, J. Molnar,Z. Szillasi

InstituteofNuclearResearchATOMKI,Debrecen,Hungary

M. Bartók20,P. Raics, Z.L. Trocsanyi, B. Ujvari

InstituteofPhysics,UniversityofDebrecen,Debrecen,Hungary

S. Choudhury, J.R. Komaragiri

IndianInstituteofScience(IISc),Bangalore,India

S. Bahinipati22, S. Bhowmik, P. Mal, K. Mandal, A. Nayak23, D.K. Sahoo22, N. Sahoo, S.K. Swain

NationalInstituteofScienceEducationandResearch,Bhubaneswar,India

S. Bansal, S.B. Beri,V. Bhatnagar, U. Bhawandeep, R. Chawla, N. Dhingra, A.K. Kalsi, A. Kaur, M. Kaur,

R. Kumar,P. Kumari, A. Mehta, J.B. Singh, G. Walia

PanjabUniversity,Chandigarh,India

Ashok Kumar, Aashaq Shah, A. Bhardwaj,S. Chauhan,B.C. Choudhary, R.B. Garg, S. Keshri,A. Kumar,

S. Malhotra, M. Naimuddin,K. Ranjan, R. Sharma, V. Sharma

UniversityofDelhi,Delhi,India

R. Bhardwaj,R. Bhattacharya,S. Bhattacharya, S. Dey,S. Dutt, S. Dutta, S. Ghosh,N. Majumdar, A. Modak,

K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit,A. Roy, D. Roy, S. Roy Chowdhury, S. Sarkar,

M. Sharan, S. Thakur

(14)

P.K. Behera

IndianInstituteofTechnologyMadras,Madras,India

R. Chudasama,D. Dutta, V. Jha, V. Kumar, A.K. Mohanty15, P.K. Netrakanti,L.M. Pant, P. Shukla,A. Topkar

BhabhaAtomicResearchCentre,Mumbai,India

T. Aziz,S. Dugad, B. Mahakud, S. Mitra, G.B. Mohanty, N. Sur, B. Sutar

TataInstituteofFundamentalResearch-A,Mumbai,India

S. Banerjee, S. Bhattacharya, S. Chatterjee,P. Das, M. Guchait,Sa. Jain, S. Kumar, M. Maity24,

G. Majumder,K. Mazumdar, T. Sarkar24, N. Wickramage25

TataInstituteofFundamentalResearch-B,Mumbai,India

S. Chauhan,S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma

IndianInstituteofScienceEducationandResearch(IISER),Pune,India

S. Chenarani26, E. Eskandari Tadavani,S.M. Etesami26, M. Khakzad, M. Mohammadi Najafabadi,

M. Naseri, S. Paktinat Mehdiabadi27,F. Rezaei Hosseinabadi, B. Safarzadeh28,M. Zeinali

InstituteforResearchinFundamentalSciences(IPM),Tehran,Iran

M. Felcini,M. Grunewald

UniversityCollegeDublin,Dublin,Ireland

M. Abbresciaa,b, C. Calabriaa,b, C. Caputoa,b, A. Colaleoa,D. Creanzaa,c, L. Cristellaa,b,N. De Filippisa,c,

M. De Palmaa,b, F. Erricoa,b,L. Fiorea,G. Iasellia,c,S. Lezkia,b, G. Maggia,c, M. Maggia,G. Minielloa,b,

S. Mya,b, S. Nuzzoa,b, A. Pompilia,b,G. Pugliesea,c,R. Radognaa,b,A. Ranieria,G. Selvaggia,b,

A. Sharmaa, L. Silvestrisa,15,R. Vendittia,P. Verwilligena

aINFNSezionediBari,Bari,Italy bUniversitàdiBari,Bari,Italy cPolitecnicodiBari,Bari,Italy

G. Abbiendia,C. Battilanaa,b,D. Bonacorsia,b, S. Braibant-Giacomellia,b, R. Campaninia,b,P. Capiluppia,b,

A. Castroa,b,F.R. Cavalloa,S.S. Chhibraa, G. Codispotia,b, M. Cuffiania,b,G.M. Dallavallea, F. Fabbria,

A. Fanfania,b, D. Fasanellaa,b, P. Giacomellia,C. Grandia, L. Guiduccia,b,S. Marcellinia,G. Masettia,

A. Montanaria, F.L. Navarriaa,b,A. Perrottaa, A.M. Rossia,b,T. Rovellia,b, G.P. Sirolia,b,N. Tosia

aINFNSezionediBologna,Bologna,Italy bUniversitàdiBologna,Bologna,Italy

S. Albergoa,b, S. Costaa,b, A. Di Mattiaa,F. Giordanoa,b, R. Potenzaa,b,A. Tricomia,b, C. Tuvea,b

aINFNSezionediCatania,Catania,Italy bUniversitàdiCatania,Catania,Italy

G. Barbaglia,K. Chatterjeea,b,V. Ciullia,b,C. Civininia,R. D’Alessandroa,b, E. Focardia,b, P. Lenzia,b,

M. Meschinia, S. Paolettia,L. Russoa,29,G. Sguazzonia,D. Stroma,L. Viliania,b,15

aINFNSezionediFirenze,Firenze,Italy bUniversitàdiFirenze,Firenze,Italy

L. Benussi,S. Bianco, F. Fabbri, D. Piccolo,F. Primavera15

INFNLaboratoriNazionalidiFrascati,Frascati,Italy

V. Calvellia,b, F. Ferroa, E. Robuttia,S. Tosia,b

aINFNSezionediGenova,Genova,Italy bUniversitàdiGenova,Genova,Italy

(15)

