• Non ci sono risultati.

RHA-P: isolation, expression and characterization of a bacterial alfa-L-rhamnosidase from Novosphingobium sp. PP1Y.

N/A
N/A
Protected

Academic year: 2021

Condividi "RHA-P: isolation, expression and characterization of a bacterial alfa-L-rhamnosidase from Novosphingobium sp. PP1Y."

Copied!
12
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Journal

of

Molecular

Catalysis

B:

Enzymatic

jo u r n al h om ep age :w w w . e l s e v i e r . c o m / l o c a t e / m o l c a t b

RHA-P:

Isolation,

expression

and

characterization

of

a

bacterial

␣-l-rhamnosidase

from

Novosphingobium

sp.

PP1Y

Federica

De

Lise

a,1

,

Francesca

Mensitieri

a,1

,

Vincenzo

Tarallo

b

,

Nicola

Ventimiglia

a

,

Roberto

Vinciguerra

b

,

Annabella

Tramice

c

,

Roberta

Marchetti

b

,

Elio

Pizzo

a

,

Eugenio

Notomista

a

,

Valeria

Cafaro

a

,

Antonio

Molinaro

b

,

Leila

Birolo

b

,

Alberto

Di

Donato

a

,

Viviana

Izzo

d,∗

aDipartimentodiBiologia,UniversitàFedericoIIdiNapoli,ViaCinthiaI,80126Napoli,Italy bDipartimentodiScienzeChimiche,UniversitàFedericoIIdiNapoli,viaCinthiaI,80126Napoli,Italy

cIstitutodiChimicaBiomolecolare,ConsiglioNazionaledelleRicerche,ViaCampiFlegrei34,80072Pozzuoli(NA),Italy

dDipartimentodiMedicina,ChirurgiaeOdontoiatria“ScuolaMedicaSalernitana”,UniversitàdegliStudidiSalerno,viaS.Allende,84081Baronissi(SA), Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received29July2016 Receivedinrevisedform 23September2016 Accepted3October2016 Availableonline3October2016 Keywords: ␣-l-Rhamnosidases Flavonoids Novosphingobiumsp.PP1Y Glycosylhydrolases Biotransformation

a

b

s

t

r

a

c

t

␣-l-Rhamnosidases(␣-RHAs)areagroupofglycosylhydrolasesofbiotechnologicalpotentialin indus-trialprocesses,whichcatalyzethehydrolysisof␣-l-rhamnoseterminalresiduesfromseveralnatural compounds.Anovel␣–RHAactivitywasidentifiedinthecrudeextractofNovosphingobiumsp.PP1Y, amarinebacteriumabletogrowonawiderangeofaromaticpolycycliccompounds.Inthiswork,this ␣-RHAactivitywasisolatedfromthenativemicroorganismandthecorrespondingorfwasidentified inthecompletelysequencedandannotatedgenomeofstrainPP1Y.Thecodinggenewasexpressedin Escherichiacoli,strainBL21(DE3),andtherecombinantprotein,rRHA-P,waspurifiedandcharacterized asaninvertingmonomericglycosidaseofca.120kDabelongingtotheGH106family.Abiochemical char-acterizationofthisenzymeusingpNPRassubstratewasperformed,whichshowedthatrRHA-Phada moderatetolerancetoorganicsolvents,asignificantthermalstabilityupto45◦Candacatalyticefficiency, atpH6.9,significantlyhigherthanotherbacterial␣-RHAsdescribedinliterature.Moreover,rRHA-Pwas abletohydrolyzenaturalglycosylatedflavonoids(naringin,rutin,neohesperidindihydrochalcone) con-taining␣-l-rhamnoseboundto␤-d-glucosewitheither␣-1,2or␣-1,6glycosidiclinkages.Datapresented inthismanuscriptstronglysupportthepotentialuseofRHA-Pasabiocatalystfordiversebiotechnological applications.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

␣-l-Rhamnosidases(␣-RHAs) area groupof glycosyl hydro-lases(GHs)that catalyzethehydrolysis of terminalresidues of

Abbreviations: ␣-RHAs,␣-l-rhamnosidases;GHs,glycosyl hydrolases;GTs, glycosyl transferases; PPMM, potassium phosphate minimal medium; pNPR, p-nitrophenyl-␣-l-rhamnopyranoside;MOPS,3-(N-morpholino)propanesulfonic acid;pNP,p-nitrophenolate;BSA,bovineserumalbumin;LB,LuriaBertanimedium; LB-N,LuriaBertanimediumcontainingafinalconcentrationof0.5MNaCl;LB-BS, LuriaBertanimediumsupplementedwith1mMofbothbetaineandsorbitol; LB-NBS,LuriaBertanimediumcontainingafinalconcentrationof0.5MNaCland1mM ofbothbetaineandsorbitol;IPTG,Isopropyl␤-d-1-thiogalactopyranoside.

∗ Correspondingauthor.

E-mailaddress:vizzo@unisa.it(V.Izzo). 1 Theseauthorsequallycontributedtothework.

␣-l-rhamnosefromalargenumberofnaturalcompounds[1]. L-Rhamnoseiswidelydistributedinplantsascomponentofflavonoid glycosides,terpenylglycosides,pigments,signalingmolecules,and incellwallsasa componentofcomplex heteropolysaccharides, suchasrhamnogalacturonanandarabinogalactan-proteins[2–7]. In bacteria, l-rhamnose appears to be included in membrane rhamnolipids[8,9]andpolysaccharides[10].Accordingtothe sim-ilaritiesamongtheiraminoacidicsequences,␣-RHAsaregrouped intheCAZy(carbohydrate-activeenzymes)database(www.cazy. org)intofourdifferentfamilies:GH28,GH78,GH106,andNC (non-classified).

Inthelastdecade,␣-RHAshaveattractedagreatdealof atten-tionduetotheirpotentialapplicationasbiocatalystsinavarietyof industrialprocessesandinparticularinthefoodindustry[1]. Sev-eraldietaryproductsarerichinglycosylatedflavonoidsthatshow thepresenceofeitherarutinoside(6-␣-l-rhamnosyl-␤-d-glucose)

http://dx.doi.org/10.1016/j.molcatb.2016.10.002 1381-1177/©2016ElsevierB.V.Allrightsreserved.

(2)

ora neohesperidoside (2-␣-l-rhamnosyl-␤-d-glucose) disaccha-ridicunit.Inparticular,naringin,hesperidinandrutin,flavanone glycosidesfoundingrapefruitjuices,lemons,sweetorangesand vegetables,havegainedincreasingrecognitionfortheirpotential antioxidant,antitumorandanti-inflammatoryproperties[11–14]. Theabilitytohydrolyzeglycosylatedflavonoidshasbeenused tomitigatethebitternessofcitrusjuices,whichisprimarilycaused bynaringin.Rhamnoseremovalfromnaringinallowssofteningthe bittertasteof citrus juice[15,16].Moreover,thecorresponding de-rhamnosylatedcompound,prunin,isendowedwith antimicro-bialproperties[14],andshowsanimprovedintestinalassimilation whencomparedtonaringin.Otherapplicationsof␣-RHAsare gain-ingpopularityintheoenologicalindustry,wheretheseenzymesare usedtohydrolyzeterpenylglycosidesandenhancearomainwine, grapejuicesandderivedbeverages[17–19].

Applicationof␣-RHAstoimproveflavonoidsbioavailabilityhas alsobeenrecentlydescribed[20].Inhumans,flavonoids absorp-tionoccursprimarilyin thesmallintestine where theattached glucose(orpossiblyarabinoseorxylose)isremovedby endoge-nous␤-glucosidases[21–23].Terminalrhamnoseisnotasuitable substrateforhuman␤-glucosidases.Therefore,unabsorbed rham-nosylatedflavonoidsarriveunmodifiedinthecolon,wherethey arehydrolyzedby␣-rhamnosidaseactivitiesexpressedbythelocal microflora[24].Toimproveintestinalabsorptionofrhamnosylated flavonoids,andthustheirbioavailabilityinhumans,aremovalof theterminalrhamnosegroupcatalyzedby␣-RHAswouldbeindeed beneficial[25–27].

Theabsenceofhuman␣-RHAshasbeenthekeytothe devel-opmentofa noveltargeteddrugdeliverystrategy, indicatedas LEAPT(Lectin-directedenzymeactivatedprodrugtherapy)[28,29], abipartitesystembasedontheinternalizationofanengineered ␣-RHAbearingaglycosidicmoietythatisrecognizedbyspecific lectinspresentonthesurfaceofdifferenteukaryoticcelllines.Inthe LEAPTsystem,theintakeofarhamnosylatedprodrug,which can-notbeprocessedbymammalianenzymes,allowsasite-selective actionofthedrugincellswheretheengineered␣-RHAhasbeen prelocalized.

Todate,microbial␣-RHAshavebeenmainlypurifiedfrom fun-galstrainssuchasPenicilliumand Aspergillus[30–32]; onlyone exampleof␣-RHAisolatedfromaviralsourcehasbeendescribed [33],and itisnoteworthythatonly alimited numberof bacte-rialrhamnosidaseshasbeenfullycharacterized[34–39].Oneof themaindifferencesbetweenfungalandbacterial␣-RHAsistheir differentoptimal pHvalues, with thefungal enzymesshowing moreacidicpHoptimawhencomparedtothebacterial counter-parts,forwhichneutralandalkalinevalueshavegenerallybeen described.Thischaracteristicsuggestsdiverseapplicationsfor fun-galand bacterialenzymes,making bacterial␣-RHAssuitable in biotechnologicalprocessesrequiringgoodactivityinmorebasic solutionssuchas,forexample,theproductionofL-rhamnosefrom thehydrolysisofnaringinorhesperidin,flavonoidswhose solubil-itystronglyincreasesathigherpHvalues[40].Inaddition,bacterial rhamnosidasescouldbeidealcandidatesfordietarysupplements havingactivity acrosstheentire gastrointestinal(GI)tract, and morespecificallyinthesmallintestinewhereflavonoids absorp-tionshouldmostlyoccurtoenhancethebeneficialeffectofthese moleculesonhumanhealth.

Inordertoelucidatetherealbiotechnologicalpotentialof bac-terial␣-RHAs,furtherinvestigationisundoubtedlyneeded.Few detailsonthecatalyticmechanismofbacterial␣-RHAsare avail-able, and most importantly, to the best of our knowledge, no attempttoimprove thecatalytic efficiencyor modifysubstrate specificityoftheseenzymesbymutagenesishasbeenperformed yet.Thisisinpartconsequentialtothefactthatonlyaverylimited numberofcrystalstructuresof␣-RHAsarecurrentlyavailable,such asthe␣-l-rhamnosidaseB(BsRhaB)fromBacillussp.GL1[41],and

the␣-l-rhamnosidasefromStreptomycesavermitilis[42]. There-fore,itisevidentthatbacterial␣-RHAsrepresentayetunexplored reservoirofpotentialbiocatalystsforwhichmorefunctionaland structuraldataarerequired.

