• Non ci sono risultati.

Search for pair production of second-generation scalar leptoquarks in pp collisions at √s=7TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Search for pair production of second-generation scalar leptoquarks in pp collisions at √s=7TeV"

Copied!
15
0
0

Testo completo

(1)

Search for Pair Production of Second-Generation Scalar Leptoquarks

in pp Collisions at

p

ffiffiffi

s

¼ 7 TeV

V. Khachatryan et al.* (CMS Collaboration)

(Received 17 December 2010; published 17 May 2011)

A search for pair production of second-generation scalar leptoquarks in the final state with two muons and two jets is performed using proton-proton collision data at pffiffiffis¼ 7 TeV collected by the CMS detector at the LHC. The data sample used corresponds to an integrated luminosity of 34 pb1. The number of observed events is in good agreement with the predictions from the standard model processes. An upper limit is set on the second-generation leptoquark cross section times2 as a function of the leptoquark mass, and leptoquarks with masses below 394 GeV are excluded at a 95% confidence level for  ¼ 1, where  is the leptoquark branching fraction into a muon and a quark. These limits are the most stringent to date.

DOI:10.1103/PhysRevLett.106.201803 PACS numbers: 14.80.Sv, 12.60.i, 13.85.Rm

Several extensions of the standard model [1–5] predict the existence of leptoquarks (LQ), hypothetical particles that carry both lepton and baryon numbers and couple to both leptons and quarks. Leptoquarks are fractionally charged and can be either scalar or vector particles. In order to satisfy constraints from flavour-changing neutral currents and rare pion and kaon decays [6,7], leptoquarks are restricted to couple to a single lepton-quark generation. In proton-proton collisions at the CERN Large Hadron Collider (LHC) the dominant mechanisms for pair produc-tion of scalar leptoquarks are gluon-gluon fusion and q q-annihilation. The cross section depends on the strong coupling constant and the LQ mass and has been calculated at Next-to-Leading-Order (NLO) [8]; the dependence on the Yukawa coupling  is negligible [8]. Leptoquarks decay to a quark and a charged lepton of the same genera-tion with unknown branching fracgenera-tion and to a quark and a neutrino with branching fraction (1  ). In this analysis, we consider the decay of a second-generation leptoquark to a muon and a quark.

Several experiments have searched for leptoquarks, but so far no evidence has been observed. A review of LQ phenomenology and searches can be found in [9]. The most recent limits from the D0 experiment at the Fermilab Tevatron collider exclude second-generation scalar lepto-quarks with masses below 316 GeV for ¼ 1, based on proton-antiproton collisions atpffiffiffis¼ 1:96 TeV [10].

This Letter describes a search for pair production of second-generation scalar leptoquarks with the CMS experiment using LHC proton-proton collisions at

ffiffiffi s p

¼ 7 TeV. The data sample used corresponds to an integrated luminosity of34:0  3:7 pb1.

The CMS detector, described in detail elsewhere [11], uses a cylindrical coordinate system with the z axis along the counterclockwise beam direction The angles  and  are the polar and azimuthal angles, respectively. Pseudorapidity is defined as ¼  ln½tanð=2Þ, where  is measured with respect to theþz-axis. The central fea-ture of the CMS apparatus is a superconducting solenoid, of 6 m internal diameter, providing a field of 3.8 T. Within the field volume are the silicon pixel and strip tracker, the crystal electromagnetic calorimeter (ECAL) and the brass-scintillator hadron calorimeter (HCAL). Muons are mea-sured in gas-ionization detectors embedded in the steel return yoke. In addition to the barrel and endcap detectors, CMS has extensive forward calorimetry. The inner tracking system consists of a silicon pixel and strip tracker, providing the required granularity and precision for the reconstruction of vertices of charged particles having pseudorapidities jj < 2:5. The ECAL and HCAL are used to measure the energies of photons, electrons, and hadrons within a region ofjj < 3:0. The three muon sys-tems surrounding the solenoid cover a regionjj < 2:4 and are composed of drift tubes in the barrel region (jj < 1:2), of cathode strip chambers in the endcaps (0:9 < jj < 2:4), and of resistive plate chambers in both the barrel region and the endcaps (jj < 1:6). Events are recorded based on a first-level trigger decision coming from either the calo-rimeter or muon systems. The final trigger decision is based on the information from all subsystems, which is passed on to the high level trigger (HLT), consisting of a farm of computers running a version of the reconstruction software optimized for fast processing.

The signature of the decay of pair-produced second-generation leptoquarks studied here consists of two muons and two jets with high transverse momentum (pT). Events

are selected by a single muon trigger without isolation

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published article’s title, journal citation, and DOI.

(2)

requirements and with lower pT thresholds dependent upon the instantaneous luminosity. The combined HLT and first-level trigger efficiency is approximately 92%.

The Monte Carlo (MC) signal events are generated in the LQ mass range 250–500 GeV, using the PYTHIA [12] generator (version 6.422) and tune D6T [13,14]. The main background processes that can mimic the signature of the LQ signal areZ=þ jets, tt, VV (WW, ZZ, WZ), W þ jets, and multijet events. The tt, VV, and muon-enriched multijets events are generated with MADGRAPH

[15,16]; Z=þ jets and W þ jets events are generated with ALPGEN [17]. In MADGRAPH and ALPGEN samples, parton showering and hadronization is performed with

PYTHIA.

Muons are reconstructed as tracks in the muon system that are matched to the tracks reconstructed in the inner tracking system. Muons are required to have pT > 30 GeV, jj < 2:4. The muon relative isolation parameter is defined as the scalar sum of thepT of all tracks in the tracker and the transverse energies of hits in the ECAL and HCAL in a cone ofR ¼pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðÞ2þ ðÞ2 ¼ 0:3 around the muon track, excluding the contribution from the muon itself, divided by the muonpT. Muons are required to have a relative isolation parameter less than 0.05. and  are the pseudorapidity and azimuthal angle differences between the muon track and other reconstructed tracks or hits in the calorimeter. To have a precise measurement of the transverse impact parameter of the muon relative to the beam-spot position, only muons with tracks containing more than 10 hits in the silicon tracker are considered. To reject muons from cosmic rays, the transverse impact parameter is required to be less than 2 mm. In addition, the two muon candidates are required to be separated from each other by at leastR ¼ 0:3 and at least one muon must be in the pseudorapidity regionjj < 2:1. The efficiency of

selecting dimuon events is 61%–70% for the LQ mass range of 200–500 GeV.

Jets are reconstructed using the anti-kT [18] algorithm

with a distance parameterR ¼ 0:5 and are required to have pT> 30 GeV and jj < 3:0. Jet-energy-scale corrections

derived from MC simulated events are applied to establish a relative uniform response in  and an absolute uniform response inpT. A residual jet energy correction is derived from data by looking at the balance in pT in dijet events, and it is applied to jets in data.

Additional selection requirements are placed on two variables, which are effective at discriminating the LQ signal from the major sources of background. The first is the dimuon invariant mass,M. The second variable,ST, is defined as the sum of the magnitudes of thepTof the two highest pT muons and the two highest pT jets. The two muons in the signal events come from the decays of two high-mass particles, and they tend to form a large invariant mass. Thus, events are selected if M> 115 GeV. This helps to reduce the contribution from Z=þ jets processes, which is one of the largest

back-grounds. In addition, the LQ pair is expected to have a large ST. The lower threshold onST is optimized for different

LQ mass hypotheses by using a Bayesian approach [19,20] to minimize the expected upper limit on the LQ cross section in the absence of an observed signal. The ST cut helps to further reduce background sources, most notice-ably tt. The optimal ST threshold values for each mass hypothesis are given in Table I. While the LQ signal is expected to peak in the mass distribution of the -jet pairs, we find that the ST variable gives sufficient power of discrimination in the range of LQ masses considered. The -jet mass distribution would nevertheless be important to establish the signal in case an excess is observed.

TABLE I. The data event yields in34:0 pb1for different leptoquark mass hypotheses, together with the optimized ST threshold values (in GeV) for each mass, background predictions, number of expected LQ signal events (S), and signal selection efficiency times acceptance (S).MLQandSTvalues are listed in GeV. TheZ=!  þ jets and tt contributions are rescaled by the normalization

factors determined from data. Other backgrounds correspond toVV, W þ jets, and multijet processes. Uncertainties are from MC statistics.

Signal samples (MC) Standard model background samples (MC) Selected events in MLQ (STCut) [GeV] Selected Events Acceptance

Efficiency tt þ jets Z=þ jets Others All

Events in data Obs./Exp. 95% C.L. u.l. on [pb] 200 (ST> 310) 160  20 0:388  0:003 4:6  0:1 4:08  0:07 0:1  0:01 8:8  0:2 5 0:438=0:695 225 (ST> 350) 89  9 0:421  0:003 3:1  0:1 2:99  0:05 0:07  0:01 6:2  0:1 3 0:339=0:547 250 (ST> 400) 51  5 0:437  0:003 1:88  0:09 1:92  0:04 0:051  0:009 3:9  0:1 3 0:366=0:436 280 (ST> 440) 28  3 0:467  0:003 1:15  0:07 1:53  0:03 0:038  0:008 2:72  0:08 3 0:371=0:361 300 (ST> 440) 21  2 0:518  0:004 1:15  0:07 1:53  0:03 0:038  0:008 2:72  0:08 3 0:335=0:326 320 (ST> 490) 14  1 0:509  0:004 0:64  0:05 1:12  0:02 0:019  0:005 1:78  0:06 2 0:300=0:292 340 (ST> 530) 9  1 0:508  0:003 0:4  0:04 0:79  0:01 0:01  0:004 1:20  0:04 1 0:245=0:264 400 (ST> 560) 4:0  0:4 0:578  0:004 0:31  0:04 0:67  0:01 0:01  0:004 0:99  0:04 1 0:219=0:222 450 (ST> 620) 1:9  0:2 0:600  0:004 0:19  0:03 0:49  0:01 0:006  0:003 0:69  0:03 0 0:153=0:199 500 (ST> 700) 0:9  0:1 0:602  0:004 0:09  0:02 0:277  0:006 0:003  0:002 0:37  0:02 0 0:152=0:180

(3)

The contribution from tt is estimated with the MC sample, using normalization and uncertainties determined from data [21]. The contribution from W þ jets is negli-gible once the full event selection is applied. The small contribution fromVV is estimated from MC calculations. The multijet background is found to be negligible using a control data sample of same-sign dimuon events. The background fromZ=þ jets is determined by comparing Z=þ jets events from data and MC samples in two

different regions: at the Z boson peak, 80 < M< 100 GeV, and in the high-mass region, M> 115 GeV.