L. Brianzaa,b, F. Brivioa,b, V. Cirioloa,b, M.E. Dinardoa,b,S. Fiorendia,b, S. Gennaia, A. Ghezzia,b,

P. Govonia,b,M. Malbertia,b, S. Malvezzia, R.A. Manzonia,b,D. Menascea,L. Moronia,M. Paganonia,b,

K. Pauwelsa,b,D. Pedrinia, S. Pigazzinia,b,30, S. Ragazzia,b, T. Tabarelli de Fatisa,b

aINFNSezionediMilano-Bicocca,Milano,Italy bUniversitàdiMilano-Bicocca,Milano,Italy

S. Buontempoa, N. Cavalloa,c, S. Di Guidaa,d,15, F. Fabozzia,c,F. Fiengaa,b, A.O.M. Iorioa,b, W.A. Khana,

L. Listaa,S. Meolaa,d,15,P. Paoluccia,15,C. Sciaccaa,b,F. Thyssena

aINFNSezionediNapoli,Napoli,Italy bUniversitàdiNapoli‘FedericoII’,Napoli,Italy cUniversitàdellaBasilicata,Potenza,Italy dUniversitàG.Marconi,Roma,Italy

P. Azzia,15, N. Bacchettaa, L. Benatoa,b,A. Bolettia,b,A. Carvalho Antunes De Oliveiraa,b,P. Checchiaa,

M. Dall’Ossoa,b,P. De Castro Manzanoa, T. Dorigoa,U. Dossellia,F. Gasparinia,b,U. Gasparinia,b,

A. Gozzelinoa, S. Lacapraraa,P. Lujan,M. Margonia,b,A.T. Meneguzzoa,b,N. Pozzobona,b,P. Ronchesea,b,

R. Rossina,b, F. Simonettoa,b,E. Torassaa, S. Venturaa,M. Zanettia,b, P. Zottoa,b, G. Zumerlea,b

aINFNSezionediPadova,Padova,Italy bUniversitàdiPadova,Padova,Italy cUniversitàdiTrento,Trento,Italy

A. Braghieria,F. Fallavollitaa,b, A. Magnania,b, P. Montagnaa,b,S.P. Rattia,b, V. Rea, M. Ressegotti,

C. Riccardia,b,P. Salvinia,I. Vaia,b, P. Vituloa,b

aINFNSezionediPavia,Pavia,Italy bUniversitàdiPavia,Pavia,Italy

L. Alunni Solestizia,b,M. Biasinia,b, G.M. Bileia,C. Cecchia,b, D. Ciangottinia,b,L. Fanòa,b, P. Laricciaa,b,

R. Leonardia,b,E. Manonia,G. Mantovania,b,V. Mariania,b, M. Menichellia, A. Rossia,b,A. Santocchiaa,b,

D. Spigaa

aINFNSezionediPerugia,Perugia,Italy bUniversitàdiPerugia,Perugia,Italy

K. Androsova,P. Azzurria,15,G. Bagliesia,J. Bernardinia,T. Boccalia,L. Borrello, R. Castaldia,

M.A. Cioccia,b, R. Dell’Orsoa,G. Fedia, L. Gianninia,c, A. Giassia, M.T. Grippoa,29,F. Ligabuea,c,