AmemberoftheorderoftheSphingomonadales,recently iso-lated and microbiologically characterized, Novosphingobium sp. PP1Y [43,44], appears tobe a valuable sourcefor the isolation of ␣-RHA activities. Sphingomonadales are a group of Gram-negative␣-proteobacteriawhosegenomesshowthepresenceof a great abundanceof both glycosyl hydrolases (GHs) and gly-cosyltransferases(GTs).Theseactivitiesareprobablyinvolvedin the biosynthesis of complex extracellular polysaccharides and microbialbiofilms[45].TheinterestforNovosphingobiumsp.PP1Y carbohydrate-active enzymeshasgrownas thesequencingand annotationofthewholegenome,recentlycompleted,allowedthe identificationofagreatnumberofgenesencodingforbothGHs(53 orfs)andGTs(57orfs)[46].

Recently,a␣-RHAactivityinNovosphingobiumsp.PP1Ycrude extractwasdescribed,whichshowedanalkalinepHoptimumand amoderatetolerancetoorganicsolvents[47].Novosphingobiumsp. PP1Ycrudeextractexpressingthisenzymaticactivitywasusedfor thebioconversionofnaringin,rutinandhesperidin.Basedonthese preliminaryresults,amoredetailedbiochemicalcharacterization ofthe␣-RHAactivitywasessential.

In thiswork,theisolation, recombinantexpression and par-tialcharacterizationofa␣-RHAfromNovosphingobiumsp.PP1Yis reported.Thisenzyme,namedRHA-P,belongstotheGH106family [48],asubgroupforwhich,accordingtoourknowledge,nocrystal structureisavailableyet.Asevidentfromouranalyses,RHA-Pisa promisingcandidateforseveralbiotechnologicalapplications.

2. Materialsandmethods

2.1. Generals

Generalmolecularbiologytechniqueswereperformed accord-ing to Sambrook et al. [49]. Bacterial growthwas followed by measuring the optical density at 600nm (OD600). pET22b(+)

expressionvectorandE.colistrainBL21(DE3)werefromAmersham Biosciences;E.colistrainTop10waspurchasedfromLife Technolo-gies.N.sp.PP1Ywasisolatedfrompollutedseawaterintheharbor ofPozzuoli(Naples,Italy)aspreviouslydescribed[43].

ThethermostablerecombinantDNApolymeraseusedforPCR amplificationwasTAQPolymerasefromMicrotechResearch Prod-ucts. dNTPs, T4 DNA ligase, and the Wizard PCR Preps DNA purificationsystemforelutionofDNAfragmentsfromagarosegels werepurchasedfromPromega.TheQIAprepSpinMiniprepKitfor plasmidDNApurificationwasfromQIAGEN.Enzymesandother reagentsforDNAmanipulationwerefromNewEnglandBiolabs. OligonucleotidessynthesisandDNAsequencingwereperformed byMWG-Biotech.N-terminusofrRHA-Pwassequencedby Pro-teomeFactoryAG.Thepresenceandlocationofapotentialsignal peptidecleavagesiteontheaminoacidicsequenceofRHA-Pwas analyzedusingSignalP4.1server(http://www.cbs.dtu.dk/services/ SignalP).

Q-Sepharose Fast Flow and p-nitrophenyl-

␣-l-rhamnopyranoside (pNPR)were from Sigma Aldrich;Sephacryl S200HighResolutionwaspurchasedfromAmershamBiosciences. IPTG(isopropyl␤-d-1-thiogalactopyranoside)wasobtainedfrom Applichem.

SolventsusedinenzymaticassayswereeitherfromApplichem (DMSO)orfromRomil(acetone).TLCsilicagelplateswerefromE. Merck(Darmstadt,Germany).

(3)

2.2. GrowthofNovosphingobiumsp.PP1Ycells

N.sp.PP1YcellsweregrowninPotassiumPhosphateMinimal Medium(PPMM)at30◦Cfor28hunderorbitalshakingat220rpm. Apre-inoculuminLBwaspreparedbytransferring50␮Lfroma glycerolstockstoredat−80◦Ctoa50mLFalcontubecontaining

12.5mLofsterileLB.Thepre-inoculumwasallowedtogrowat 30◦CO/Nunderorbitalshakingandthenusedtoinoculate1Lof PPMMataninitialcellconcentrationof0.01-0.02OD600.0.3mM

naringinewasaddedtothemediumandusedasaninducerofthe ␣-RHAactivity,aspreviouslydescribed[47].

2.3. CloningoforfPP1YRS05470andconstructionofthe pET22b(+)/rha-pexpressionvector

GenomicDNAwasextracted froma50mLsaturatedculture of N. sp. PP1Y as described elsewhere [44]. OrfPP1YRS05470 coding for the ␣-RHA activity was amplified in two contigu-ous fragments, owing to the considerable length of the orf (3441bp). The first fragment, named rha-up (1816bp), was amplifiedusinganinternaldownstream primer,RHA-Intdw(5 -AGGCGGCCATGGGAATGT-3),whichincludedaninternalNcoIsite alreadypresentinorfPP1YRS05470,andanupstreamprimer, RHA-up(5-GGGAATTCCATATGCCGCGCCTTTCGCT-3), designedtoadd aNdeIrestrictionsiteat5 oforfPP1YRS05470.Thesecondhalf of thegene, named rha-dw(1625bp), was amplifiedusing the upstreamprimerRHA-Intup(5-ACATTCCCATGGCCGCCT-3), com-plementarytoRHA-Intdw,andthedownstreamprimerRHA-dw (5-AAAACCGAGCTCTCAATGCCCGCCCGTG-3)thatwasintendedto incorporateaSacIrestrictionsitedownstreamoftheamplifiedorf. Theamplifiedfragments,rha-upandrha-dw,werepurifiedfrom agarosegel,digested,respectively, withNdeI/NcoIandNcoI/SacI, andindividuallyclonedinpET22b(+)vectorpreviouslycutwith thesameenzymes.

Ligatedvectorswereusedtotransform E.coli, strainTop10, competent cells. The resulting recombinant plasmids, named pET22b(+)/rha-up and pET22b(+)/rha-dw,were verified by DNA sequencing. Next, the construction of complete rha-p gene in pET22b(+) was performed. First, both pET22b(+)/rha-dw and pET22b(+)/rha-upweredigestedwithNcoI/SacIrestriction endonu-cleases to obtain, respectively, fragment rha-dw and linearized pET22b(+)/rha-up.

Digestionproductswerepurifiedfromagarosegel electrophore-sis,elutedandligated.LigationproductswereusedtotransformE. coliTop10competentcellsandtheresultingrecombinantplasmid, namedpET22b(+)/rha-pwasverifiedbyDNAsequencing.

2.4. ˛-l-Rhamnosidaserecombinantexpression

ProteinexpressionwascarriedoutinE.coliBL21(DE3)strain transformedwithpET22b(+)/rha-pplasmid.

Allthemediadescribedinthisparagraphcontained100␮g/mL ofampicillin.

2.4.1. Analyticalexpression

E.coli BL21(DE3) competentcells transformed withplasmid pET22b(+)/rha-pwereinoculatedina sterile50mLFalcontube containing12.5mLofeitherLB[50]orLBcontainingafinal con-centrationof0.5MNaCl(LB-N).Cellsweregrownunderconstant shakingat37◦Cupto0.6–0.7OD600.Thispreinoculumwasdiluted

1:100in12.5mLofeitheroneofthefourfollowingmedia:LB,LB-N, LBsupplementedwith1mMofbothbetaineandsorbitol(LB-BS),or LBcontainingafinalconcentrationof0.5MNaCland1mMofboth betaineandsorbitol(LB-NBS).Cellsweregrownunderconstant shakingat37◦Cupto0.7–0.8OD600.RHA-Precombinant

expres-sionwasinducedwith0.1mMIPTGateither23◦Cor37◦C;growth

wascontinuedin constant shakingfor 3h. Cellswere collected bycentrifugation(5,524×gfor15minat4◦C)andsuspendedin 25mMMOPSpH6.9atafinalconcentrationof14OD600.Cellswere

disruptedbysonication(12timesfora1-mincycle,onice)andan aliquotofeachlysatewascentrifugedat22,100×gfor10minat 4◦C.Bothsolubleandinsolublefractionswereanalyzedby SDS-PAGE.Thesolublefractionwasassayedforthepresenceof␣-RHA enzymaticactivity.

2.4.2. Largescaleexpression

Freshtransformedcellswereinoculatedinto10mLofLB-Nand incubatedinconstantshakingat37◦CO/N.Thepreinoculumwas diluted1:100infour2LErlenmeyerflaskscontainingeach500mL ofLB-NBSandincubatedinconstantshakingat37◦Cupto0.7–0.8 OD600.

Expression of the recombinant protein, named rRHA-P, was inducedwith0.1mMIPTGandgrowthwascontinuedfor 3hat 23◦C.Cellswerecollectedbycentrifugation(5,524×gfor15min at4◦C)andstoredat−80◦Cuntilneeded.

2.5. Nativeandrecombinant˛-l-rhamnosidasepurification Bothnativeandrecombinant RHA-Pwerepurified following threechromatographicsteps.Cellpastewassuspendedin25mM MOPSpH6.9,5%glycerol(bufferA),atafinalconcentrationof100 OD600and cellsweredisruptedbysonication(10timesfora

1-mincycle,onice).Celldebriswereremovedbycentrifugationat 22,100×gfor60minat4◦Candthesupernatantwascollectedand filteredthrougha0.45␮mPVDFMilliporemembrane.

Afterwards,cellextractwasloadedontoaQSepharoseFF col-umn(30mL)equilibratedinbufferA.Thecolumnwaswashedwith 50mLofbufferA,afterwhichboundproteinswereelutedbyusinga 300mLlineargradientofbufferAfrom0to0.4MNaClataflowrate of15mL/h.Thechromatogramwasobtainedbyanalyzingfractions absorbanceat␭=280nmandthepresenceoftherecombinant ␣-RHAactivitywasdetectedusingthepNPRassay.Relevantfractions wereanalyzedbySDS-PAGE,pooledandconcentratedatafinal vol-umeof∼0.5mLusinga30kDaAmiconultramembrane,Millipore. ThesamplewasthenloadedontoaSephacrylHRS200equilibrated withbufferAcontaining0.2MNaCl(bufferB).