In the low-mass region, the ratio of data to MC events (RL) is determined to beRL¼ 1:28  0:14 after selecting two muons and two jets withpT> 30 GeV, and a preliminary requirement of ST> 250 GeV. This rescaling factor is applied to the number of Z=þ jets MC events in the high-mass region after the full selection.

Reasonable agreement between data and MC predic-tions is observed at all selection levels. The dimuon invari-ant mass is shown in Fig.1(top) after the initial selection of muons and jets with pT> 30 GeV and a preliminary

requirement of ST > 250 GeV. The M distribution in data is consistent with the expected SM background prediction. The ST distribution is also shown in Fig. 1

(bottom) after the initial selection of muons and jets with pT> 30 GeV and the additional requirement of M> 115 GeV.

The event yields from data, expected LQ signal (for several mass hypotheses), signal selection efficiency times acceptance, and expected standard model backgrounds are summarized in TableI.

Several sources of systematic uncertainties are consid-ered in this analysis. The uncertainty on the integrated luminosity is taken as 11% [22]. A 5% systematic uncer-tainty is assigned to the jet-energy scale (JES) [23] of each jet. A smaller,1% systematic uncertainty comes from the muon momentum scale. The 300 GeV LQ signal efficiency changes by 2% and 1% due to JES and muon momentum scale uncertainties, respectively. The effect of the muon momentum scale uncertainty on the total background is estimated to be <0:5%. The JES contributes 2% to the estimate of the Z=þ jets background described above and 15% to the estimate of theVV background from MC. The statistical uncertainty on the value of RL after a preselection requirement (ST> 250 GeV), 11%, is used as an uncertainty on the estimated Z=þ jets back-ground. Additionally, an uncertainty of 16% is assigned on the shape of theZ=þ jets background by comparing the number of Z=þ jets events surviving final ST cut selections in MADGRAPH samples with factorization orre-normalization scales and matching thresholds varied by a factor of 2. A 41% systematic uncertainty is taken from the CMS measurement of thett production cross section [21] and assigned to the estimate of the tt background; it includes the effect of JES on the estimate of the tt back-ground. The effect of jet energy and muon momentum resolution on expected signal and backgrounds is found to be negligible. A 5% systematic uncertainty per muon is assigned due to differences in reconstruction, identifica-tion, trigger, and isolation efficiencies between data and MC [24], resulting in a 10% uncertainty on the efficiency of selecting events with two muons both for the signal and background processes. A theoretical uncertainty on the LQ signal production cross sections due to the choice of re-normalization or factorization scales has been calculated by varying the scales between half and twice the LQ mass, and is found to be 14–15% for LQ masses between 200 and 500 GeV. The effect on the signal acceptance of additional jets generated via initial and final state radiation is found to be less than 1%. The 90% C.L. PDF uncertainties on LQ cross section have been obtained using the CTEQ6.6 [25] PDF error set following a standard prescription and have been found to vary from 8 to 22% for leptoquarks in the mass range of 200–500 GeV [8]. The effect of PDF un-certainties is less than 0.5% on signal acceptance. The PDF uncertainties are not considered for background sources (GeV) µ µ M 50 100 150 200 250 300 350 400 Events/bin -2 10 -1 10 1 10 2 10 -1 Data, 34.0 pb * + jets γ Z/ t t Other backgrounds LQ, M = 400 GeV CMS (GeV) µ µ M 50 100 150 200 250 300 350 400 Events/bin -2 10 -1 10 1 10 2 10 (GeV) T S 200 300 400 500 600 700 800 Events/bin -2 10 -1 10 1 10 2 10 3 10 -1 Data, 34.0 pb * + jets γ Z/ t t Other backgrounds LQ, M = 400 GeV CMS (GeV) T S 200 300 400 500 600 700 800 Events/bin -2 10 -1 10 1 10 2 10 3 10

FIG. 1 (color online). The distribution of M (top) after requiring at least two muons and at least two jets with pT> 30 GeV and ST> 250 GeV, and the distribution of ST(bottom)

after requiring at least two muons and at least two jets withpT> 30 GeV and M> 115 GeV. The Z=!  þ jets and tt

contributions are rescaled by the normalization factors deter-mined from data. Other backgrounds correspond to VV, W þ jets, and multijet processes. Uncertainties are statistical.

(4)

with uncertainties determined from data. The systematic uncertainties, their magnitude, and the relative impact on the number of signal and background events are summa-rized in TableII.

One candidate event survives the full selection criteria corresponding to a leptoquark mass hypothesis of 400 GeV, and no candidates survive for criteria corresponding to masses greater than 450 GeV. An upper limit on the LQ cross section is set using a Bayesian method [19,20] with a flat signal prior. A log-normal probability density function is used to integrate over the systematic uncertainties. Using Poisson statistics, a 95% confidence level (C.L.) upper limit is obtained on  2. This is shown in Fig.2together with the NLO predictions for the scalar LQ pair production cross section. The 95% C.L. exclusion on as a function of LQ mass is also shown in Fig.2. The systematic uncertainties reported in TableIIare included in the calculation as nui-sance parameters. With the assumption that ¼ 1, second-generation scalar leptoquarks with masses less than 394 GeV are excluded at 95% C.L., 78 GeV higher than the limit set at the D0 Experiment at the Tevatron [10]. This is in agreement with the expected limit of 394 GeV. The corresponding observed limit on cross section is 0.223 pb. If the lower edge of the theoretical  2 curve is used, the observed (expected) limit on LQ mass is 379 (377) GeV and the observed limit on cross section is 0.224 pb.

In summary, a search for pair production of second-generation scalar leptoquarks decaying to two muons and two jets has been performed using 7 TeVpp collision data corresponding to an integrated luminosity of 34:0 pb1. The number of observed candidate events agrees well with the number of expected standard model background events. A Bayesian approach that includes the treatment of systematic uncertainties as nuisance parameters is used to set limits on the LQ cross section times2as a function of LQ mass. At 95% C.L., the pair production of second-generation scalar leptoquarks with masses below 394 GeV is excluded for ¼ 1, where  is the leptoquark branching fraction into a muon and a quark. This is the most stringent limit to date on the existence of second-generation scalar leptoquarks.

We extend our thanks to Michael Kra¨mer for providing

the tools for calculation of the leptoquark theoretical cross section and PDF uncertainty. We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU

TABLE II. Systematic uncertainties and their effects on num-ber of signal and background events.

Systematic uncertainty Magnitude Effect on signal

Effect on background

JES 5% 2%   

JES & Data Backgr. Est.       26%

Muon Momentum Scale 1% 1% <0:5%

Muon Pair Reco/ID/Iso 10% 10% <0:05%

Integrated Luminosity 11% 11%    Total 15% 26% (GeV) LQ M 200 250 300 350 400 450 500 [pb]σ × 2 β -2 10 -1 10 1 10 2 10 (GeV) LQ M 200 250 300 350 400 450 500 [pb]σ × 2 β -2 10 -1 10 1 10 2 10 q µ → LQ =1) β , exclusion (1 fb ∅ D =1 β with theory uncertainty, σ

× β

Expected 95% C.L. upper limit Observed 95% C.L. upper limit

CMS -1 Ldt=34.0 pb

(GeV) LQ M 200 300 400 500 β 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 (GeV) LQ M 200 300 400 500 β 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 q µ → LQ ) exclusion (1 fb ∅ D Expected 95% C.L. limit Observed 95% C.L. limit CMS -1 Ldt=34.0 pb

FIG. 2 (color online). (Top) The expected and observed 95% C.L. upper limit on the scalar leptoquark pair production cross section multiplied by2as a function of the LQ mass, together with the NLO theoretical cross section curve. The shaded band on the theoretical values includes PDF uncertainties and the error on the leptoquark production cross section due to renormalization and factorization scale variation by a factor of 2. The shaded region is excluded by the current D0 limits [10]. (Bottom) The minimum for 95% C.L. exclusion of the leptoquark hypothesis as a function of leptoquark mass. The observed limit and corre-sponding uncertainty band is obtained by considering the ob-served upper limit and theoretical branching ratio and its uncertainty in the top figure. Note: The shaded area excluded by the D0 experiment was determined with combined information from the decay channel with two muons and two jets and the decay channel with one muon, missing transverse energy, and two jets.

(5)

(Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei);

TUBITAK and TAEK (Turkey); STFC (United

Kingdom); DOE and NSF (USA).

[1] W. Buchmu¨ller et al.,Phys. Lett. B 191, 442 (1987). [2] S. Dimopoulos and L. Susskind, Nucl. Phys. B155, 237

(1979).

[3] S. Dimopoulos,Nucl. Phys. B168, 69 (1980).

[4] E. Eichten and K. Lane,Phys. Lett. B 90, 125 (1980). [5] V. Angelopoulos et al.,Nucl. Phys. B292, 59 (1987). [6] O. Shanker,Nucl. Phys. B204, 375 (1982).

[7] W. Buchmu¨ller and D. Wyler,Phys. Lett. B 177, 377 (1986). [8] M. Kra¨mer et al.,Phys. Rev. D 71, 057503 (2005). [9] M. Kuze and Y. Sirois,Prog. Part. Nucl. Phys. 50, 1 (2003). [10] V. Abazov et al. (D0),Phys. Lett. B 671, 224 (2009). [11] R. Adolphi et al. (CMS),JINST 3, S08004 (2008). [12] T. Sjo¨strand et al.,J. High Energy Phys. 05 (2006) 026. [13] R. Field, Acta Phys. Pol. B 39, 2611 (2008) [http://

th-www.if.uj.edu.pl/acta/vol39/abs/v39p2611.htm].

[14] R. Field, in Proceedings of the First International Workshop on Multiple Partonic Interactions at the LHC MPI’08, October 27-31, 2008, edited by P. Bartalini and L. Fano (Perugia, Italy, 2009).

[15] F. Maltoni and T. Stelzer,J. High Energy Phys. 02 (2003) 027.

[16] J. Alwall et al.,J. High Energy Phys. 09 (2007) 028. [17] M. L. Mangano, M. Moretti, F. Piccinini, R. Pittau, and

A. D. Polosa,J. High Energy Phys. 07 (2003) 001. [18] M. Cacciari, G. Salam, and G. Soyez, J. High Energy

Phys. 04 (2008) 063.

[19] Particle Data Group,J. Phys. G 37, 075021 (2010). [20] I. Bertram, G. Landsberg, J. Linnemann, R. Partridge, M.

Paterno, and H. Prosper, Fermilab Report No. FERMILAB-TM-2104, 2000.

[21] V. Khachatryan et al. CMS Collaboration,Phys. Lett. B 695, 424 (2011).

[22] V. Khachatryan et al. CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-EWK-10-004, 2010.

[23] V. Khachatryan et al. CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-JME-10-010, 2010.