T. Lomtadzea, E. Mancaa,c,G. Mandorlia,c,L. Martinia,b, A. Messineoa,b, F. Pallaa,A. Rizzia,b,

A. Savoy-Navarroa,31, P. Spagnoloa, R. Tenchinia,G. Tonellia,b, A. Venturia,P.G. Verdinia

aINFNSezionediPisa,Pisa,Italy bUniversitàdiPisa,Pisa,Italy

cScuolaNormaleSuperiorediPisa,Pisa,Italy

L. Baronea,b,F. Cavallaria, M. Cipriania,b,N. Dacia, D. Del Rea,b,15, M. Diemoza,S. Gellia,b, E. Longoa,b,

F. Margarolia,b,B. Marzocchia,b, P. Meridiania,G. Organtinia,b,R. Paramattia,b,F. Preiatoa,b,

S. Rahatloua,b,C. Rovellia,F. Santanastasioa,b

aINFNSezionediRoma,Rome,Italy bSapienzaUniversitàdiRoma,Rome,Italy

N. Amapanea,b, R. Arcidiaconoa,c,S. Argiroa,b,M. Arneodoa,c,N. Bartosika,R. Bellana,b, C. Biinoa,

N. Cartigliaa, F. Cennaa,b,M. Costaa,b, R. Covarellia,b,A. Deganoa,b,N. Demariaa, B. Kiania,b,

C. Mariottia, S. Masellia, E. Migliorea,b,V. Monacoa,b,E. Monteila,b,M. Montenoa, M.M. Obertinoa,b,

L. Pachera,b, N. Pastronea,M. Pelliccionia,G.L. Pinna Angionia,b,F. Raveraa,b, A. Romeroa,b,M. Ruspaa,c,

R. Sacchia,b, K. Shchelinaa,b, V. Solaa, A. Solanoa,b,A. Staianoa, P. Traczyka,b

aINFNSezionediTorino,Torino,Italy bUniversitàdiTorino,Torino,Italy

(16)

S. Belfortea,M. Casarsaa, F. Cossuttia,G. Della Riccaa,b, A. Zanettia

aINFNSezionediTrieste,Trieste,Italy bUniversitàdiTrieste,Trieste,Italy

D.H. Kim,G.N. Kim, M.S. Kim, J. Lee,S. Lee, S.W. Lee, C.S. Moon, Y.D. Oh, S. Sekmen,D.C. Son,Y.C. Yang

KyungpookNationalUniversity,Daegu,RepublicofKorea A. Lee

ChonbukNationalUniversity,Jeonju,RepublicofKorea

H. Kim,D.H. Moon,G. Oh

ChonnamNationalUniversity,InstituteforUniverseandElementaryParticles,Kwangju,RepublicofKorea

J.A. Brochero Cifuentes,J. Goh, T.J. Kim

HanyangUniversity,Seoul,RepublicofKorea

S. Cho,S. Choi, Y. Go,D. Gyun, S. Ha,B. Hong, Y. Jo, Y. Kim, K. Lee,K.S. Lee,S. Lee,J. Lim, S.K. Park, Y. Roh

KoreaUniversity,Seoul,RepublicofKorea

J. Almond,J. Kim, J.S. Kim, H. Lee,K. Lee, K. Nam,S.B. Oh, B.C. Radburn-Smith, S.h. Seo, U.K. Yang,

H.D. Yoo,G.B. Yu

SeoulNationalUniversity,Seoul,RepublicofKorea

M. Choi,H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park, G. Ryu

UniversityofSeoul,Seoul,RepublicofKorea

Y. Choi,C. Hwang, J. Lee,I. Yu

SungkyunkwanUniversity,Suwon,RepublicofKorea

V. Dudenas, A. Juodagalvis,J. Vaitkus

VilniusUniversity,Vilnius,Lithuania

I. Ahmed,Z.A. Ibrahim, M.A.B. Md Ali32,F. Mohamad Idris33,W.A.T. Wan Abdullah, M.N. Yusli,

Z. Zolkapli

NationalCentreforParticlePhysics,UniversitiMalaya,KualaLumpur,Malaysia

H. Castilla-Valdez,E. De La Cruz-Burelo, C. Duran,I. Heredia-De La Cruz34,R. Lopez-Fernandez,

J. Mejia Guisao,R.I. Rabadán Trejo, G. Ramirez Sanchez,R. Reyes-Almanza,A. Sanchez-Hernandez

CentrodeInvestigacionydeEstudiosAvanzadosdelIPN,MexicoCity,Mexico

S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia

UniversidadIberoamericana,MexicoCity,Mexico

I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

BenemeritaUniversidadAutonomadePuebla,Puebla,Mexico A. Morelos Pineda

UniversidadAutónomadeSanLuisPotosí,SanLuisPotosí,Mexico D. Krofcheck

Riferimenti

Documenti correlati

A biochemical char- acterization of this enzyme using pNPR as substrate was performed, which showed that rRHA-P had a moderate tolerance to organic solvents, a significant

The primary objectives of this study are to investigate how the construction of a new large navigable canal through tidal flats affects (i) the groundwater flow and quality of the

In this study, two isolates of Fusarium oxysporum, obtained from lettuce plants grown in the Netherlands, which showed symptoms of wilt, were characterized by combining the study

Relationship of infarct size and severity versus left ventricular ejection fraction and volumes obtained from 99mTc- sestamibi gated single-photon emission computed tomography

Since the rotational drag depends linearly on  , if it was dominating the kinetics of the process, it would have generated a larger rate constant of elongation for the

Analogamente, nell’orizzonte ampio e aperto delle Crete occupa- te da vaste e ininterrotte distese di seminativi, spiccano come elementi strutturanti il paesaggio, sia sul

The promoter region of human SERT gene contains a polymorphism, designated as ‘5-HT transporter length polymor- phic region’ (5HTTLPR), which consists of a 44-base