Proteinswereelutedfromthegelfiltrationcolumnwith250mL ofbufferBataflowrateof12mL/h.Fractionswerecollected, ana-lyzedandscreenedforthepresenceof␣-RHAactivityaspreviously described.Atthisstage,NaClwasremovedfrompooledfractions byrepeatedcyclesofultrafiltrationanddilutionwithbufferA.The samplewasthenloadedonaQSepharoseFFcolumn(30mL) equi-libratedinbufferA.Thecolumnwaswashedwith50mLofbuffer A,afterwhichboundproteinswereelutedwith300mLofalinear gradientofbufferAfrom0to0.25MNaClataflowrateof13mL/h. Fractionswerecollected,analyzedbySDS-PAGEandscreenedfor thepresenceof␣-RHAactivity.Relevantfractionswerepooled, concentrated,purgedwithnitrogen,andstoredat−80◦Cuntiluse.

2.6. Analyticalgelfiltration

Analyticalgel-filtrationexperiments werecarriedout as fol-lows:100␮Lofa40pMproteinsamplewasloadedonaSuperdex 200HR10/300columnpreviouslyequilibratedinbufferB,installed onanAKTATMFPLCTM(GEHealthcareLifeScience).Sampleswere

elutedisocraticallyatRTataflowrateof0.5mL/min.Protein elu-tionwasmonitoredat␭=280nm.Amolecularweightcalibration wasperformedinthesamebufferwiththefollowingproteinsof knownmolecularweight:␤-amylase(200kDa), glyceraldehyde-3-phosphatedehydrogenase(143kDa),carbonicanhydrase(29kDa).

(4)

2.7. Enzymeactivityassays

␣-RHAactivitywasdeterminedusingpNPRassubstrate(pNPR assay). Otherwise stated, all activity assays were performed at RT. The reaction mixture contained, in a final volume of 0.5mLof50mMMOPSpH6.9,pNPRatafinalconcentrationof 600␮M and variable amounts of the sample tested. The reac-tionwasblockedafter10 and20minbyadding0.5MNa2CO3;

the product, p-nitrophenolate (pNP), was detected spectropho-tometrically at ␭=405nm. The extinction coefficient used was ␧405=18.2mM−1cm−1.Oneunitofenzymeactivitywasdefined

astheamountoftheenzymethatreleasesonemicromoleofpNP permin.

2.7.1. Kineticparametersdetermination

KineticparameterswereobtainedatpH6.9usingapNPR con-centrationintherange0.025–1mM.Allkineticparameterswere determinedbyanon-linearregressioncurveusingGraphPadPrism (GraphPadSoftware;www.graphpad.com).

2.7.2. pHoptimum

pHoptimumfor␣-RHAactivitywasdeterminedintherange 4.7–8.8.Enzymeassayswereperformedasdescribedabove,using the following buffers: 50mM potassium acetate (pH 4.7–5.7), 50mMMOPS/NaOH(pH5.7–7.7)and50mMTris/HCl(pH7.7–8.8). 2.7.3. Temperatureoptimumandstability

Optimumtemperaturewasevaluatedbyperformingthe stan-dardpNPRassayandincubatingthereactionmixtureatdifferent temperatures,intherange25–55◦C.

Thethermalstabilityoftheenzymewasdeterminedby incubat-ingtheenzymeforoneand3hat30,40,50,60◦Candmeasuring, aftereachincubation,theresidualspecificactivity.

2.7.4. Organicsolventstolerance

The tolerance of the enzymatic activity to the presence of organicsolventsinthereactionmixture,suchasDMSO,acetone orethanol,wasevaluatedbyperformingthestandardpNPRassay in50mMMOPSpH6.9towhicheither10%or50%ofsolventwas added.

2.8. Substratespecificity

Reactionswerecarriedoutin0.6mLof50mMNa-phosphate bufferpH7.0undermagneticstirringat40◦Cinthepresenceof 20mM ofeither arylglycoside and 0.25U ofrRHA-P. Reactions weremonitoredover time(0–24h)byTLCanalysis(system sol-vent:EtOAc:MeOH:H2O70:20:10).CompoundsonTLCplateswere

visualizedunderUVlightorcharringwith␣-naphtholreagent. Hydrolysisreactionsofmaltose,pullulan,starch,amylopectin, sucrose,raffinose,lactose,xylanfrombirchwood,xylanfromoat spelt,hyaluronicacid,␣−cellulose,cellobiose,chitosan,␤-Glucan from barley, laminarin, curdlan,fucoidan from Fucus versiculo-sus,rhamnogalacturonan,rutinosewereperformedusing2.5mg ofeachsubstrate,whichwassuspendedin0.5mLof50mM Na-phosphatebufferpH7.0.Thereactionwascarriedoutat40◦Cunder magnetic stirring,in thepresence of 0.25U of rRHA-P. Hydrol-ysis productswere monitored by TLCanalysis (system solvent HCOOH:HAc:H2O:2-propanol:EtOAc:1:10:15:5:25).

Flavonoidiccompoundssuchasnaringin,rutin,neohesperidin dihydrochalcone,werescreenedaspossiblesubstrates.Inthiscase, a6mMsolutionofeachcompoundinafinal volumeof1mLof 50mMNa-phosphatebufferpH7wasincubatedat40◦Cinthe presenceof0.25UofrRHA-P.Reactionswerecheckedovertime byTLCanalysis(t=0,15,30,60,90,120,150,180,24h)with

thefollowingsolventsystem:EtOAc:MeOH:H2O70:20:10.An

addi-tionalhydrolysisreactionofnaringinwasperformedinconditions similartothosereportedaboveinthepresenceof10%DMSO,and thereactionwasmonitoredovertime.

Inallexperiments,TLCstandardsolutionsofpurereagentsand productswereusedforcomparison.

2.9. Massspectrometryanalysis

IdentificationofnativeandrecombinantRHA-Pbymass spec-trometrywasperformedbyenzymaticdigestion,eitherinsolution orinsituafterseparationbySDS-PAGE.

Whendigestinginsolution,theproteinsamplewaslyophilized and then dissolved in denaturing buffer (300mM Tris/HCl pH 8.8,6Murea,10mMEDTA).Cysteineswerereducedwith10mM dithiothreitolindenaturingbufferat37◦Cfor2h,andthen car-bamidomethylated with55mMiodoacetamide dissolved in the same bufferat RT for 30min, in the dark.Protein sample was desaltedbysizeexclusionchromatographyonaSephadexG–25M column (GE Healthcare, Uppsala,Sweden). Fractions containing RHA-Pwerelyophilizedandthendissolvedin10mMNH4HCO3

buffer(pH8.0).Enzymedigestionwasperformedusingproteases withdifferentspecificitysuchastrypsin,chymotrypsinand endo-proteinaseGluC(V8-DE)(Sigma),usingaprotease/RHA-Pratioof 1:50(w/w)at37◦Cfor16h.

For theenzymatic digestion insitu, Coomassie blue stained bands excised from polyacrylamide gels were destained by severalwasheswith0.1MNH4HCO3pH7.5andacetonitrile.

Cys-teines were reduced for 45min in 100␮L of 0.1M NH4HCO3,

10mMdithiothreitol,pH7.5.Carbamidomethylationofthiolswas achieved after 30min in the dark by adding 100␮L of 55mM iodoacetamidedissolvedinthesamebuffer.Enzymaticdigestion wascarriedoutondifferentbandsofRHA-P byusing100ngof proteases with different specificity (same as above) in 10mM NH4HCO3 buffer,pH7.5.Sampleswereincubatedfor2hat4◦C.

Afterwards,theenzyme solutionwasremovedanda fresh pro-teasesolutionwasadded;sampleswereincubatedfor18hat37◦C. Peptideswereextractedbywashingthegelspots/bandswith ace-tonitrileand0.1%formicacidatRT,andwerefilteredusing0.22um PVDFfilters(Millipore)followingtherecommendedprocedures.

Peptidemixtureswereanalyzedeitherbymatrix-assisted laser-desorption/ionizationmassspectrometry(MALDI-MS)orcapillary liquidchromatographywithtandemmassspectrometrydetection (LC–MS/MS).

MALDI-MSexperimentswereperformedona4800PlusMALDI TOF/TOF mass spectrometer (Applied Biosystems, Framingham, MA)equippedwithanitrogenlaser(337nm).Thepeptidemixture (1␮L)wasdiluted(1:1,v/v) inacetonitrile/50mMcitratebuffer (70:30v/v) containing10mg/mL of␣-cyano-4-hydroxycinnamic acid.Masscalibrationwasperformedusingexternalpeptide stan-dardspurchasedfromAppliedBiosystems.

Spectra were acquired using a mass (m/z) range of 300–4000amuandrawdatawereanalyzedusingData Explorer Software provided by the manufacturer. Experimental mass valueswerecomparedwithcalculatedmassesderivedfromanin silicodigestionofRHA-Pobtainedwithdifferentproteases,using MS-Digest, a proteomics tool from ProteinProspector software (prospector.ucsf.edu/).

PeptidemixtureswereanalyzedbynanoLC–MS/MSonaCHIP MS6520QTOFequippedwithacapillary1200HPLCsystemanda chipcube(AgilentTechnologies,PaloAlto,Ca).Aftersample load-ing,thepeptidemixturewasfirstconcentratedandthenwashedat 4nL/minina40nLenrichmentcolumn(AgilentTechnologieschip) with2%acetonitrile+0.1%formicacid.

ThesamplewasthenfractionatedonaC18reverse-phase cap-illarycolumnataflowrateof400nL/minbyusingatwo-solvents

(5)

systemconsistingof2%acetonitrile+0.1%formicacid(solventA) and95%acetonitrile+0.1%formicacid(solventB).Separationwas carriedoutwitha50minlineargradientfrom5to60%ofsolvent B.

Peptideanalysiswasperformedusingdata-dependent acquisi-tionofoneMSscan(massrangefrom300to2,000m/z)followed byMS/MSscansofthefivemostabundantionsineachMSscan.

MS/MSspectrawereacquiredautomaticallywhentheMS sig-naldetectedupraisedthethresholdof50,000counts.Doubleand triplechargedionswereisolatedandfragmented.Theacquired MS/MSspectraweretransformedinMascotGenericformat(.mgf) andusedtoqueryeitheraNCBInr02-2015(21,322,359,704amino acidsequences;10,835,265,410residues)oraN.sp.PP1Y(4635 aminoacidsequences;1,493,994residues)sequencedatabase.

A licensed version (2.4.0.) of MASCOT software

(www.matrixscience.com) was used with the following search parameters: trypsin, chymotrypsin or GluC endoproteinase as enzyme; 3 or 2 as allowed number of missed cleavages; car-bamidomethylation of cysteines as fixed modification; 10ppm MStoleranceand0.6Da MS/MStolerance;peptidechargefrom +2to+3.Oxidationofmethionineandformationofpyroglutamic acidfromglutamineresiduesattheN-terminalpositionof pep-tides were considered as variable modifications. Ions score is −10*Log(P),wherePistheprobabilitythattheobservedmatchisa randomevent.Individualionsscore>14indicateidentityor exten-sivehomology (p<0.05). Protein scoresderive from ion scores as a non-probabilisticbasis for ranking protein hits. Individual ionscorethresholdprovided byMASCOTsoftware,necessaryto evaluatethequalityofmatchesinMS/MSdataandtocalculate proteinscore,was52inNCBInrdatabaseand14inPP1YDatabase. InTable1onlypeptideswithionscore≥10arereported.