[24] V. Khachatryan et al. CMS Collaboration,J. High Energy Phys. 01 (2011) 080.

[25] P. M. Nadolsky et al.,Phys. Rev. D 78, 013004 (2008).

V. Khachatryan,1A. M. Sirunyan,1A. Tumasyan,1W. Adam,2T. Bergauer,2M. Dragicevic,2J. Ero¨,2C. Fabjan,2 M. Friedl,2R. Fru¨hwirth,2V. M. Ghete,2J. Hammer,2,bS. Ha¨nsel,2C. Hartl,2M. Hoch,2N. Ho¨rmann,2J. Hrubec,2

M. Jeitler,2G. Kasieczka,2W. Kiesenhofer,2M. Krammer,2D. Liko,2I. Mikulec,2M. Pernicka,2H. Rohringer,2 R. Scho¨fbeck,2J. Strauss,2A. Taurok,2F. Teischinger,2P. Wagner,2W. Waltenberger,2G. Walzel,2E. Widl,2 C.-E. Wulz,2V. Mossolov,3N. Shumeiko,3J. Suarez Gonzalez,3L. Benucci,4K. Cerny,4E. A. De Wolf,4X. Janssen,4

T. Maes,4L. Mucibello,4S. Ochesanu,4B. Roland,4R. Rougny,4M. Selvaggi,4H. Van Haevermaet,4 P. Van Mechelen,4N. Van Remortel,4S. Beauceron,5F. Blekman,5S. Blyweert,5J. D’Hondt,5O. Devroede,5 R. Gonzalez Suarez,5A. Kalogeropoulos,5J. Maes,5M. Maes,5S. Tavernier,5W. Van Doninck,5P. Van Mulders,5 G. P. Van Onsem,5I. Villella,5O. Charaf,6B. Clerbaux,6G. De Lentdecker,6V. Dero,6A. P. R. Gay,6G. H. Hammad,6

T. Hreus,6P. E. Marage,6L. Thomas,6C. Vander Velde,6P. Vanlaer,6J. Wickens,6V. Adler,7S. Costantini,7 M. Grunewald,7B. Klein,7A. Marinov,7J. Mccartin,7D. Ryckbosch,7F. Thyssen,7M. Tytgat,7L. Vanelderen,7

P. Verwilligen,7S. Walsh,7N. Zaganidis,7S. Basegmez,8G. Bruno,8J. Caudron,8L. Ceard,8 J. De Favereau De Jeneret,8C. Delaere,8P. Demin,8D. Favart,8A. Giammanco,8G. Gre´goire,8J. Hollar,8 V. Lemaitre,8J. Liao,8O. Militaru,8S. Ovyn,8D. Pagano,8A. Pin,8K. Piotrzkowski,8N. Schul,8N. Beliy,9 T. Caebergs,9E. Daubie,9G. A. Alves,10D. De Jesus Damiao,10M. E. Pol,10M. H. G. Souza,10W. Carvalho,11

E. M. Da Costa,11C. De Oliveira Martins,11S. Fonseca De Souza,11L. Mundim,11H. Nogima,11V. Oguri,11 W. L. Prado Da Silva,11A. Santoro,11S. M. Silva Do Amaral,11A. Sznajder,11F. Torres Da Silva De Araujo,11

F. A. Dias,12M. A. F. Dias,12T. R. Fernandez Perez Tomei,12E. M. Gregores,12,cF. Marinho,12S. F. Novaes,12 Sandra S. Padula,12N. Darmenov,13,bL. Dimitrov,13V. Genchev,13,bP. Iaydjiev,13,bS. Piperov,13M. Rodozov,13

S. Stoykova,13G. Sultanov,13V. Tcholakov,13R. Trayanov,13I. Vankov,13M. Dyulendarova,14R. Hadjiiska,14 V. Kozhuharov,14L. Litov,14E. Marinova,14M. Mateev,14B. Pavlov,14P. Petkov,14J. G. Bian,15G. M. Chen,15 H. S. Chen,15C. H. Jiang,15D. Liang,15S. Liang,15J. Wang,15J. Wang,15X. Wang,15Z. Wang,15M. Xu,15 M. Yang,15J. Zang,15Z. Zhang,15Y. Ban,16S. Guo,16Y. Guo,16W. Li,16Y. Mao,16S. J. Qian,16H. Teng,16 L. Zhang,16B. Zhu,16W. Zou,16A. Cabrera,17B. Gomez Moreno,17A. A. Ocampo Rios,17A. F. Osorio Oliveros,17

J. C. Sanabria,17N. Godinovic,18D. Lelas,18K. Lelas,18R. Plestina,18,dD. Polic,18I. Puljak,18Z. Antunovic,19 M. Dzelalija,19V. Brigljevic,20S. Duric,20K. Kadija,20S. Morovic,20A. Attikis,21M. Galanti,21J. Mousa,21 C. Nicolaou,21F. Ptochos,21P. A. Razis,21H. Rykaczewski,21Y. Assran,22,eM. A. Mahmoud,22,fA. Hektor,23

(6)

M. Kadastik,23K. Kannike,23M. Mu¨ntel,23M. Raidal,23L. Rebane,23V. Azzolini,24P. Eerola,24S. Czellar,25 J. Ha¨rko¨nen,25A. Heikkinen,25V. Karima¨ki,25R. Kinnunen,25J. Klem,25M. J. Kortelainen,25T. Lampe´n,25

K. Lassila-Perini,25S. Lehti,25T. Linde´n,25P. Luukka,25T. Ma¨enpa¨a¨,25E. Tuominen,25J. Tuominiemi,25 E. Tuovinen,25D. Ungaro,25L. Wendland,25K. Banzuzi,26A. Korpela,26T. Tuuva,26D. Sillou,27M. Besancon,28

S. Choudhury,28M. Dejardin,28D. Denegri,28B. Fabbro,28J. L. Faure,28F. Ferri,28S. Ganjour,28F. X. Gentit,28 A. Givernaud,28P. Gras,28G. Hamel de Monchenault,28P. Jarry,28E. Locci,28J. Malcles,28M. Marionneau,28 L. Millischer,28J. Rander,28A. Rosowsky,28I. Shreyber,28M. Titov,28P. Verrecchia,28S. Baffioni,29F. Beaudette,29

L. Bianchini,29M. Bluj,29,gC. Broutin,29P. Busson,29C. Charlot,29T. Dahms,29L. Dobrzynski,29 R. Granier de Cassagnac,29M. Haguenauer,29P. Mine´,29C. Mironov,29C. Ochando,29P. Paganini,29D. Sabes,29

R. Salerno,29Y. Sirois,29C. Thiebaux,29B. Wyslouch,29,hA. Zabi,29J.-L. Agram,30,iJ. Andrea,30A. Besson,30 D. Bloch,30D. Bodin,30J.-M. Brom,30M. Cardaci,30E. C. Chabert,30C. Collard,30E. Conte,30,iF. Drouhin,30,i C. Ferro,30J.-C. Fontaine,30,iD. Gele´,30U. Goerlach,30S. Greder,30P. Juillot,30M. Karim,30,iA.-C. Le Bihan,30

Y. Mikami,30P. Van Hove,30F. Fassi,31D. Mercier,31C. Baty,32N. Beaupere,32M. Bedjidian,32O. Bondu,32 G. Boudoul,32D. Boumediene,32H. Brun,32N. Chanon,32R. Chierici,32D. Contardo,32P. Depasse,32 H. El Mamouni,32A. Falkiewicz,32J. Fay,32S. Gascon,32B. Ille,32T. Kurca,32T. Le Grand,32M. Lethuillier,32

L. Mirabito,32S. Perries,32V. Sordini,32S. Tosi,32Y. Tschudi,32P. Verdier,32H. Xiao,32L. Megrelidze,33 V. Roinishvili,33D. Lomidze,34G. Anagnostou,35M. Edelhoff,35L. Feld,35N. Heracleous,35O. Hindrichs,35 R. Jussen,35K. Klein,35J. Merz,35N. Mohr,35A. Ostapchuk,35A. Perieanu,35F. Raupach,35J. Sammet,35S. Schael,35

D. Sprenger,35H. Weber,35M. Weber,35B. Wittmer,35M. Ata,36W. Bender,36M. Erdmann,36J. Frangenheim,36 T. Hebbeker,36A. Hinzmann,36K. Hoepfner,36C. Hof,36T. Klimkovich,36D. Klingebiel,36P. Kreuzer,36 D. Lanske,36,aC. Magass,36G. Masetti,36M. Merschmeyer,36A. Meyer,36P. Papacz,36H. Pieta,36H. Reithler,36 S. A. Schmitz,36L. Sonnenschein,36J. Steggemann,36D. Teyssier,36M. Bontenackels,37M. Davids,37M. Duda,37

G. Flu¨gge,37H. Geenen,37M. Giffels,37W. Haj Ahmad,37D. Heydhausen,37T. Kress,37Y. Kuessel,37A. Linn,37 A. Nowack,37L. Perchalla,37O. Pooth,37J. Rennefeld,37P. Sauerland,37A. Stahl,37M. Thomas,37D. Tornier,37

M. H. Zoeller,37M. Aldaya Martin,38W. Behrenhoff,38U. Behrens,38M. Bergholz,38,jK. Borras,38A. Cakir,38 A. Campbell,38E. Castro,38D. Dammann,38G. Eckerlin,38D. Eckstein,38A. Flossdorf,38G. Flucke,38A. Geiser,38

I. Glushkov,38J. Hauk,38H. Jung,38M. Kasemann,38I. Katkov,38P. Katsas,38C. Kleinwort,38H. Kluge,38 A. Knutsson,38D. Kru¨cker,38E. Kuznetsova,38W. Lange,38W. Lohmann,38,jR. Mankel,38M. Marienfeld,38 I.-A. Melzer-Pellmann,38A. B. Meyer,38J. Mnich,38A. Mussgiller,38J. Olzem,38A. Parenti,38A. Raspereza,38 A. Raval,38R. Schmidt,38,jT. Schoerner-Sadenius,38N. Sen,38M. Stein,38J. Tomaszewska,38D. Volyanskyy,38

R. Walsh,38C. Wissing,38C. Autermann,39S. Bobrovskyi,39J. Draeger,39H. Enderle,39U. Gebbert,39 K. Kaschube,39G. Kaussen,39R. Klanner,39J. Lange,39B. Mura,39S. Naumann-Emme,39F. Nowak,39N. Pietsch,39 C. Sander,39H. Schettler,39P. Schleper,39M. Schro¨der,39T. Schum,39J. Schwandt,39A. K. Srivastava,39H. Stadie,39

G. Steinbru¨ck,39J. Thomsen,39R. Wolf,39C. Barth,40J. Bauer,40V. Buege,40T. Chwalek,40W. De Boer,40 A. Dierlamm,40G. Dirkes,40M. Feindt,40J. Gruschke,40C. Hackstein,40F. Hartmann,40S. M. Heindl,40 M. Heinrich,40H. Held,40K. H. Hoffmann,40S. Honc,40T. Kuhr,40D. Martschei,40S. Mueller,40Th. Mu¨ller,40 M. Niegel,40O. Oberst,40A. Oehler,40J. Ott,40T. Peiffer,40D. Piparo,40G. Quast,40K. Rabbertz,40F. Ratnikov,40

M. Renz,40C. Saout,40A. Scheurer,40P. Schieferdecker,40F.-P. Schilling,40G. Schott,40H. J. Simonis,40 F. M. Stober,40D. Troendle,40J. Wagner-Kuhr,40M. Zeise,40V. Zhukov,40,kE. B. Ziebarth,40G. Daskalakis,41

T. Geralis,41S. Kesisoglou,41A. Kyriakis,41D. Loukas,41I. Manolakos,41A. Markou,41C. Markou,41 C. Mavrommatis,41E. Ntomari,41E. Petrakou,41L. Gouskos,42T. J. Mertzimekis,42A. Panagiotou,42I. Evangelou,43 C. Foudas,43P. Kokkas,43N. Manthos,43I. Papadopoulos,43V. Patras,43F. A. Triantis,43A. Aranyi,44G. Bencze,44 L. Boldizsar,44G. Debreczeni,44C. Hajdu,44,bD. Horvath,44,lA. Kapusi,44K. Krajczar,44,mA. Laszlo,44F. Sikler,44 G. Vesztergombi,44,mN. Beni,45J. Molnar,45J. Palinkas,45Z. Szillasi,45V. Veszpremi,45P. Raics,46Z. L. Trocsanyi,46 B. Ujvari,46S. Bansal,47S. B. Beri,47V. Bhatnagar,47N. Dhingra,47R. Gupta,47M. Jindal,47M. Kaur,47J. M. Kohli,47

M. Z. Mehta,47N. Nishu,47L. K. Saini,47A. Sharma,47A. P. Singh,47J. B. Singh,47S. P. Singh,47S. Ahuja,48 S. Bhattacharya,48B. C. Choudhary,48P. Gupta,48S. Jain,48S. Jain,48A. Kumar,48R. K. Shivpuri,48 R. K. Choudhury,49D. Dutta,49S. Kailas,49S. K. Kataria,49A. K. Mohanty,49,bL. M. Pant,49P. Shukla,49T. Aziz,50

M. Guchait,50,nA. Gurtu,50M. Maity,50,oD. Majumder,50G. Majumder,50K. Mazumdar,50G. B. Mohanty,50 A. Saha,50K. Sudhakar,50N. Wickramage,50S. Banerjee,51S. Dugad,51N. K. Mondal,51H. Arfaei,52 H. Bakhshiansohi,52S. M. Etesami,52A. Fahim,52M. Hashemi,52A. Jafari,52M. Khakzad,52A. Mohammadi,52

(7)

M. Mohammadi Najafabadi,52S. Paktinat Mehdiabadi,52B. Safarzadeh,52M. Zeinali,52M. Abbrescia,53a,53b L. Barbone,53a,53bC. Calabria,53a,53bA. Colaleo,53aD. Creanza,53a,53cN. De Filippis,53a,53cM. De Palma,53a,53b

A. Dimitrov,53aL. Fiore,53aG. Iaselli,53a,53cL. Lusito,53a,53b,bG. Maggi,53a,53cM. Maggi,53aN. Manna,53a,53b B. Marangelli,53a,53bS. My,53a,53cS. Nuzzo,53a,53bN. Pacifico,53a,53bG. A. Pierro,53aA. Pompili,53a,53b G. Pugliese,53a,53cF. Romano,53a,53cG. Roselli,53a,53bG. Selvaggi,53a,53bL. Silvestris,53aR. Trentadue,53a S. Tupputi,53a,53bG. Zito,53aG. Abbiendi,54aA. C. Benvenuti,54aD. Bonacorsi,54aS. Braibant-Giacomelli,54a,54b

L. Brigliadori,54aP. Capiluppi,54a,54bA. Castro,54a,54bF. R. Cavallo,54aM. Cuffiani,54a,54bG. M. Dallavalle,54a F. Fabbri,54aA. Fanfani,54a,54bD. Fasanella,54aP. Giacomelli,54aM. Giunta,54aS. Marcellini,54a M. Meneghelli,54a,54bA. Montanari,54aF. L. Navarria,54a,54bF. Odorici,54aA. Perrotta,54aF. Primavera,54a A. M. Rossi,54a,54bT. Rovelli,54a,54bG. Siroli,54a,54bR. Travaglini,54a,54bS. Albergo,55a,55bG. Cappello,55a,55b M. Chiorboli,55a,55b,bS. Costa,55a,55bA. Tricomi,55a,55bC. Tuve,55aG. Barbagli,56aV. Ciulli,56a,56bC. Civinini,56a R. D’Alessandro,56a,56bE. Focardi,56a,56bS. Frosali,56a,56bE. Gallo,56aC. Genta,56aS. Gonzi,56a,56bP. Lenzi,56a,56b M. Meschini,56aS. Paoletti,56aG. Sguazzoni,56aA. Tropiano,56a,bL. Benussi,57aS. Bianco,57aS. Colafranceschi,57a,p

F. Fabbri,57aD. Piccolo,57aP. Fabbricatore,58aR. Musenich,58aA. Benaglia,59a,59bF. De Guio,59a,59b,b L. Di Matteo,59a,59bA. Ghezzi,59a,59b,bM. Malberti,59a,59bS. Malvezzi,59aA. Martelli,59a,59bA. Massironi,59a,59b

D. Menasce,59aL. Moroni,59aM. Paganoni,59a,59bD. Pedrini,59aS. Ragazzi,59a,59bN. Redaelli,59aS. Sala,59a T. Tabarelli de Fatis,59a,59bV. Tancini,59a,59bS. Buontempo,60aC. A. Carrillo Montoya,60aA. Cimmino,60a,60b

A. De Cosa,60a,60bM. De Gruttola,60a,60bF. Fabozzi,60a,qA. O. M. Iorio,60aL. Lista,60aM. Merola,60a,60b P. Noli,60a,60bP. Paolucci,60aP. Azzi,61aN. Bacchetta,61aP. Bellan,61a,61bD. Bisello,61a,61bA. Branca,61a R. Carlin,61a,61bP. Checchia,61aE. Conti,61aM. De Mattia,61a,61bT. Dorigo,61aU. Dosselli,61aF. Fanzago,61a F. Gasparini,61a,61bU. Gasparini,61a,61bP. Giubilato,61a,61bA. Gresele,61a,61cS. Lacaprara,61aI. Lazzizzera,61a,61c

M. Margoni,61a,61bM. Mazzucato,61aA. T. Meneguzzo,61a,61bL. Perrozzi,61a,bN. Pozzobon,61a,61b P. Ronchese,61a,61bF. Simonetto,61a,61bE. Torassa,61aM. Tosi,61a,61bS. Vanini,61a,61bP. Zotto,61a,61b G. Zumerle,61a,61bP. Baesso,62a,62bU. Berzano,62aC. Riccardi,62a,62bP. Torre,62a,62bP. Vitulo,62a,62bC. Viviani,62a,62b

M. Biasini,63a,63bG. M. Bilei,63aB. Caponeri,63a,63bL. Fano`,63a,63bP. Lariccia,63a,63bA. Lucaroni,63a,63b,b G. Mantovani,63a,63bM. Menichelli,63aA. Nappi,63a,63bA. Santocchia,63a,63bL. Servoli,63aS. Taroni,63a,63b

M. Valdata,63a,63bR. Volpe,63a,63b,bP. Azzurri,64a,64cG. Bagliesi,64aJ. Bernardini,64a,64bT. Boccali,64a,b G. Broccolo,64a,64cR. Castaldi,64aR. T. D’Agnolo,64a,64cR. Dell’Orso,64aF. Fiori,64a,64bL. Foa`,64a,64cA. Giassi,64a

A. Kraan,64aF. Ligabue,64a,64cT. Lomtadze,64aL. Martini,64aA. Messineo,64a,64bF. Palla,64aF. Palmonari,64a S. Sarkar,64a,64cG. Segneri,64aA. T. Serban,64aP. Spagnolo,64aR. Tenchini,64aG. Tonelli,64a,64b,bA. Venturi,64a,b P. G. Verdini,64aL. Barone,65a,65bF. Cavallari,65aD. Del Re,65a,65bE. Di Marco,65a,65bM. Diemoz,65aD. Franci,65a,65b

M. Grassi,65aE. Longo,65a,65bG. Organtini,65a,65bA. Palma,65a,65bF. Pandolfi,65a,65b,bR. Paramatti,65a S. Rahatlou,65a,65bN. Amapane,66a,66bR. Arcidiacono,66a,66cS. Argiro,66a,66bM. Arneodo,66a,66cC. Biino,66a

C. Botta,66a,66b,bN. Cartiglia,66aR. Castello,66a,66bM. Costa,66a,66bN. Demaria,66aA. Graziano,66a,66b,b C. Mariotti,66aM. Marone,66a,66bS. Maselli,66aE. Migliore,66a,66bG. Mila,66a,66bV. Monaco,66a,66bM. Musich,66a,66b

M. M. Obertino,66a,66cN. Pastrone,66aM. Pelliccioni,66a,66b,bA. Romero,66a,66bM. Ruspa,66a,66cR. Sacchi,66a,66b V. Sola,66a,66bA. Solano,66a,66bA. Staiano,66aD. Trocino,66a,66bA. Vilela Pereira,66a,66b,bS. Belforte,67a F. Cossutti,67aG. Della Ricca,67a,67bB. Gobbo,67aD. Montanino,67a,67bA. Penzo,67aS. G. Heo,68S. Chang,69 J. Chung,69D. H. Kim,69G. N. Kim,69J. E. Kim,69D. J. Kong,69H. Park,69D. Son,69D. C. Son,69Zero Kim,70 J. Y. Kim,70S. Song,70S. Choi,71B. Hong,71M. Jo,71H. Kim,71J. H. Kim,71T. J. Kim,71K. S. Lee,71D. H. Moon,71 S. K. Park,71H. B. Rhee,71E. Seo,71S. Shin,71K. S. Sim,71M. Choi,72S. Kang,72H. Kim,72C. Park,72I. C. Park,72

S. Park,72G. Ryu,72Y. Choi,73Y. K. Choi,73J. Goh,73J. Lee,73S. Lee,73H. Seo,73I. Yu,73M. J. Bilinskas,74 I. Grigelionis,74M. Janulis,74D. Martisiute,74P. Petrov,74T. Sabonis,74H. Castilla Valdez,75E. De La Cruz Burelo,75