2.10. NMRAnalysis

All the experiments were performed at 298K on a Bruker 600MHzDRXspectrometerequippedwithacryoprobe.pNPRwas dissolvedinD2Otoafinalconcentrationof3mMina5-mmNMR

tube.Theligandprotonresonanceswereassignedbya combina-tionof1Dand2DNMRexperimentsincludingCOSY,TOCSYand HSQC.1HNMRspectrawereacquiredwith32kdatapoints.

Dou-blequantum-filteredphasesensitiveCOSYandTOCSYexperiments wereperformedbyusingdatasetsof2096×256(t1xt2)points. TotalCorrelation Spectroscopy (TOCSY)spectrum wasrecorded witha spin locktimeof 100ms.Heteronuclear singlequantum coherence(HSQC)experimentwasmeasuredinthe1H-detected

modevia singlequantum coherencewithprotondecouplingin the13Cdomain,byusingdatasetsof2048×256points.

Experi-mentswerecarriedoutinthephase-sensitivemodeaccordingto themethodofStatesandcoworkers[51].Inallhomonuclear spec-trathedatamatrixwaszero-filledintheF1dimensiontogivea matrixof4096×2048pointsandresolutionwasenhancedinboth dimensionsbyacosine-bellfunctionbeforeFouriertransformation. Aftertheacquisitionoftheinitialspectraoftheligandalone, rRHA-Pwasaddedtoafinalconcentrationof∼1␮M(∼60␮g)in theNMRtubefroma∼5.9␮Msolutionin25mMMOPS contain-ing5%glycerol.TheNMRsamplewasimmediatelyplacedinthe spectrometerprobetorecordexperimentsonthemixture.

DataacquisitionandprocessingwereperformedwithTOPSPIN 2.1software.

2.10. Analyticalmethods

Proteinconcentrationwas measuredusing theBio-Rad Pro-teinSystem[52]usingbovineserumalbumin(BSA)asstandard. Polyacrylamidegelelectrophoresiswascarriedoutusingstandard techniques[53].SDS–PAGE15%Tris–glycinegelswererununder

denaturingconditionsandproteinswerestainedwithCoomassie brilliantblueG-250.“Widerange”(200–6.5kDa)molecularweight standardwasfromSigma(ColorBurstTMElectrophoresisMarker).

3. Results

3.1. Isolationandidentificationofa˛-RHAfrom Novosphingobiumsp.PP1Y

Inapreviouswork[47],a␣-RHAactivitywasdetectedinthe crudeextractofN.sp.PP1Ygrowninminimalmediumandinthe presenceof0.3mMnaringin.Inordertoidentifyandcharacterize thisenzymaticactivity,N.sp.PP1Ycellsweregrownunderthesame experimentalconditionsdescribedbytheauthors[47].Cellswere collectedbycentrifugationafter24hofgrowthinPPMM(optical densityof∼1OD600)at5,524×gfor15minat4◦C.␣-RHA

purifi-cationwascarriedoutfollowingtheproceduresdescribedinthis workinMaterialsandMethods.Inallthreechromatographicsteps usedforthepurificationofN.sp.PP1Ycrudeextract,auniquepeak of␣-RHAactivitywasalwaysdetected,butnomajorproteinband waseverevidentfromtheSDS-PAGEanalysisofthecorresponding activefractions(datanotshown).

Peak fractions obtainedfrom the first two chromatographic steps were digested with trypsin and analyzed by LC–MS/MS analysis. Raw data were used tosearch NCBI database (Bacte-riaastaxonomyrestriction)withtheMS/MSionsearchprogram of Mascot software. Among the identified proteins, a mem-ber of the glycoside hydrolase family (Novosphingobium sp. PP1Y:WP013837086.1)wasidentifiedwith10(20%ofsequence coverage)and32peptides(46%ofsequencecoverage)inthefirst and inthesecond chromatographicstep,respectively (datanot shown).TheputativeMW,deducedfromtheaminoacidsequence, wasof124,225Da.

Peakfractionsobtainedfromthelastchromatographicstep (Q-sepharose)showedthepresenceofarelativelylimitednumberof proteinbands(Fig.S1,Supplementarymaterial).Fivebands migrat-ing asexpected for proteins of MWhigher than 100kDa were selectedandexcisedfromthepolyacrylamidegelstainedwith Col-loidalCoomassieBlue.Bands weredigestedinsituwithtrypsin, andtheresultingpeptidesmixturewasanalyzedbyLC–MS/MS. RawdatawereusedtosearchNCBIdatabase(Bacteriaastaxonomy restriction)withMASCOTsoftware.

Oneoftheprotein bandsanalyzed,indicated in Fig.S1by a redarrow, wasidentified(52 peptides,71%sequence coverage, Table1)astheproteinencodedbytheorfPP1YRS05470;thislatter islocatedinoneoftheextrachromosomalelementsofN.sp.PP1Y, theMegaplasmidreferredtoasMpl[44].Thisprotein,fromnow onindicatedasRHA-P,hadbeenpreviouslyannotatedasa mem-beroftheGHsfamilyandiscomposedby1,146aaforacalculated molecularweightofabout124,225Da.

3.2. Cloning,recombinantexpressionandpurificationof recombinantRHA-P

The recombinant plasmid pET22b(+)/rha-p (Materials and Methods),in which orfPP1YRS05470wascloned, wasusedto transformE.coliBL21(DE3)strain.Firstattemptsofexpressionof therecombinantproteinat37◦Cshowedthepresenceofaprotein bandwiththeexpectedmolecularweightofrecombinantRHA-P (rRHA-P)almostexclusivelyintheinsolublefractionoftheinduced culture(Fig.S2).AsevidentfromFig.S2oftheSupplementary mate-rial,whenE.coliwasinsteadinducedat23◦C[54],thepresenceof aproteinbandwiththeexpectedMWforrRHA-Pinthesoluble fraction(lane5)appearedtobemarkedlyincreasedwhen com-paredtothesolublefractionobtainedafteraninductionperformed

(6)

Table1

IdentificationofnativeRHA-PbyinsitudigestionfollowedbyLC–MS/MSanalysis.

Protein[Species]NCBInr Accessionnumber

Mass Proteinscore Sequencecoverage(%) n◦ofpeptides Ionscoreaandpeptidesequence

Glycosidehydrolasefamily protein[Novosphingobiumsp. PP1Y] gi|334145605|ref| WP013837086.1| 124,225 2318 71 52 34R.TGDAIK.A 31R.VGGFYGK.G 38R.GVVQNEK.R 28R.LDNELVR.G 21R.GPEIEPVK.A 11R.VLPITGRK.A 19KVGSKNEPR.G 37R.AVAEAAFDK.V 42R.GVVQNEKR.Q 48KLSSPNAMALR.A 13KLSSPNAMALR.A+Oxidation(M) 37R.DITDQVPVLR.L 13R.ITVVGDITMDR.L 41R.ITVVGDITMDR.L+Oxidation(M) 32R.LGRPEDYYVK.L 17KAPIVSVTLYYK.V 24KVEKWFGQIPR.G 55KVGLHILGGLASSR.L 52R.VKAQAEAELAQK.L 61R.LDATAIAEAQER.L 35R.TFVVSAPVQADR.T 28R.MGWLLPAVTQDK.L 15R.MGWLLPAVTQDK.L+Oxidation(M) 27R.KAPIVSVTLYYK.V 52R.DLAAMAALTPAQVK.A 70R.DLAAMAALTPAQVK.A+Oxidation(M) 74R.AVVSTLSGEIGGLER.V 32R.LKPMLEQAFGAWK.A 31R.LKPMLEQAFGAWK.A+Oxidation(M) 74KGATLAEGQVYSDDPAK.Y 28R.RAVVSTLSGEIGGLER.V 50KFVLANGLTTIVHTDR.K 18KSAAPVKPLGAAVPAAQGR.I 23R.NWTAPGINDPDTPALK.V 37R.MGWLLPAVTQDKLDK.Q 33R.MGWLLPAVTQDKLDK.Q+Oxidation(M) 47R.AVAEAAFDKVLADYLR.D 65R.ALPNQFETNAAVQAAIR.K 25KGWSYGVYSSVTQPTGPR.T 29KWMSRPVYALNVVPGPR.T 26KWMSRPVYALNVVPGPR.T+Oxidation(M) 20R.TFVVSAPVQADRTGDAIK.A 18KGATLAEGQVYSDDPAKYK.R 36R.IVLIDRPNSPQSVIMAGR.V 43R.IVLIDRPNSPQSVIMAGR.V+Oxidation(M) 58KADTEALGLANDVLGGGFLSR.L 47R.GPEIEPVKAGPVTLPAPLSR.D 55R.HATIGSMADLDAATLTDVRK.W 56R.HATIGSMADLDAATLTDVRK.W+Oxidation(M) 21R.EEKGWSYGVYSSVTQPTGPR.T 46KAIIADVGAFPGQKPITQEELQR.V 70R.TNYVETVPTGALDLALFMESDR.M 50R.AIEASANEFLRPGGMTYVVVGDR.K 59R.AIEASANEFLRPGGMTYVVVGDR.K+Oxidation(M) 65R.AIEASANEFLRPGGMTYVVVGDRK.I 54R.QGDNQPYGLFDYAQADGLLPVGHPYR.H+ Gln->pyro-Glu(N-termQ) 71R.QGDNQPYGLFDYAQADGLLPVGHPYR.H 23R.LNKDLREEKGWSYGVYSSVTQPTGPR.T 38KWFTEHYGPNNVVLVLSGDIDAATARPK.V 35KIVEPQLEGLGLPIDVQQAPQAAADDQSVE.-55 R.KIVEPQLEGLGLPIDVQQAPQAAADDQSVE.-40R.ALGSTLFGQHPYAQPTDGLGNAASLAALTPAALR.A aInthetableonlypeptideswithionscore≥10arereported.

at37◦C(lane3).NeithertheuseofdifferentIPTGconcentrations northevariationoftheinductiontimeseemedtoimproverRHA-P solubility.

ToincreasetheyieldofactiverRHA-Pinthesolublefractionof cellculturesinducedat23◦C,anovelsetofanalyticalexpression experimentsusingeitherLBorLB-N(MaterialsandMethods) sup-plementedwith1mMofbothbetaineandsorbitol(twoosmolytes),

wereperformed. Datain literaturesuggest that theadditionof thesemoleculestothegrowthmediumofinducedrecombinant cellsofE.colimightincreaseproteinsolubility.Thiseffectshould beimprovedbytheco-presenceinthemediumofahighsalt con-centration(LB-Nmedium),whichmighti)increasetheuptakerate in thecytoplasm of betaineand sorbitolfrom theextracellular

(7)

Table2

PurificationTableofrRHA-P.

TotalUnitsb SpecificActivity

(Units/mg)b P.F.a Yield(%) Celllysate 13,728.8 49.8 IQ-Sepharose 5,939.6 54.7 1.1 43.3 Gelfiltration 1,370.6 66.1 1.3 9.9 IIQ-Sepharose 920.9 346.9 6.9 6.7 aPurificationFactor.

b Standarddeviations,expressedaspercentageerrors,werealwayswithin20%.

Fig.1.SDS-PAGEanalysisofrRHA-Ppurificationsteps.Lane1:MWstandard.Lane 2:celllysateofE.colistrainBL21(DE3).Lane3:peakfractionafterthefirst Q-sepharose.Lane4:peakfractionafterS200-gelfiltrationchromatography.Lane5: purifiedrRHA-P;theredarrowinthislineindicatesthecontaminantproteinfound attheendofpurification.Foreachsampleanamountofca.4␮goftotalproteins wasloaded.(Forinterpretationofthereferencestocolourinthisfigurelegend,the readerisreferredtothewebversionofthisarticle.)

environment[55],and/orii)inducetheexpressionofadditional heat-shockproteinsassistinginproteinfolding[56].

Fortheseexperiments,IPTGconcentrationandinductiontime wererespectively0.1mMand3h.Activityassaysshowedthatthe bestexpressionofactiverRHA-Pwasobtainedinducingthe cul-tures at 23◦C and using LB-NBS(LB-N towhich 1mM of both betaineandsorbitolwereadded)asgrowthmedium.Inthiscase, specificactivity of cell extract was46 times higher than what obtainedwiththesolublefractionofrecombinantcellsgrownin LBandinducedat37◦C.

Large-scalerecombinantexpressionwasperformedbyusingthe optimizedconditionssuggestedbytheanalyticalexperiments.

rRHA-Ppurificationwascarriedoutfollowingthreedifferent chromatographicsteps.Thepurificationtable(Table2)showeda finalpurificationfactor(PF)of6.9.SDS-PAGEanalysisofpeak frac-tionsrepresentativeofeachpurificationstep(Fig.1)showedinthe finalpurifiedsampleofrRHA-Ptheadditionalpresenceofamajor contaminantproteinwithanapproximateMWof∼35kDa.

The 35kDa protein bandwas excised, digestedin situ with trypsin and analyzed by LC–MS/MS. The protein, identified by searchingtheE.colisequencedatabase(MaterialsandMethods), resultedtobeglyceraldehyde3-phosphatedehydrogenase,as iden-tifiedby17peptidesmatchesforasequencecoverageof71%.

PurifiedrRHA-P amino acidicsequence was verifiedupto a 94%coverage,byMSMappinganalysiscarriedoutbyMALDI-TOF andLC–MS/MS.However,itisworthnotingthattheprotein N-terminus,detectedbyMSanalysis,lacksthefirst23aminoacids fromtheexpectedclonedsequence(Fig.2andFig.S3).

ToconfirmthelackoftheputativeN-terminalpeptide,purified rRHA-PwassubjectedtobothaMALDI-TOFandLC–MS/MSanalysis afteraninsitudigestionwitheithertrypsinorchymotrypsin,and totheN-terminussequencing.Massspectrometryanalysisallowed the identification of peptides 23ESRDDAAEVAPSTRPEPSLEQAF45

(MH+ 2502.17 ppm) and 23ESRDDAAEVAPSTR36 (MH+ 1503.70)

whenrRHA-Pwasdigestedwithchymotrypsinortrypsin,

respec-Table3

TLCresultsofRHA-P-catalyzedreactionusingdifferentpNP-␣-andpNP-␤- deriva-tivesassubstrates.

Substratesa Hydrolysis Transglycosylation

3h 20h 3h 20h 1 pNP-␣-d-Glcp – – – – 2 pNP−␤-d-Glcp – – – – 3 pNP−␣-d-Galp – – – – 4 pNP−␤-d-Galp – – – – 5 pNP−␣-d-Manp – – – – 6 pNP−␤-d-Manp – – – – 7 pNP−␤-d-Xylp – – – – 8 pNP−␣-l-Fucp – – – – 9 pNP−␤-d-Fucp – – – – 10 pNP−␣-l-Araf – – – – 11 pNP−␤-l-Araf – – – – 12 pNP−␣-l-Rhap + + – – 13 pNP␤-GlcAp – – – – 14 pNP␤-d-NAGlcp – – – – 15 pNP␤-d-NAGalp – – – –

aAra,arabinose;Fuc,fucose;Gal,galactose;Glc,glucose;Man,mannose;NAGlc, N-acetylglucosamine;NAGal:N-acetylgalactosamine,GlcA:glucuronicacid,Rha, Rhamnose;Xyl,xylose.

tively.ThisevidencewasalsoconfirmedbyN-terminussequencing results,whichshowedthatthefirst5aminoacidsofthe recom-binantproteinareESRDD.Interestingly,alsoinnativeRHA-Pthe sameN-terminalpeptide,obtainedbyfragmentationspectrumof thetriplechargedionat834.73m/zfromtheinsitudigestionofthe proteinwithchymotrypsin(Fig.S4),hadbeendetectedinthefirst place.Thescarceamountofnativeprotein,however,didnotallow ustoconfirmtheeffectivelackoftheN-terminuspeptidebydirect aminoacidicsequencing.

3.3. BiochemicalcharacterizationofrRHA-P 3.3.1. Analyticalgelfiltration

TheoligomericstateofrRHA-Pwasverifiedbyanalyticalgel filtration using a Superdex 200 analytical column; the protein eluted as a single peak with an apparentmolecular weight of 101,500±5,000Da,whichindicatesthatrRHA-Pisamonomer. 3.3.2. Substratespecificity

ToinvestigaterRHA-P substratespecificity inhydrolysis and self-condensationprocesses,severalpNP-␣-andpNP-␤- deriva-tiveswereusedassubstratesinenzymaticassays performedas describedinMaterialsandMethods.Reactionswerefollowedover timebyTLCanalysisanddataarereportedinTable3.Asevident fromTable3,thepurifiedenzymeshowedactivityonlyonpNPR, confirmingthatrRHA-Pisindeeda␣-l-rhamnosidase.Moreover, noactivityonpNP-␤-d-Glcwasdetected,excludingthatrRHA-P mightactasanaringinase,aclassofglycosylhydrolasehavingboth ␣-l-rhamnosidase and ␤-d-glucosidase activities [40]. Further-more,oligo-andpolysaccharidessuchasrutinose,maltose,sucrose, lactose,pullulan,starch,amylopectin,raffinose,xylanfrom birch-wood,xylanfromoatspelt,hyaluronicacid,␣-cellulose,cellobiose, chitosan,␤-Glucanfrombarley,laminarin,curdlan,fucoidanfrom Fucusversiculosus,werealsotestedassubstratesforrRHA-P.TLC analysisofallthesereactions,performedasdescribedinMaterials andMethods,showedthelackofactivityofthisenzymeonanyof thesecompounds.

3.3.3. Mechanismofaction

TounderstandwhetherrRHA-P behavesasaninverting ora retainingglycosidase[1],1HNMRspectroscopywasusedto

mon-itor the stereochemical course of pNPR cleavage. As shown in Fig.3, after theadditionof the enzyme,a mixtureof ␣and ␤

(8)

Fig.2.rRHA-PsequencecoveragebyMSanalysis.Highlightedingreyarethepeptides,identifiedbyMSanalysis(MALDI-TOFand/orLC–MSMS),oftheenzymaticdigestions ofrRHA-Pcarriedouteitherinsituorinsolutionwithproteasesofdifferentspecificity:trypsin,chymotrypsinandendoproteinaseGluC(V8-DE).Aglobalsequencecoverage of94%wasobtained.CrossedistheN-terminussequenceexpectedforrRHA-P(referencesequenceWP013837086.1)andnotretrieved,eitherbyN-terminusorbyMS analysis.

Fig.3. 1HNMRanalysisofpNPRafterrRHA-Pcatalyzedhydrolysis.A.Spectrumoftheligandaloneinsolution(3mM).B.Spectrumfollowingtheadditionoftheenzymeto theNMRtube(∼60␮g),whichshowedtheappearanceofCH3signalsrelativeto␣-and␤-anomers.C.Spectrumobtainedaftera30minreaction;amixtureof␣-and ␤-anomerswithadifferentrelativeratiowasobservedduetoemiacetalequilibrium.

(9)

Fig.4. rRHA-Pkineticbehavior.Reactionrateexpressedin␮M/minisplottedasa functionofpNPRconcentration.

rhamnoseanomerswasobservedinsolution,asevidentfromthe presenceoftwodifferentmethylgroupresonances.TOCSY spec-trumallowedtheassignmentofboth␣and␤spinsystemsupto themethylgroupresonanceslocatedatposition6ofeachrhamnose residue.Therefore,thelessshieldedmethylsignalwasassignedto ␤-rhamnose.Theanalysisoftheintensityofthedifferentmethyl protonsignalsshowedthatthethermodynamicallyunfavorable ␤-rhamnoseprevailedsoonaftertheadditionofrRHA-P(Fig.3B). Afterwards,asaconsequenceoftheequilibriumestablishedbya reducingmonosaccharideinwater,therelativeratioofthetwo peakschangeduptothepointinwhichthe␣anomericproductwas predominant(Fig.3C).Hence,thedatasuggestedthatrRHA-Pacts asaninvertingenzymeasitcleavesthe␣-glycosideligandyielding a␤-anomer,whichinwatersolutionequilibratesaccordingtothe anomericeffect.

3.3.4. Enzymaticcharacterization

Allenzymaticassaysdescribedinthissubsectionaredetailed inMaterialsandMethodssectionandwereperformedusingpNPR assubstrate.KineticconstantsonpNPRweredeterminedusinga substrateconcentrationrangingfrom0.025to1mM.Thereaction rate(␮M/min),plottedasafunctionofthesubstrateconcentration (␮M),showedatypicalMichaelis-Mententrendandisreportedin Fig.4.KMconstantwasof160.2(±17.3)␮M,avaluesignificantly

lower than most other ␣-RHAs described in literature [32,57], indicating ahigher affinity ofrRHA-P for pNPR.A Vmax of21.1

(±8.0)␮M/min,akcatof734.4(±212.9)sec−1andaKsof4.6(±1.7)

sec−1␮M−1wereobtained.