R. Lopez-Fernandez,75A. Sa´nchez Herna´ndez,75L. M. Villasenor-Cendejas,75S. Carrillo Moreno,76 F. Vazquez Valencia,76H. A. Salazar Ibarguen,77E. Casimiro Linares,78A. Morelos Pineda,78M. A. Reyes-Santos,78

P. Allfrey,79D. Krofcheck,79P. H. Butler,80R. Doesburg,80H. Silverwood,80M. Ahmad,81I. Ahmed,81 M. I. Asghar,81H. R. Hoorani,81W. A. Khan,81T. Khurshid,81S. Qazi,81M. Cwiok,82W. Dominik,82K. Doroba,82

A. Kalinowski,82M. Konecki,82J. Krolikowski,82T. Frueboes,83R. Gokieli,83M. Go´rski,83M. Kazana,83 K. Nawrocki,83K. Romanowska-Rybinska,83M. Szleper,83G. Wrochna,83P. Zalewski,83N. Almeida,84A. David,84

P. Faccioli,84P. G. Ferreira Parracho,84M. Gallinaro,84P. Martins,84P. Musella,84A. Nayak,84P. Q. Ribeiro,84 J. Seixas,84P. Silva,84J. Varela,84H. K. Wo¨hri,84I. Belotelov,85P. Bunin,85M. Finger,85M. Finger, Jr.,85

(8)

I. Golutvin,85A. Kamenev,85V. Karjavin,85G. Kozlov,85A. Lanev,85P. Moisenz,85V. Palichik,85V. Perelygin,85 S. Shmatov,85V. Smirnov,85A. Volodko,85A. Zarubin,85N. Bondar,86V. Golovtsov,86Y. Ivanov,86V. Kim,86 P. Levchenko,86V. Murzin,86V. Oreshkin,86I. Smirnov,86V. Sulimov,86L. Uvarov,86S. Vavilov,86A. Vorobyev,86

Yu. Andreev,87S. Gninenko,87N. Golubev,87M. Kirsanov,87N. Krasnikov,87V. Matveev,87A. Pashenkov,87 A. Toropin,87S. Troitsky,87V. Epshteyn,88V. Gavrilov,88V. Kaftanov,88,aM. Kossov,88,bA. Krokhotin,88 N. Lychkovskaya,88G. Safronov,88S. Semenov,88V. Stolin,88E. Vlasov,88A. Zhokin,88E. Boos,89M. Dubinin,89,r

L. Dudko,89A. Ershov,89A. Gribushin,89O. Kodolova,89I. Lokhtin,89S. Obraztsov,89S. Petrushanko,89 L. Sarycheva,89V. Savrin,89A. Snigirev,89V. Andreev,90M. Azarkin,90I. Dremin,90M. Kirakosyan,90 S. V. Rusakov,90A. Vinogradov,90I. Azhgirey,91S. Bitioukov,91V. Grishin,91,bV. Kachanov,91D. Konstantinov,91

A. Korablev,91V. Krychkine,91V. Petrov,91R. Ryutin,91S. Slabospitsky,91A. Sobol,91L. Tourtchanovitch,91 S. Troshin,91N. Tyurin,91A. Uzunian,91A. Volkov,91P. Adzic,92,sM. Djordjevic,92D. Krpic,92,sJ. Milosevic,92

M. Aguilar-Benitez,93J. Alcaraz Maestre,93P. Arce,93C. Battilana,93E. Calvo,93M. Cepeda,93M. Cerrada,93 N. Colino,93B. De La Cruz,93C. Diez Pardos,93D. Domı´nguez Va´zquez,93C. Fernandez Bedoya,93 J. P. Ferna´ndez Ramos,93A. Ferrando,93J. Flix,93M. C. Fouz,93P. Garcia-Abia,93O. Gonzalez Lopez,93 S. Goy Lopez,93J. M. Hernandez,93M. I. Josa,93G. Merino,93J. Puerta Pelayo,93I. Redondo,93L. Romero,93

J. Santaolalla,93C. Willmott,93C. Albajar,94G. Codispoti,94J. F. de Troco´niz,94J. Cuevas,95

J. Fernandez Menendez,95S. Folgueras,95I. Gonzalez Caballero,95L. Lloret Iglesias,95J. M. Vizan Garcia,95 J. A. Brochero Cifuentes,96I. J. Cabrillo,96A. Calderon,96M. Chamizo Llatas,96S. H. Chuang,96 J. Duarte Campderros,96M. Felcini,96,tM. Fernandez,96G. Gomez,96J. Gonzalez Sanchez,96C. Jorda,96

P. Lobelle Pardo,96A. Lopez Virto,96J. Marco,96R. Marco,96C. Martinez Rivero,96F. Matorras,96 F. J. Munoz Sanchez,96J. Piedra Gomez,96,uT. Rodrigo,96A. Ruiz Jimeno,96L. Scodellaro,96M. Sobron Sanudo,96 I. Vila,96R. Vilar Cortabitarte,96D. Abbaneo,97E. Auffray,97G. Auzinger,97P. Baillon,97A. H. Ball,97D. Barney,97

A. J. Bell,97,vD. Benedetti,97C. Bernet,97,dW. Bialas,97P. Bloch,97A. Bocci,97S. Bolognesi,97H. Breuker,97 G. Brona,97K. Bunkowski,97T. Camporesi,97E. Cano,97G. Cerminara,97T. Christiansen,97J. A. Coarasa Perez,97

B. Cure´,97D. D’Enterria,97A. De Roeck,97S. Di Guida,97F. Duarte Ramos,97A. Elliott-Peisert,97B. Frisch,97 W. Funk,97A. Gaddi,97S. Gennai,97G. Georgiou,97H. Gerwig,97D. Gigi,97K. Gill,97D. Giordano,97F. Glege,97 R. Gomez-Reino Garrido,97M. Gouzevitch,97P. Govoni,97S. Gowdy,97L. Guiducci,97M. Hansen,97J. Harvey,97 J. Hegeman,97B. Hegner,97C. Henderson,97G. Hesketh,97H. F. Hoffmann,97A. Honma,97V. Innocente,97P. Janot,97 K. Kaadze,97E. Karavakis,97P. Lecoq,97C. Lourenc¸o,97A. Macpherson,97T. Ma¨ki,97L. Malgeri,97M. Mannelli,97

L. Masetti,97F. Meijers,97S. Mersi,97E. Meschi,97R. Moser,97M. U. Mozer,97M. Mulders,97E. Nesvold,97,b M. Nguyen,97T. Orimoto,97L. Orsini,97E. Perez,97A. Petrilli,97A. Pfeiffer,97M. Pierini,97M. Pimia¨,97G. Polese,97 A. Racz,97J. Rodrigues Antunes,97G. Rolandi,97,wT. Rommerskirchen,97C. Rovelli,97,xM. Rovere,97H. Sakulin,97

C. Scha¨fer,97C. Schwick,97I. Segoni,97A. Sharma,97P. Siegrist,97M. Simon,97P. Sphicas,97,yD. Spiga,97 M. Spiropulu,97,rF. Sto¨ckli,97M. Stoye,97P. Tropea,97A. Tsirou,97A. Tsyganov,97G. I. Veres,97,mP. Vichoudis,97

M. Voutilainen,97W. D. Zeuner,97W. Bertl,98K. Deiters,98W. Erdmann,98K. Gabathuler,98R. Horisberger,98 Q. Ingram,98H. C. Kaestli,98S. Ko¨nig,98D. Kotlinski,98U. Langenegger,98F. Meier,98D. Renker,98T. Rohe,98

J. Sibille,98,zA. Starodumov,98,aaP. Bortignon,99L. Caminada,99,bbZ. Chen,99S. Cittolin,99G. Dissertori,99 M. Dittmar,99J. Eugster,99K. Freudenreich,99C. Grab,99A. Herve´,99W. Hintz,99P. Lecomte,99W. Lustermann,99

C. Marchica,99,bbP. Martinez Ruiz del Arbol,99P. Meridiani,99P. Milenovic,99,ccF. Moortgat,99P. Nef,99 F. Nessi-Tedaldi,99L. Pape,99F. Pauss,99T. Punz,99A. Rizzi,99F. J. Ronga,99M. Rossini,99L. Sala,99 A. K. Sanchez,99M.-C. Sawley,99B. Stieger,99L. Tauscher,99,aA. Thea,99K. Theofilatos,99D. Treille,99 C. Urscheler,99R. Wallny,99M. Weber,99L. Wehrli,99J. Weng,99E. Aguilo´,100C. Amsler,100V. Chiochia,100

S. De Visscher,100C. Favaro,100M. Ivova Rikova,100B. Millan Mejias,100C. Regenfus,100P. Robmann,100 A. Schmidt,100H. Snoek,100Y. H. Chang,101K. H. Chen,101W. T. Chen,101S. Dutta,101A. Go,101C. M. Kuo,101

S. W. Li,101W. Lin,101M. H. Liu,101Z. K. Liu,101Y. J. Lu,101D. Mekterovic,101J. H. Wu,101S. S. Yu,101 P. Bartalini,102P. Chang,102Y. H. Chang,102Y. W. Chang,102Y. Chao,102K. F. Chen,102W.-S. Hou,102Y. Hsiung,102 K. Y. Kao,102Y. J. Lei,102R.-S. Lu,102J. G. Shiu,102Y. M. Tzeng,102M. Wang,102A. Adiguzel,103M. N. Bakirci,103,dd S. Cerci,103,eeZ. Demir,103C. Dozen,103I. Dumanoglu,103E. Eskut,103S. Girgis,103G. Gokbulut,103Y. Guler,103

E. Gurpinar,103I. Hos,103E. E. Kangal,103T. Karaman,103A. Kayis Topaksu,103A. Nart,103G. Onengut,103 K. Ozdemir,103S. Ozturk,103A. Polatoz,103K. Sogut,103,ffB. Tali,103H. Topakli,103,ddD. Uzun,103L. N. Vergili,103

(9)

A. M. Guler,104K. Ocalan,104A. Ozpineci,104M. Serin,104R. Sever,104U. E. Surat,104E. Yildirim,104M. Zeyrek,104 M. Deliomeroglu,105D. Demir,105,ggE. Gu¨lmez,105A. Halu,105B. Isildak,105M. Kaya,105,hhO. Kaya,105,hh S. Ozkorucuklu,105,iiN. Sonmez,105,jjL. Levchuk,106P. Bell,107F. Bostock,107J. J. Brooke,107T. L. Cheng,107