Fig.6.rRHA-Ptolerancetoorganicsolvents.Dataarereportedaspercentageof residualspecificactivity(S.A.)comparedtothecontrol(25mMMOPS,pH6.9).MOPS bufferisusedatafinalconcentrationof25mMandatpH6.9.

rRHA-Prevealedanoptimalactivityintherange6.0-7.5withan optimumatpH6.9(Fig.5A),retaining47%and36%ofactivityatpH 7.9and8.8,respectively.Inaddition,rRHA-Pactivitywasassayed inthetemperaturerange25◦C–55◦C.DataarepresentedinFig.5B andshowanoptimalactivitytemperatureatca.40.9◦C,witha44% retainingofitsinitialvalueupto50◦C.Toevaluatethethermal stabilityofrRHA-Pinthesamerangeusedtodeterminetheoptimal temperature,anincubationofthepurifiedproteinforeitherone or3hwasperformedatdifferenttemperatures;afterwards,the residualrhamnosidaseactivityoftheenzymewascalculated(Fig. S5).Theenzymaticactivityappearedtobestablebetween25and 40◦C,independentlyfromthedurationoftheincubation.At40◦C, correspondingtothetemperatureoptimum,theactivityisstable upto24h(datanotshown).

In orderto establishthetolerance ofthe enzymaticactivity of rRHA-P to the presence of organic solvents, pNPR assay in 50mMMOPSpH6.9containing10%or50%ofeitherDMSO, ace-toneorethanolwasperformed(Fig.6).Whileactivitydramatically decreasedinallconcentrationofacetoneandin50%ofethanoland DMSO,a66%ofactivitywasstillrecoveredinthepresenceof10% ofeitherDMSOorethanol.

3.3.5. Activityonflavonoids

TheabilityofrRHA-Ptohydrolyzenaturalflavonoidswas eval-uated.Enzymaticassaysusingnaringin,rutinandneohesperidin

Fig.5.rRHA-Pactivityassays.pH(A)andtemperature(B)optimumcurves.Inbothgraphsspecificactivity(S.A.)isplottedasafunctionofpHandtemperature,respectively. ThemaximumvalueofS.A.obtainedisreportedinbothgraphsandindicatedbyablackarrow.

(10)

dihydrochalconewereperformedand followedby TLCanalysis, asdescribedinMaterialsandMethods.Tothis purpose,a6mM solutionofeachcompoundwasincubatedwithpurifiedrRHA-P in50mMNa-phosphatebufferpH7.0at40◦C,andthereaction wasmonitoredbyTLCanalysesovertime.After3hofincubation, TLCanalysisofthereactionmixturesshoweda40–60%hydrolysis ofneohesperidindihydrochalconeandrutininthecorresponding derhamnosylatedneohesperidindihydrochalconeand quercetin-3-␤-glucopyranoside(isoquercitrin).Besides,atotalconversionof naringinwasobservedasthecorrespondingproducts,rhamnose andprunin,weretheonlycompoundsobservedontheTLCplate. Reactiononnaringinwasalsocarriedoutinthepresenceof10% DMSO.Inthiscase,inourexperimentalconditions,thecomplete conversionofnaringininpruninandrhamnoseoccurredafterjust 1h.

4. Discussion

␣-RHAsare a group of glycosyl hydrolases (GHs) that have attracteda great deal of attentiondue totheirpotential appli-cationas biocatalystsina varietyofindustrial processes.These enzymesare of particular interest for the biotransformation of severalnaturalcompoundsusedinpharmaceuticalandfood indus-try. Enzymatic derhamnosylation catalyzed by ␣-RHAs can be used, for example, in functional foods and beverages contain-ing molecules with enhanced health-related properties. Some examplesencompass thebiotransformation of natural steroids, antibiotics,flavonoids,andterpenylglycosidesresponsibleforwine aromas[2,40].

Bacterial ␣-RHAs are still poorly characterized, but their biochemical properties might be of key importance for bio-transformationprocessesinvolvingreactionsconditionsthatare unfavorable for fungal rhamnosidases. In this work, we have successfullyexpressedandpartiallycharacterizedanovel recom-binant␣-RHAfromNovosphingobiumsp.PP1Y,namedRHA-P.The ␣-RHAactivityhasbeenisolatedfromthenativesourceandthe correspondingproteinsequencewasverifiedbyMSanalysis.The sequencewasusedforaBLASTsearchagainstallproteindatabases, and resultedtobehomologoustoGHspresentin thegenomes ofseveralSphingomonads;amongthese,a48%sequenceidentity ofRHA-Pwiththe␣-RHA(rhaM)fromSphingomonaspaucimobilis FP2001,wasretrieved[58].Noteworthy,ananalysisoftheamino acidicsequenceofRHA-Phighlightedthepresenceofa23amino acidslongsignalpeptide[59]locatedattheN-terminusofthe pro-tein.

Thenew␣-RHAidentified isencodedbyorfPP1YRS05470,a 3,441bpgene locatedinMegaplasmid Mplof N.sp.PP1Y [44], which was amplified and cloned into pET22b (+) plasmid to allowfortherecombinantexpressioninE.coliBL21(DE3)strain. Firstattemptsofexpressionoftherecombinantprotein,rRHA-P, resultedintheforemostpresenceoftheproteinintheinsoluble portionoftheinducedcultures. Alowerinductiontemperature, shiftedfrom37◦Cto23◦C,alongwiththeuseofahigh-saltLB for-mulationcontainingbothbetaineandsorbitol,whichpresumably actas“chemicalchaperones”,efficientlyconcurredinimproving theyieldofsoluble,activerRHA-P[54–56].

rRHA-Pwaspurifiedfollowingathree-steppurification proto-col.Therelativelypooryieldobtainedattheendofthepurification wasnotunexpectedatthisstage,aswechoseaftereachstepto avoidcollectingrRHA-Pactivefractionsthatshowedthepresence oftoomanyproteincontaminants.

PurifiedrRHA-P sequence wasverifiedbyMS mapping.It is interestingtounderlinethattheproteinN-terminusexpectedfrom theclonedsequence wasnever detected,either byMSanalysis (bothnativeandrecombinantRHA-P)orbyN-terminus

sequenc-ing (only recombinant RHA-P).The lack of this peptide, which hadbeenexpectedbyapreliminaryanalysisoftheaminoacidic sequence,confirmedthepresenceofasignalpeptidepresumably cleavedthroughapost-translationalproteolyticprocessing.A sim-ilarevidencehasbeendescribedforthe␣-RHAisolatedfromS. paucimobilisFP2001andrecombinantlyexpressedinE.coli[58]. TakeshiM.andcoworkersreportedinthiscasethepresenceofa putativesignalpeptidecleavedbetweenpositionsA24andN25 [58].Similarly,inrRHA-PthecleavagesiteislocatedbetweenA23 and E24. Theamino acidicsequence of theN-terminusof both ␣-RHAfromstrainFP2001andstrainPP1Yrevealedseveral pecu-liaritiesownedbybacterialsignalpeptides,suchasthepresenceof achargedregion(2–5residues)followedbyahydrophobicstretch of∼12aa,alongwiththepresenceofsmallandapolarresidues located1and3aaupstreamofthecleavagesite[60].The func-tionalroleofthiscleavage,aswellasthepossiblesortingofthese processedproteinsintheperiplasmicspaceofthenativebacteria, needstobefurtherinvestigated.

ApreliminarystructuralcharacterizationshowedthatrRHA-P isamonomericproteinwithanapproximatemolecularweightof 101,500±5,000Da.Mechanismofaction,kineticparametersand optimumreactionconditionsweredeterminedusingasynthetic substrate,pNPR.

Asforthereactionmechanism,GHsaregenerallygroupedintwo mainclasses,invertingandretaining.Atypicalinverting glycosi-daserequiresthepresenceofacatalyticacidresidueandacatalytic basicresidue,whereasatypicalretainingglycosidasecontainsa generalacid/baseresidueandanucleophile.Thesedifferent hydrol-ysismechanismslead,respectively,toaninversionortoaretention oftheanomericoxygenconfigurationintheproductcomparedto thesubstrate[61].NMRexperimentsshowedthatrRHA-Pactsas aninvertingGH;furtherinvestigationwillgiveadditionalinsights inidentifyingresiduesintheactivesiteofthisenzyme,whichare directlyinvolvedincatalysis.

rRHA-P catalytic efficiency, defined by a Ks value of

4.6s−1␮M−1,underlinedthattheactivityofthisenzymeresulted

to be comparable or even higher than that of other bacterial ␣-RHAsdescribed in literature. Whenclearly reported,suchas in lactic acid bacteria Lactobacillus plantarum, and Pediococcus acidilactici,Ks values onpNPRrangein factfrom0.01s−1␮M−1

to0.019s−1␮M−1 [38,39].In addition,Ks ofrRHA-P resultedto

be approximately3 times higher than the Ks of 1.74s−1␮M−1

reported for the ␣-RHA isolated from S. paucimobilis FP2001 [57].ThecomparisonamongtheKMvaluespresentinliterature,

rangingfrom1.18mMforS.paucimobilisFP2001to16.2mMfor the␣-RHAisolatedfromP.acidilactici,showedahigherapparent affinityofrRHA-PforpNPR(KMof160␮M),whichmightbeinpart

responsibleforthegreatdifferencesfoundinKSvalues.

ToinvestigatetheeffectivepotentialofusingrRHA-Pin biotech-nologicalprocessesinvolvingthebiotransformationofflavonoids, optimalreactionconditionsintermsofpH,temperatureand pres-enceoforganicsolventswereevaluated.Inparticular,rRHA-P,in linewithotherbacterial␣-RHAs[34–38,55],hasanoptimalactivity atpH6.9,a valuethathighlights amarkeddifferencewith fun-gal␣-RHAsactingat pHvaluesranging from4to5 [17,31,32]. rRHA-Pshowsanoptimalactivityat40.9◦Candasignificantoverall thermalstability,retaining∼66%oftheactivityupto45◦C,a tem-peraturerangemainlyusedinmostindustrialprocesses.Inthis respect,alsoagreatmajorityofotherfungalandbacterialenzymes exhibitsimilarvaluesoftemperaturestabilityandoptimalactivity [17,32,34,37,38,55],whereasonlyalimitednumberof␣-RHAsis morethermophilicandhasanoptimumoftemperatureatca.60◦C [31,36,37,39].rRHA-Phasamoderatetolerancetoorganicsolvents, usuallyemployedforthebiotransformationofflavonoidsthatare poorlysolubleinwater,retainingthe66%ofactivityonpNPRin solutionscontaining10%ofeitherDMSOorethanol.Naringin

(11)

con-versionis evenfaster in10%DMSO thanintheabsenceof this solvent,probablyowingtothefactthatthisflavonoidismore sol-ubleinthepresenceofDMSO.Noteworthy,flavonoidsconversion catalyzedbyother␣-RHAhasbeendescribedinthepresenceof 2–5%DMSO[37–39];higherconcentrationofDMSO,astheone usedforourbioconversion,mightfurtherincreasethesolubility ofmanyflavonoidsofcommercialinterest.Thesedataaltogether suggestahighertoleranceofrRHA-Ptothepresenceofsolvents comparedto␣-RHAsdescribedinliteratureforwhicharesidual20 −30%activityin12%ethanolanda24%activityin25%DMSOhas beenreported[17,39].ItisworthmentioningthatrRHA-Presidual activityinethanol-containingbuffersmightbeofadditional impor-tanceasmanybiologicallyrelevantrhamnosylatedflavonoidsare foundinwineandpossiblycitrusderivedalcoholicbeverages.

Aspreviouslyunderlined,thekineticdataobtainedsofarfor thisenzymeundoubtedlyencourageitsuseforthebioconversion ofglycosylatednaturalflavonoids thataremoresolubleathigh temperature (ca.50◦C) [62], basic pH values, and in the pres-enceoforganicsolvents.Inthiscontext,experimentstoverifythe hydrolyticpropertiesofrRHA-Ponfewnaturalflavonoids contain-ingeither␣-1,2or␣-1,6glycosidiclinkagesbetween␣-l-rhamnose and␤-d-glucosewereperformed.TLCanalysisonnaringin(␣-1,2), rutin(␣-1,6)andneohesperidin(␣-1,6)showedatotalconversion ofnaringinin thecorrespondingpruninand rhamnose,while a partialhydrolysisofrutinandneohesperidinwasobserved,thus confirmingtheabilityofthisenzymetohydrolyzeboth␣-1,2and ␣-1,6linkages.Likewise,themajorityofotherbacterialand fun-gal␣-RHAsexhibitsimilarsubstratespecificity,eventhoughthese enzymesoftenshowaslightpreferenceforthehydrolysisof␣-1,6 linkages[31,32,37–39].

In conclusion, the results described in this work boost the interesttowardafurtherbiochemicalcharacterizationofRHA-P activityusingforexampleawidearrayofglycosylatedflavonoids, toinvestigatetheeffectivepotentialofthisnovelenzymefor vari-ousbiomassandfood-processingapplicationsaimedatrecovering high-valueaddedcompoundsfromcomplexvegetablematrixes.

Acknowledgment

ThisresearchwassupportedbyFARB2014ORSA132082.The funderhadnoroleinstudydesign,datacollectionandanalysis, decisiontopublish,orpreparationofthemanuscript.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.molcatb.2016.10. 002.

References

[1]B.Henrissat,Aclassificationofglycosylhydrolasesbasedonamino-acid sequencesimilarities,Biochem.J.280(1991)309–316.

[2]P.Manzanares,S.Vallés,D.Ramón,M.Orejas,␣-l-Rhamnosidases:oldand newinsights,industrialenzymes,structure,functionandapplication,in:J. Polaina,A.P.MacCabe(Eds.),IndustrialEnzymes,Springer,2007,pp.117–140. [3]M.Mutter,G.Beldman,H.A.Schols,A.G.J.Voragen,Rhamnogalacturonan

␣-l-rhamnopyranohydrolase.Anovelenzymespecificfortheterminal nonreducingrhamnosylunitinrhamnogalacturonanregionsofpectin,Plant Physiol.106(1)(1994)241–250.

[4]D.C.Crick,S.Mahapatra,P.J.Brennan,Biosynthesisofthe

arabinogalactan-peptidoglycancomplexofMycobacteriumTuberculosis, Glicobiology11(9)(2001)107R–118R.

[5]E.G.Maxwell,I.J.Colquhoun,H.K.Chau,A.T.Hotchkiss,K.W.Waldron,V.J. Morris,N.J.Belshaw,RhamnogalacturonanIcontaininghomogalacturonan inhibitscoloncancercellproliferationbydecreasingICAM1expression, Carbohydr.Polym132(2015)546–553.

[6]E.Nguema-Ona,M.Vicré-Gibouin,M.Gotté,B.Plancot,P.Lerouge,M.Bardor, A.Driouich,CellwallO-glycoproteinsandN-glycoproteins:aspectsof biosynthesisandfunction,Front.PlantSci.5(2014)499.

[7]W.Hashimoto,O.Miyake,H.Nankai,K.Murata,Molecularidentificationofan ␣-l-rhamnosidasefromBacillussp.strainGL1asanenzymeinvolvedin completemetabolismofgellan,Arch.Biochem.Biophys.415(2)(2003) 235–244.

[8]R.Rahim,U.A.Ochsner,C.Olvera,M.Graninger,P.Messner,J.S.Lam,G. Soberón-Chávez,CloningandfunctionalcharacterizationofthePseudomonas aeruginosarhlCgenethatencodesrhamnosyltransferase2,anenzyme responsiblefordi-rhamnolipidbiosynthesis,Mol.Microbiol.40(3)(2001) 708–718.

[9]-W.Nereus,I.V.Gunther,A.Nun˜ez,W.Fett,D.K.Y.Solaiman,Productionof rhamnolipidsbyPseudomonaschlororaphis,anonpathogenicbacterium,Appl. Environ.Microb.71(5)(2005)2288–2293.

[10]E.Champion,I.Andre,L.A.Mulard,P.Monsan,M.Remaud-Simeon,S.Morel, Synthesisofl-rhamnoseandN-acetyl-d-glucosaminederivativesenteringin thecompositionofbacterialpolysaccharidesbyuseofglucansucrases,J. Carbohydr.Chem.28(2009)142–160.

[11]E.Jr.Middleton,T.C.Theoharides,Theeffectsofplantflavonoidson mammaliancells:implicationsforinflammation,heartdisease,andcancer, Pharmacol.Rev.4(52)(2000)673–751.

[12]F.L.Perez-Vizcaino,J.Duarte,Flavonolsandcardiovasculardisease,Mol. AspectsMed.31(6)(2010)478–494.

[13]P.Fresco,F.Borges,M.P.M.Marques,C.Diniz,Theanticancerpropertiesof dietarypolyphenolsanditsrelationwithapoptosis,Curr.Pharm.Des.16 (2010)114–134.

[14]G.Ce´ıliz,M.C.Audisio,M.Daz,Antimicrobialpropertiesofprunin,acitric flavanoneglucoside,anditsprunin6-O-lauroylester,J.Appl.Microbiol.109 (4)(2010)1450–1457.

[15]M.Puri,S.S.Marwaha,R.M.Kothari,J.F.Kennedy,Biochemicalbasisof bitternessincitrusfruitjuicesandbiotechapproachesfordebittering,Crit. Rev.Biotechnol.16(1996)145–155.

[16]R.González-Barrio,L.M.Trindade,P.Manzanares,L.H.deGraaff,F.A. Tomás-Barberán,J.C.Espín,Productionofbioavailableflavonoidglucosidesin fruitjuicesandgreenteabyuseoffungalalpha-l-rhamnosidases,J.Agric. FoodChem.52(20)(2004)6136–6142.

[17]M.V.Gallego,F.Pi ˜naga,D.Ramón,S.Vallés,Purificationandcharacterization ofan␣-l-rhamnosidasefromAspergillusterreusofinterestinwinemaking,J. FoodSci.66(2)(2001)204–209.

[18]Z.Gunata,S.Bitteur,J.M.Brillouet,C.Bayonove,R.Cordonnier,Sequential enzymatichydrolysisofpotentiallyaromaticglycosidesfromgrape, Carbohydr.Res.184(1988)139–149.

[19]P.Manzanares,M.Orejas,J.V.Gil,L.H.deGraaff,J.Visser,D.Ramón, Constructionofageneticallymodifiedwineyeaststrainexpressingthe AspergillusaculeatusrhaAgene,encodingan␣-l-rhamnosidaseofenological interest,Appl.Environ.Microbiol.69(12)(2003)7558–7562.

[20]M.E.MeloBrancodeAraújo,Y.E.MoreiraFranco,T.GrandoAlberto,M.Alves Sobreiro,M.A.Conrado,D.Gonc¸alvesPriolli,A.C.H.FranklandSawaya,A.L.T.G. Ruiz,J.E.deCarvalho,P.deOliveiraCarvalho,Enzymaticde-glycosylationof rutinimprovesitsantioxidantandantiproliferativeactivities,FoodChem.141 (2013)266–273.

[21]V.D.Bokkenheuser,C.H.Shackleton,J.Winter,Hydrolysisofdietaryflavonoid glycosidesbystrainsofintestinalBacteroidesfromhumans,Biochem.J.248 (3)(1987)953–956.

[22]A.J.Day,J.M.Gee,M.S.DuPont,I.T.Johnson,G.Williamson,Absorptionof quercetin-3-glucosideandquercetin-4-glucosideintheratsmallintestine:

theroleoflactasephlorizinhydrolaseandthesodium-dependentglucose transporter,Biochem.Pharmacol.65(7)(2003)1199–1206.

[23]S.Wolffram,M.Block,P.Ader,Quercetin-3-glucosideistransportedbythe glucosecarrierSGLT1acrossthebrushbordermembraneofratsmall intestine,J.Nutr.132(4)(2002)630–635.

[24]A.Scalbert,G.Williamson,Dietaryintakeandbioavailabilityofpolyphenols,J. Nutr130(2000)2073S–2085S.

[25]P.C.Hollman,J.M.vanTrijp,M.N.Buysman,M.S.vanderGaag,M.J.Mengelers, J.H.deVries,M.B.Katan,Relativebioavailabilityoftheantioxidantflavonoid quercetinfromvariousfoodsinman,FEBSLett.418(1997)152–156. [26]K.Németh,G.W.Plumb,J.G.Berrin,N.Juge,R.J.Hassan,H.Y.Naim,G.

Williamson,D.M.Swallow,P.A.Kroon,Deglycosylationbysmallintestinal epithelialcell␤-glucosidasesisacriticalstepintheabsorptionand metabolismofdietaryflavonoidglycosidesinhumans,Eur.J.Nutr.42(2003) 29–42.

[27]P.C.Hollman,M.N.Bijsman,Y.vanGameren,E.P.Cnossen,J.H.deVries,M.B. Katan,Thesugarmoietyisamajordeterminantoftheabsorptionofdietary flavonoidglycosidesinman,FreeRadic.Res.31(6)(1999)569–573. [28]P.Garnier,X.T.Wang,M.A.Robinson,S.vanKasteren,A.C.Perkins,M.Frier,

A.J.Fairbanks,B.G.Davis,Lectin-directedenzymeactivatedprodrugtherapy (LEAPT):synthesisandevaluationofrhamnose-cappedprodrugs,J.Drug Target.18(10)(2010)794–802.