E. Clement,107D. Cussans,107R. Frazier,107J. Goldstein,107M. Grimes,107M. Hansen,107D. Hartley,107 G. P. Heath,107H. F. Heath,107B. Huckvale,107J. Jackson,107L. Kreczko,107S. Metson,107D. M. Newbold,107,kk K. Nirunpong,107A. Poll,107S. Senkin,107V. J. Smith,107S. Ward,107L. Basso,108,llK. W. Bell,108A. Belyaev,108,ll

C. Brew,108R. M. Brown,108B. Camanzi,108D. J. A. Cockerill,108J. A. Coughlan,108K. Harder,108S. Harper,108 B. W. Kennedy,108E. Olaiya,108D. Petyt,108B. C. Radburn-Smith,108C. H. Shepherd-Themistocleous,108 I. R. Tomalin,108W. J. Womersley,108S. D. Worm,108R. Bainbridge,109G. Ball,109J. Ballin,109R. Beuselinck,109

O. Buchmuller,109D. Colling,109N. Cripps,109M. Cutajar,109G. Davies,109M. Della Negra,109J. Fulcher,109 D. Futyan,109A. Guneratne Bryer,109G. Hall,109Z. Hatherell,109J. Hays,109G. Iles,109G. Karapostoli,109 L. Lyons,109A.-M. Magnan,109J. Marrouche,109R. Nandi,109J. Nash,109A. Nikitenko,109,aaA. Papageorgiou,109

M. Pesaresi,109K. Petridis,109M. Pioppi,109,mmD. M. Raymond,109N. Rompotis,109A. Rose,109M. J. Ryan,109 C. Seez,109P. Sharp,109A. Sparrow,109A. Tapper,109S. Tourneur,109M. Vazquez Acosta,109T. Virdee,109 S. Wakefield,109D. Wardrope,109T. Whyntie,109M. Barrett,110M. Chadwick,110J. E. Cole,110P. R. Hobson,110 A. Khan,110P. Kyberd,110D. Leslie,110W. Martin,110I. D. Reid,110L. Teodorescu,110K. Hatakeyama,111T. Bose,112 E. Carrera Jarrin,112C. Fantasia,112A. Heister,112J. St. John,112P. Lawson,112D. Lazic,112J. Rohlf,112D. Sperka,112

L. Sulak,112A. Avetisyan,113S. Bhattacharya,113J. P. Chou,113D. Cutts,113A. Ferapontov,113U. Heintz,113 S. Jabeen,113G. Kukartsev,113G. Landsberg,113M. Narain,113D. Nguyen,113M. Segala,113T. Speer,113 K. V. Tsang,113M. A. Borgia,114R. Breedon,114M. Calderon De La Barca Sanchez,114D. Cebra,114S. Chauhan,114

M. Chertok,114J. Conway,114P. T. Cox,114J. Dolen,114R. Erbacher,114E. Friis,114W. Ko,114A. Kopecky,114 R. Lander,114H. Liu,114S. Maruyama,114T. Miceli,114M. Nikolic,114D. Pellett,114J. Robles,114S. Salur,114 T. Schwarz,114M. Searle,114J. Smith,114M. Squires,114M. Tripathi,114R. Vasquez Sierra,114C. Veelken,114 V. Andreev,115K. Arisaka,115D. Cline,115R. Cousins,115A. Deisher,115J. Duris,115S. Erhan,115C. Farrell,115 J. Hauser,115M. Ignatenko,115C. Jarvis,115C. Plager,115G. Rakness,115P. Schlein,115,aJ. Tucker,115V. Valuev,115

J. Babb,116R. Clare,116J. Ellison,116J. W. Gary,116F. Giordano,116G. Hanson,116G. Y. Jeng,116S. C. Kao,116 F. Liu,116H. Liu,116A. Luthra,116H. Nguyen,116G. Pasztor,116,nnA. Satpathy,116B. C. Shen,116,aR. Stringer,116 J. Sturdy,116S. Sumowidagdo,116R. Wilken,116S. Wimpenny,116W. Andrews,117J. G. Branson,117G. B. Cerati,117

E. Dusinberre,117D. Evans,117F. Golf,117A. Holzner,117R. Kelley,117M. Lebourgeois,117J. Letts,117 B. Mangano,117J. Muelmenstaedt,117S. Padhi,117C. Palmer,117G. Petrucciani,117H. Pi,117M. Pieri,117 R. Ranieri,117M. Sani,117V. Sharma,117,bS. Simon,117Y. Tu,117A. Vartak,117F. Wu¨rthwein,117A. Yagil,117 D. Barge,118R. Bellan,118C. Campagnari,118M. D’Alfonso,118T. Danielson,118K. Flowers,118P. Geffert,118 J. Incandela,118C. Justus,118P. Kalavase,118S. A. Koay,118D. Kovalskyi,118V. Krutelyov,118S. Lowette,118 N. Mccoll,118V. Pavlunin,118F. Rebassoo,118J. Ribnik,118J. Richman,118R. Rossin,118D. Stuart,118W. To,118 J. R. Vlimant,118A. Bornheim,119J. Bunn,119Y. Chen,119M. Gataullin,119D. Kcira,119V. Litvine,119Y. Ma,119 A. Mott,119H. B. Newman,119C. Rogan,119V. Timciuc,119P. Traczyk,119J. Veverka,119R. Wilkinson,119Y. Yang,119

R. Y. Zhu,119B. Akgun,120R. Carroll,120T. Ferguson,120Y. Iiyama,120D. W. Jang,120S. Y. Jun,120Y. F. Liu,120 M. Paulini,120J. Russ,120N. Terentyev,120H. Vogel,120I. Vorobiev,120J. P. Cumalat,121M. E. Dinardo,121 B. R. Drell,121C. J. Edelmaier,121W. T. Ford,121A. Gaz,121B. Heyburn,121E. Luiggi Lopez,121U. Nauenberg,121

J. G. Smith,121K. Stenson,121K. A. Ulmer,121S. R. Wagner,121S. L. Zang,121L. Agostino,122J. Alexander,122 A. Chatterjee,122S. Das,122N. Eggert,122L. J. Fields,122L. K. Gibbons,122B. Heltsley,122W. Hopkins,122 A. Khukhunaishvili,122B. Kreis,122V. Kuznetsov,122G. Nicolas Kaufman,122J. R. Patterson,122D. Puigh,122 D. Riley,122A. Ryd,122X. Shi,122W. Sun,122W. D. Teo,122J. Thom,122J. Thompson,122J. Vaughan,122Y. Weng,122 L. Winstrom,122P. Wittich,122A. Biselli,123G. Cirino,123D. Winn,123S. Abdullin,124M. Albrow,124J. Anderson,124 G. Apollinari,124M. Atac,124J. A. Bakken,124S. Banerjee,124L. A. T. Bauerdick,124A. Beretvas,124J. Berryhill,124 P. C. Bhat,124I. Bloch,124F. Borcherding,124K. Burkett,124J. N. Butler,124V. Chetluru,124H. W. K. Cheung,124 F. Chlebana,124S. Cihangir,124M. Demarteau,124D. P. Eartly,124V. D. Elvira,124S. Esen,124I. Fisk,124J. Freeman,124 Y. Gao,124E. Gottschalk,124D. Green,124K. Gunthoti,124O. Gutsche,124A. Hahn,124J. Hanlon,124R. M. Harris,124

J. Hirschauer,124B. Hooberman,124E. James,124H. Jensen,124M. Johnson,124U. Joshi,124R. Khatiwada,124 B. Kilminster,124B. Klima,124K. Kousouris,124S. Kunori,124S. Kwan,124C. Leonidopoulos,124P. Limon,124 R. Lipton,124J. Lykken,124K. Maeshima,124J. M. Marraffino,124D. Mason,124P. McBride,124T. McCauley,124

(10)

T. Miao,124K. Mishra,124S. Mrenna,124Y. Musienko,124,ooC. Newman-Holmes,124V. O’Dell,124S. Popescu,124,pp R. Pordes,124O. Prokofyev,124N. Saoulidou,124E. Sexton-Kennedy,124S. Sharma,124A. Soha,124W. J. Spalding,124

L. Spiegel,124P. Tan,124L. Taylor,124S. Tkaczyk,124L. Uplegger,124E. W. Vaandering,124R. Vidal,124 J. Whitmore,124W. Wu,124F. Yang,124F. Yumiceva,124J. C. Yun,124D. Acosta,125P. Avery,125D. Bourilkov,125

M. Chen,125G. P. Di Giovanni,125D. Dobur,125A. Drozdetskiy,125R. D. Field,125M. Fisher,125Y. Fu,125 I. K. Furic,125J. Gartner,125S. Goldberg,125B. Kim,125S. Klimenko,125J. Konigsberg,125A. Korytov,125 A. Kropivnitskaya,125T. Kypreos,125K. Matchev,125G. Mitselmakher,125L. Muniz,125Y. Pakhotin,125 C. Prescott,125R. Remington,125M. Schmitt,125B. Scurlock,125P. Sellers,125N. Skhirtladze,125D. Wang,125 J. Yelton,125M. Zakaria,125C. Ceron,126V. Gaultney,126L. Kramer,126L. M. Lebolo,126S. Linn,126P. Markowitz,126

G. Martinez,126J. L. Rodriguez,126T. Adams,127A. Askew,127D. Bandurin,127J. Bochenek,127J. Chen,127 B. Diamond,127S. V. Gleyzer,127J. Haas,127S. Hagopian,127V. Hagopian,127M. Jenkins,127K. F. Johnson,127

H. Prosper,127L. Quertenmont,127S. Sekmen,127V. Veeraraghavan,127M. M. Baarmand,128B. Dorney,128 S. Guragain,128M. Hohlmann,128H. Kalakhety,128R. Ralich,128I. Vodopiyanov,128M. R. Adams,129 I. M. Anghel,129L. Apanasevich,129Y. Bai,129V. E. Bazterra,129R. R. Betts,129J. Callner,129R. Cavanaugh,129 C. Dragoiu,129E. J. Garcia-Solis,129L. Gauthier,129C. E. Gerber,129D. J. Hofman,129S. Khalatyan,129F. Lacroix,129

M. Malek,129C. O’Brien,129C. Silvestre,129A. Smoron,129D. Strom,129N. Varelas,129U. Akgun,130 E. A. Albayrak,130B. Bilki,130K. Cankocak,130W. Clarida,130F. Duru,130C. K. Lae,130E. McCliment,130

J.-P. Merlo,130H. Mermerkaya,130A. Mestvirishvili,130A. Moeller,130J. Nachtman,130C. R. Newsom,130 E. Norbeck,130J. Olson,130Y. Onel,130F. Ozok,130S. Sen,130J. Wetzel,130T. Yetkin,130K. Yi,130B. A. Barnett,131 B. Blumenfeld,131A. Bonato,131C. Eskew,131D. Fehling,131G. Giurgiu,131A. V. Gritsan,131Z. J. Guo,131G. Hu,131

P. Maksimovic,131S. Rappoccio,131M. Swartz,131N. V. Tran,131A. Whitbeck,131P. Baringer,132A. Bean,132 G. Benelli,132O. Grachov,132M. Murray,132D. Noonan,132V. Radicci,132S. Sanders,132J. S. Wood,132 V. Zhukova,132T. Bolton,133I. Chakaberia,133A. Ivanov,133M. Makouski,133Y. Maravin,133S. Shrestha,133 I. Svintradze,133Z. Wan,133J. Gronberg,134D. Lange,134D. Wright,134A. Baden,135M. Boutemeur,135S. C. Eno,135

D. Ferencek,135J. A. Gomez,135N. J. Hadley,135R. G. Kellogg,135M. Kirn,135Y. Lu,135A. C. Mignerey,135 K. Rossato,135P. Rumerio,135F. Santanastasio,135A. Skuja,135J. Temple,135M. B. Tonjes,135S. C. Tonwar,135 E. Twedt,135B. Alver,136G. Bauer,136J. Bendavid,136W. Busza,136E. Butz,136I. A. Cali,136M. Chan,136V. Dutta,136

P. Everaerts,136G. Gomez Ceballos,136M. Goncharov,136K. A. Hahn,136P. Harris,136Y. Kim,136M. Klute,136 Y.-J. Lee,136W. Li,136C. Loizides,136P. D. Luckey,136T. Ma,136S. Nahn,136C. Paus,136D. Ralph,136C. Roland,136

G. Roland,136M. Rudolph,136G. S. F. Stephans,136K. Sumorok,136K. Sung,136E. A. Wenger,136S. Xie,136 M. Yang,136Y. Yilmaz,136A. S. Yoon,136M. Zanetti,136P. Cole,137S. I. Cooper,137P. Cushman,137B. Dahmes,137

A. De Benedetti,137P. R. Dudero,137G. Franzoni,137J. Haupt,137K. Klapoetke,137Y. Kubota,137J. Mans,137 V. Rekovic,137R. Rusack,137M. Sasseville,137A. Singovsky,137L. M. Cremaldi,138R. Godang,138R. Kroeger,138 L. Perera,138R. Rahmat,138D. A. Sanders,138D. Summers,138K. Bloom,139S. Bose,139J. Butt,139D. R. Claes,139

A. Dominguez,139M. Eads,139J. Keller,139T. Kelly,139I. Kravchenko,139J. Lazo-Flores,139C. Lundstedt,139 H. Malbouisson,139S. Malik,139G. R. Snow,139U. Baur,140A. Godshalk,140I. Iashvili,140S. Jain,140 A. Kharchilava,140A. Kumar,140S. P. Shipkowski,140K. Smith,140G. Alverson,141E. Barberis,141D. Baumgartel,141

O. Boeriu,141M. Chasco,141S. Reucroft,141J. Swain,141D. Wood,141J. Zhang,141A. Anastassov,142A. Kubik,142 N. Odell,142R. A. Ofierzynski,142B. Pollack,142A. Pozdnyakov,142M. Schmitt,142S. Stoynev,142M. Velasco,142 S. Won,142L. Antonelli,143D. Berry,143M. Hildreth,143C. Jessop,143D. J. Karmgard,143J. Kolb,143T. Kolberg,143 K. Lannon,143W. Luo,143S. Lynch,143N. Marinelli,143D. M. Morse,143T. Pearson,143R. Ruchti,143J. Slaunwhite,143

N. Valls,143J. Warchol,143M. Wayne,143J. Ziegler,143B. Bylsma,144L. S. Durkin,144J. Gu,144C. Hill,144 P. Killewald,144K. Kotov,144T. Y. Ling,144M. Rodenburg,144G. Williams,144N. Adam,145E. Berry,145P. Elmer,145

D. Gerbaudo,145V. Halyo,145P. Hebda,145A. Hunt,145J. Jones,145E. Laird,145D. Lopes Pegna,145D. Marlow,145 T. Medvedeva,145M. Mooney,145J. Olsen,145P. Piroue´,145X. Quan,145H. Saka,145D. Stickland,145C. Tully,145

J. S. Werner,145A. Zuranski,145J. G. Acosta,146X. T. Huang,146A. Lopez,146H. Mendez,146S. Oliveros,146 J. E. Ramirez Vargas,146A. Zatserklyaniy,146E. Alagoz,147V. E. Barnes,147G. Bolla,147L. Borrello,147 D. Bortoletto,147A. Everett,147A. F. Garfinkel,147Z. Gecse,147L. Gutay,147Z. Hu,147M. Jones,147O. Koybasi,147

M. Kress,147A. T. Laasanen,147N. Leonardo,147C. Liu,147V. Maroussov,147P. Merkel,147D. H. Miller,147 N. Neumeister,147I. Shipsey,147D. Silvers,147A. Svyatkovskiy,147H. D. Yoo,147J. Zablocki,147Y. Zheng,147 P. Jindal,148N. Parashar,148C. Boulahouache,149V. Cuplov,149K. M. Ecklund,149F. J. M. Geurts,149J. H. Liu,149

(11)

B. P. Padley,149R. Redjimi,149J. Roberts,149J. Zabel,149B. Betchart,150A. Bodek,150Y. S. Chung,150R. Covarelli,150 P. de Barbaro,150R. Demina,150Y. Eshaq,150H. Flacher,150A. Garcia-Bellido,150P. Goldenzweig,150Y. Gotra,150 J. Han,150A. Harel,150D. C. Miner,150D. Orbaker,150G. Petrillo,150D. Vishnevskiy,150M. Zielinski,150A. Bhatti,151 R. Ciesielski,151L. Demortier,151K. Goulianos,151G. Lungu,151C. Mesropian,151M. Yan,151O. Atramentov,152

A. Barker,152D. Duggan,152Y. Gershtein,152R. Gray,152E. Halkiadakis,152D. Hidas,152D. Hits,152A. Lath,152 S. Panwalkar,152R. Patel,152A. Richards,152K. Rose,152S. Schnetzer,152S. Somalwar,152R. Stone,152S. Thomas,152

G. Cerizza,153M. Hollingsworth,153S. Spanier,153Z. C. Yang,153A. York,153J. Asaadi,154R. Eusebi,154 J. Gilmore,154A. Gurrola,154T. Kamon,154V. Khotilovich,154R. Montalvo,154C. N. Nguyen,154I. Osipenkov,154

J. Pivarski,154A. Safonov,154S. Sengupta,154A. Tatarinov,154D. Toback,154M. Weinberger,154N. Akchurin,155 C. Bardak,155J. Damgov,155C. Jeong,155K. Kovitanggoon,155S. W. Lee,155P. Mane,155Y. Roh,155A. Sill,155

I. Volobouev,155R. Wigmans,155E. Yazgan,155E. Appelt,156E. Brownson,156D. Engh,156C. Florez,156 W. Gabella,156W. Johns,156P. Kurt,156C. Maguire,156A. Melo,156P. Sheldon,156S. Tuo,156J. Velkovska,156 M. W. Arenton,157M. Balazs,157S. Boutle,157M. Buehler,157S. Conetti,157B. Cox,157B. Francis,157R. Hirosky,157 A. Ledovskoy,157C. Lin,157C. Neu,157R. Yohay,157S. Gollapinni,158R. Harr,158P. E. Karchin,158P. Lamichhane,158 M. Mattson,158C. Milste`ne,158A. Sakharov,158M. Anderson,159M. Bachtis,159J. N. Bellinger,159D. Carlsmith,159 S. Dasu,159J. Efron,159L. Gray,159K. S. Grogg,159M. Grothe,159R. Hall-Wilton,159,bM. Herndon,159P. Klabbers,159 J. Klukas,159A. Lanaro,159C. Lazaridis,159J. Leonard,159R. Loveless,159A. Mohapatra,159D. Reeder,159I. Ross,159

A. Savin,159W. H. Smith,159J. Swanson,159and M. Weinberg159

(CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia 2Institut fu¨r Hochenergiephysik der OeAW, Wien, Austria 3National Centre for Particle and High Energy Physics, Minsk, Belarus

4Universiteit Antwerpen, Antwerpen, Belgium 5Vrije Universiteit Brussel, Brussel, Belgium 6

Universite´ Libre de Bruxelles, Bruxelles, Belgium

7Ghent University, Ghent, Belgium

8Universite´ Catholique de Louvain, Louvain-la-Neuve, Belgium 9Universite´ de Mons, Mons, Belgium

10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil 12Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil

13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria 14University of Sofia, Sofia, Bulgaria

15

Institute of High Energy Physics, Beijing, China

16State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China 17Universidad de Los Andes, Bogota, Colombia

18Technical University of Split, Split, Croatia 19University of Split, Split, Croatia 20Institute Rudjer Boskovic, Zagreb, Croatia

21University of Cyprus, Nicosia, Cyprus

22Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network

of High Energy Physics, Cairo, Egypt

23National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 24Department of Physics, University of Helsinki, Helsinki, Finland

25Helsinki Institute of Physics, Helsinki, Finland 26Lappeenranta University of Technology, Lappeenranta, Finland

27Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France 28DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

29Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France 30

Institut Pluridisciplinaire Hubert Curien, Universite´ de Strasbourg, Universite´ de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

31Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France 32Universite´ de Lyon, Universite´ Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucle´aire de Lyon, Villeurbanne, France

33E. Andronikashvili Institute of Physics, Academy of Science, Tbilisi, Georgia 34Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia

(12)

35RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany 36RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 37RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

38Deutsches Elektronen-Synchrotron, Hamburg, Germany 39University of Hamburg, Hamburg, Germany 40Institut fu¨r Experimentelle Kernphysik, Karlsruhe, Germany 41Institute of Nuclear Physics ‘‘Demokritos’’, Aghia Paraskevi, Greece

42University of Athens, Athens, Greece 43

University of Ioa´nnina, Ioa´nnina, Greece

44KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary 45Institute of Nuclear Research ATOMKI, Debrecen, Hungary

46University of Debrecen, Debrecen, Hungary 47Panjab University, Chandigarh, India

48University of Delhi, Delhi, India 49Bhabha Atomic Research Centre, Mumbai, India 50Tata Institute of Fundamental Research - EHEP, Mumbai, India 51Tata Institute of Fundamental Research - HECR, Mumbai, India 52Institute for Research and Fundamental Sciences (IPM), Tehran, Iran 53INFN Sezione di Bari, Universita` di Bari, Politecnico di Bari, Bari, Italy

53aINFN Sezione di Bari 53bUniversita` di Bari 53cPolitecnico di Bari

54INFN Sezione di Bologna, Universita` di Bologna, Bologna, Italy 54aINFN Sezione di Bologna