[29]M.A.Robinson,S.T.Charlton,P.Garnier,X.T.Wang,S.S.Davis,A.C.Perkins,M. Frier,R.Duncan,T.J.Savage,D.A.Wyatt,S.A.Watson,B.G.Davis,LEAPT: lectin-directedenzyme-activatedprodrugtherapy,Proc.Natl.Acad.Sci.101 (40)(2004)14527–14532.

[30]N.M.Young,R.A.Z.Johnston,J.C.Richards,Purificationofthe ␣-l-rhamnosidaseofPenicilliumdecumbensandcharacteristicsoftwo glycopeptidecomponents,Carbohydr.Res.191(1989)53–62.

(12)

[31]T.Koseki,Y.Mese,N.Nishibori,K.Masaki,T.Fujii,T.Handa,Y.Yamane,Y. Shiono,T.Murayama,H.Iefuji,Characterizationofanalpha-l-rhamnosidase fromAspergilluskawachiianditsgene,Appl.Microbiol.Biotechnol.80(6) (2008)1007–1013.

[32]P.Manzanares,H.C.vandenBroeck,L.H.deGraaff,J.Visser,Purificationand characterizationoftwodifferentalpha-l-rhamnosidases,RhaAandRhaB, fromAspergillusaculeatus,Appl.Environ.Microbiol.67(5)(2001)2230–2234. [33]J.E.Chua,P.A.Manning,R.Morona,TheShigellaflexneribacteriophageSf6

tailspikeprotein(TSP)/endorhamnosidaseisrelatedtothebacteriophageP22 TSPandhasamotifcommontoexo-andendoglucanasesandC-5epimerases, Microbiology145(7)(1999)1649–1659.

[34]W.Hashimoto,H.Nankai,N.Sato,S.Kawai,K.Murata,Characterizationof ␣-l-rhamnosidaseofBacillussp.GL1responsibleforthecomplete depolymerizationofgellan,Arch.Biochem.Biophys.415(2)(1999)56–60. [35]A.G.Orrillo,P.Ledesma,O.D.Delgado,G.Spagna,J.D.Breccia,Cold-active

␣-l-rhamnosidasefrompsychrotolerantbacteriaisolatedfroma sub-Antarcticecosystem,Enz.Microbiol.Technol.40(2)(2007)236–241. [36]V.V.Zverev,C.Hertel,K.Bronnenmeier,A.Hroch,J.Kellermann,W.H.

Schwarz,Thethermostable␣-l-rhamnosidaseRamAofClostridium stercorarium:biochemicalcharacterizationandprimarystructureofa bacterial␣-L-rhamnosidehydrolaseanewtypeofinvertingglycoside hydrolase,Mol.Microbiol.35(2000)173–179.

[37]M.Avila,M.Jaquet,D.Moine,T.Requena,C.Peláez,F.Arigoni,I.Jankovic, Physiologicalandbiochemicalcharacterizationofthetwo

alpha-l-rhamnosidasesofLactobacillusplantarumNCC245,Microbiology155 (2009)2739–2749.

[38]J.Beekwilder,D.Marcozzi,S.Vecchi,R.deVos,P.Janssen,C.Francke,J.van HylckamaVlieg,R.D.Hall,Characterizationofrhamnosidasesfrom LactobacillusplantarumandLactobacillusacidophilus,Appl.Environ.Microbiol 75(2009)3447–3454.

[39]H.Michlmayr,W.Brandes,R.Eder,C.Schümann,A.M.delHierro,K.D.Kulbe, Characterizationoftwodistinctglycosylhydrolasefamily78

␣-l-rhamnosidasesfromPediococcusacidilactici,Appl.Environ.Microbiol.77 (18)(2011)6524–6530.

[40]M.Puri,Updatesonnaringinase:structuralandbiotechnologicalaspects, Appl.Microbiol.Biotechnol.93(1)(2012)49–60.

[41]Z.Cui,Y.Maruyama,B.Mikami,W.Hashimoto,K.Murata,Crystalstructureof glycosidehydrolasefamily78␣-l-rhamnosidasefromBacillussp.GL1,J.Mol. Biol.374(2)(2007)384–398.

[42]Z.Fujimoto,A.Jackson,M.Michikawa,T.Maehara,M.Momma,B.Henrissat, H.J.Gilbert,S.Kaneko,ThestructureofaStreptomycesavermitilis

␣-l-rhamnosidaserevealsanovelcarbohydrate-bindingmoduleCBM67 withinthesix-domainarrangement,J.Biol.Chem.288(17)(2013) 12376–12385.

[43]E.Notomista,F.Pennacchio,V.Cafaro,G.Smaldone,V.Izzo,L.Troncone,M. Varcamonti,A.DiDonato,ThemarineisolateNovosphingobiumsp.PP1Y showsspecificadaptationtousethearomaticfractionoffuelsasthesole carbonandenergysource,Microb.Ecol.61(3)(2011)582–594. [44]V.D’Argenio,M.Petrillo,P.Cantiello,B.Naso,L.Cozzuto,E.Notomista,G.

Paolella,A.DiDonato,F.Salvatore,Denovosequencingandassemblyofthe wholegenomeofNovosphingobiumsp.strainPP1Y,J.Bacteriol.193(16) (2011)4296.

[45]W.Hashimoto,K.Murata,Alpha-l-rhamnosidaseofSphingomonassp.R1 producinganunusualexopolysaccharideofsphingan,Biosci.Biotechnol. Biochem.62(6)(1998)1068–1074.

[46]V.D’Argenio,E.Notomista,M.Petrillo,P.Cantiello,V.Cafaro,V.Izzo,B.Naso, L.Cozzuto,L.Durante,L.Troncone,G.Paolella,F.Salvatore,A.DiDonato, CompletesequencingofNovosphingobiumsp.PP1Yrevealsa

biotechnologicallymeaningfulmetabolicpattern,BMCGenomics15(2014) 384.

[47]V.Izzo,P.Tedesco,E.Notomista,E.Pagnotta,A.DiDonato,A.Trincone,A. Tramice,RhamnosidaseactivityinthemarineisolateNovosphingobiumsp. PP1Yanditsuseinthebioconversionofflavonoids,J.Mol.Catal.B:Enzym. 105(2014)95–103.

[48]B.L.Cantarel,P.M.Coutinho,C.Rancurel,T.Bernard,V.Lombard,B.Henrissat, Thecarbohydrate-ActiveEnZymesdatabase(CAZy).anexpertresourcefor glycogenomics,Nucl.AcidsRes.37(2009)D233–D238.

[49]J.Sambrook,E.F.Fritsch,T.Maniatis,MolecularCloning.ALaboratoryManual, 2nded.,ColdSpringHarborLab.Press,1982,pp.545.

[50]P.Gerhardt,R.G.E.Murray,W.A.Wood,N.R.Krieg,MethodsforGeneraland MolecularBacteriology,ASMPress,WashingtonD.C,1994.

[51]D.J.States,R.A.Haberkorn,D.J.Ruben,Atwo-dimensionalnuclearoverhauser experimentwithpureabsorptionphaseinfourquadrants,J.Magn.Reson.48 (1982)286–292.

[52]M.M.Bradford,Arapidandsensitivemethodforthequantitationof microgramquantitiesofproteinutilizingtheprincipleofprotein-dyebinding, Anal.Biochem.72(1976)248–254.

[53]F.He,Laemmli-SDS-PAGE,Bio-protocol.2011.Bio101:e80. http://www.bio-protocol.org/e80.

[54]J.R.Blackwell,R.Horgan,Anovelstrategyforproductionofahighlyexpressed recombinantproteininanactiveform,FEBSLett.295(1–3)(1991)10–12. [55]N.Oganesyan,I.Ankudinova,S.H.Kim,R.Kimb,Effectofosmoticstressand

heatshockinrecombinantproteinoverexpressionandcrystallization,Prot. Expr.Purif.52(2)(2007)280–285.

[56]M.Kilstrup,S.Jacobsen,K.Hammer,F.K.Vogensen,Inductionofheatshock proteinsDnaK,GroEL,andGroESbysaltstressinLactococcuslactis,Appl. Environ.Microbiol.63(5)(1997)1826–1837.

[57]F.Miake,T.Satho,H.Takesue,F.Yanagida,N.Kashige,K.Watanabe, Purificationandcharacterizationofintracellularalpha-l-rhamnosidasefrom PseudomonaspaucimobilisFP2001,Arch.Microbiol.173(1)(2000)65–70. [58]M.Takeshi,K.Nobuhiro,S.Tomomitsu,Y.Tadatoshi,A.Yoichi,M.Fumio,

Cloning,Sequenceanalysis,andexpressionofthegeneencoding SphingomonaspaucimobilisFP2001a-l-rhamnosidase,Curr.Microbiol.51 (2005)105–109.

[59]T.N.Petersen,S.Brunak,G.vonHeijne,H.Nielsen,SignalP4.0:discriminating signalpeptidesfromtransmembraneregions,Nat.Methods8(2011)785–786. [60]L.M.Gierasch,Signalsequences,Biochemistry28(1989)923–930.

[61]B.Cobucci-Ponzano,M.Moracci,Glycosidasesandglycosynthases,in: BiocatalysisinOrganicSynthesisofFaberK,FessnerW-DTurnerNJ,2016,pp. 483–506.

[62]T.Sathishkumar,R.BaskarR,S.Shanmugam,P.Rajasekaran,S.Sadasivam,V. Manikandan,Optimizationofflavonoidsextractionfromtheleavesof TabernaemontanaheyneanaWallusingL16Orthogonaldesign,Naturesci6(3)

Riferimenti

Documenti correlati

Abbiamo mostrato come è possibile scientificamente concettualizzare l’energia tra- mite le forze della natura, utilizzando le metafore di quantità di fluido, tensione, e po- tenza,

CT: Computed tomography; EUS: Endoscopic ultrasound; FNA: Fine-needle aspiration; HIFU: High-intensity focused ultrasound; IRE: Irreversible electroporation; MMFI: Multimodal

I dati relativi all’Europa fanno emergere una situazione allarmante: in Belgio, il 56% degli studenti LGBT ha sperimen- tato forme di violenza omofobica o transfobica almeno

thermophilus HB27::nar as host for the homologous expression of a novel α-galactosidase (TtGalA), one of the most thermoactive α-galactosidases identified so far..

Betrachtet man diese letzte Skizze (am besten im Vergleich mit Abbil- dung 43), wird klar, inwieweit der Wiederholungs-Plan der Figuren der Flöten- Stimme entscheidende Bedeutung

Shurooq Amin canta Georgia O’Keeffe 327 za femminea, fatta di forme sinuose tinte da caldi colori sensuali che rimandano alle atmosfere esotiche e femminili che hanno

For data collection, X-ray beams with wavelength of about 0.1 nm (1 Å) are commonly used for atomic-resolution structural determination of protein samples. Due to the periodicity