54b

Universita` di Bologna

55INFN Sezione di Catania, Universita` di Catania, Catania, Italy 55aINFN Sezione di Catania

55bUniversita` di Catania

56INFN Sezione di Firenze, Universita` di Firenze, Firenze, Italy 56aINFN Sezione di Firenze

56bUniversita` di Firenze

57aINFN Laboratori Nazionali di Frascati, Frascati, Italy 58aINFN Sezione di Genova, Genova, Italy

59INFN Sezione di Milano-Biccoca, Universita` di Milano-Bicocca, Milano, Italy 59aINFN Sezione di Milano-Biccoca

59bUniversita` di Milano-Bicocca

60INFN Sezione di Napoli, Universita` di Napoli ‘‘Federico II’’, Napoli, Italy 60aINFN Sezione di Napoli

60bUniversita` di Napoli ‘‘Federico II’’

61INFN Sezione di Padova, Universita` di Padova, Universita` di Trento (Trento), Padova, Italy 61aINFN Sezione di Padova

61bUniversita` di Padova 61cUniversita` di Trento (Trento)

62INFN Sezione di Pavia, Universita` di Pavia, Pavia, Italy 62aINFN Sezione di Pavia

62bUniversita` di Pavia

63INFN Sezione di Perugia, Universita` di Perugia, Perugia, Italy 63a

INFN Sezione di Perugia

63bUniversita` di Perugia

64INFN Sezione di Pisa, Universita` di Pisa, Scuola Normale Superiore di Pisa, Pisa, Italy 64aINFN Sezione di Pisa

64bUniversita` di Pisa 64cScuola Normale Superiore di Pisa

65INFN Sezione di Roma, Universita` di Roma ‘‘La Sapienza’’, Roma, Italy 65aINFN Sezione di Roma

65bUniversita` di Roma ‘‘La Sapienza’’ 66

INFN Sezione di Torino, Universita` di Torino, Universita` del Piemonte Orientale (Novara), Torino, Italy

66aINFN Sezione di Torino 66bUniversita` di Torino

66cUniversita` del Piemonte Orientale (Novara) 67INFN Sezione di Trieste, Universita` di Trieste, Trieste, Italy

(13)

67aINFN Sezione di Trieste 67bUniversita` di Trieste

68Kangwon National University, Chunchon, Korea 69Kyungpook National University, Daegu, Korea

70Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea 71Korea University, Seoul, Korea

72University of Seoul, Seoul, Korea 73Sungkyunkwan University, Suwon, Korea

74

Vilnius University, Vilnius, Lithuania

75Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico 76Universidad Iberoamericana, Mexico City, Mexico

77Benemerita Universidad Autonoma de Puebla, Puebla, Mexico 78Universidad Auto´noma de San Luis Potosı´, San Luis Potosı´, Mexico

79University of Auckland, Auckland, New Zealand 80University of Canterbury, Christchurch, New Zealand

81National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan 82Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

83Soltan Institute for Nuclear Studies, Warsaw, Poland

84Laborato´rio de Instrumentac¸a˜o e Fı´sica Experimental de Partı´culas, Lisboa, Portugal 85Joint Institute for Nuclear Research, Dubna, Russia

86Petersburg Nuclear Physics Institute, Gatchina (St Petersburg), Russia 87Institute for Nuclear Research, Moscow, Russia

88Institute for Theoretical and Experimental Physics, Moscow, Russia 89Moscow State University, Moscow, Russia

90

P.N. Lebedev Physical Institute, Moscow, Russia

91State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia 92University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

93Centro de Investigaciones Energe´ticas Medioambientales y Tecnolo´gicas (CIEMAT), Madrid, Spain 94Universidad Auto´noma de Madrid, Madrid, Spain

95Universidad de Oviedo, Oviedo, Spain

96Instituto de Fı´sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain 97CERN, European Organization for Nuclear Research, Geneva, Switzerland

98Paul Scherrer Institut, Villigen, Switzerland

99Institute for Particle Physics, ETH Zurich, Zurich, Switzerland 100Universita¨t Zu¨rich, Zurich, Switzerland

101National Central University, Chung-Li, Taiwan 102National Taiwan University (NTU), Taipei, Taiwan

103Cukurova University, Adana, Turkey

104Middle East Technical University, Physics Department, Ankara, Turkey 105Bogazici University, Istanbul, Turkey

106National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine 107University of Bristol, Bristol, United Kingdom

108Rutherford Appleton Laboratory, Didcot, United Kingdom 109Imperial College, London, United Kingdom 110Brunel University, Uxbridge, United Kingdom

111Baylor University, Waco, USA 112Boston University, Boston, USA 113

Brown University, Providence, USA

114University of California, Davis, Davis, USA 115University of California, Los Angeles, Los Angeles, USA

116University of California, Riverside, Riverside, USA 117University of California, San Diego, La Jolla, USA 118University of California, Santa Barbara, Santa Barbara, USA

119California Institute of Technology, Pasadena, USA 120Carnegie Mellon University, Pittsburgh, USA 121University of Colorado at Boulder, Boulder, USA

122

Cornell University, Ithaca, USA

123Fairfield University, Fairfield, USA

124Fermi National Accelerator Laboratory, Batavia, USA 125University of Florida, Gainesville, USA 126Florida International University, Miami, USA

(14)

127Florida State University, Tallahassee, USA 128Florida Institute of Technology, Melbourne, USA 129University of Illinois at Chicago (UIC), Chicago, USA

130The University of Iowa, Iowa City, USA 131Johns Hopkins University, Baltimore, USA 132The University of Kansas, Lawrence, USA 133Kansas State University, Manhattan, USA 134Lawrence Livermore National Laboratory, Livermore, USA

135

University of Maryland, College Park, USA

136Massachusetts Institute of Technology, Cambridge, USA 137University of Minnesota, Minneapolis, USA

138University of Mississippi, University, USA 139University of Nebraska-Lincoln, Lincoln, USA 140State University of New York at Buffalo, Buffalo, USA

141Northeastern University, Boston, USA 142Northwestern University, Evanston, USA 143University of Notre Dame, Notre Dame, USA

144The Ohio State University, Columbus, USA 145Princeton University, Princeton, USA 146University of Puerto Rico, Mayaguez, USA

147Purdue University, West Lafayette, USA 148Purdue University Calumet, Hammond, USA

149Rice University, Houston, USA 150University of Rochester, Rochester, USA 151

The Rockefeller University, New York, USA

152Rutgers, the State University of New Jersey, Piscataway, USA 153University of Tennessee, Knoxville, USA

154Texas A&M University, College Station, USA 155Texas Tech University, Lubbock, USA 156Vanderbilt University, Nashville, USA 157University of Virginia, Charlottesville, USA

158Wayne State University, Detroit, USA 159University of Wisconsin, Madison, USA

aDeceased.

bAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland. cAlso at Universidade Federal do ABC, Santo Andre, Brazil.

dAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France. eAlso at Suez Canal University, Suez, Egypt.

f

Also at Fayoum University, El-Fayoum, Egypt.

gAlso at Soltan Institute for Nuclear Studies, Warsaw, Poland. hAlso at Massachusetts Institute of Technology, Cambridge, USA.

iAlso at Universite´ de Haute-Alsace, Mulhouse, France.

jAlso at Brandenburg University of Technology, Cottbus, Germany. kAlso at Moscow State University, Moscow, Russia.

lAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary. mAlso at Eo¨tvo¨s Lora´nd University, Budapest, Hungary.

nAlso at Tata Institute of Fundamental Research - HECR, Mumbai, India. oAlso at University of Visva-Bharati, Santiniketan, India.

pAlso at Facolta` Ingegneria Universita` di Roma ‘‘La Sapienza’’, Roma, Italy. qAlso at Universita` della Basilicata, Potenza, Italy.

rAlso at California Institute of Technology, Pasadena, USA.

sAlso at Faculty of Physics of University of Belgrade, Belgrade, Serbia. tAlso at University of California, Los Angeles, Los Angeles, USA. u

Also at University of Florida, Gainesville, USA.

vAlso at Universite´ de Gene`ve, Geneva, Switzerland. wAlso at Scuola Normale e Sezione dell’ INFN, Pisa, Italy.

(15)

yAlso at University of Athens, Athens, Greece. zAlso at The University of Kansas, Lawrence, USA.

aaAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia. bbAlso at Paul Scherrer Institut, Villigen, Switzerland.

ccAlso at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia. ddAlso at Gaziosmanpasa University, Tokat, Turkey.

eeAlso at Adiyaman University, Adiyaman, Turkey. ffAlso at Mersin University, Mersin, Turkey.

ggAlso at Izmir Institute of Technology, Izmir, Turkey. hhAlso at Kafkas University, Kars, Turkey.

iiAlso at Suleyman Demirel University, Isparta, Turkey. jjAlso at Ege University, Izmir, Turkey.

kkAlso at Rutherford Appleton Laboratory, Didcot, United Kingdom.

llAlso at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom. mm

Also at INFN Sezione di Perugia, Universita` di Perugia, Perugia, Italy.

nnAlso at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary. ooAlso at Institute for Nuclear Research, Moscow, Russia.

Figura

TABLE I. The data event yields in 34:0 pb 1 for different leptoquark mass hypotheses, together with the optimized S T threshold values (in GeV) for each mass, background predictions, number of expected LQ signal events ( S), and signal selection efficienc
TABLE II. Systematic uncertainties and their effects on num- num-ber of signal and background events.

Riferimenti

Documenti correlati

Among the investigated matrices, DAN revealed a soft (i.e., absence of analyte fragmentation) and a high- performance ET matrix leading solely to the formation of an

Onchocerca lupi paramyosin (Ol-para, 2,643 bp cDNA) was herein isolated and characterised in adults, both males and females, and microfilariae.. The predicted Ol- PARA protein (i.e.

In 2012, during a conference in Rome about Late Antique plates deco- rated with engravings, I presented a paper about the potentially very useful contribute that the

In both cases, an accurate reflection is needed: archaic texts often present palaeographic characters, writing techniques and linguistic issues that are completely different from

To identify the miRNA targetome, the 560 DE mRNAs and the 6 DE miRNAs were selected for gene target analysis, using an integrated approach of validated and predicted interaction

The ALICE Collaboration acknowledges the following funding agencies for their support in building and run- ning the ALICE detector: State Committee of Science, World Fed- eration

The clotting time was evaluated manually, and the anticoagulant activity at each cell concentration was calculated as the ratio between the clotting time of patient plasma and

Peripheral insulin resistance (IR) promotes increased production of free fatty acids (FFA) direct in the liver, resulting in an imbalance between oxidation/divestiture