• Non ci sono risultati.

An FPGA-based versatile development system for endoscopic capsule design optimization

N/A
N/A
Protected

Academic year: 2021

Condividi "An FPGA-based versatile development system for endoscopic capsule design optimization"

Copied!
7
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Sensors

and

Actuators

A:

Physical

j our na l h o me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / s n a

An

FPGA-based

versatile

development

system

for

endoscopic

capsule

design

optimization

C.

Cavallotti

a,∗

,

P.

Merlino

b

,

M.

Vatteroni

a

,

P.

Valdastri

a

,

A.

Abramo

c

,

A.

Menciassi

a

,

P.

Dario

a

aTheBioRoboticsInstitute,ScuolaSuperioreSantAnna,Pisa56100,Italy bPTLab,AgemontS.p.A.,Amaro33020,Italy

cDIEGM,Universita’diUdine,Udine33100,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received30September2010

Receivedinrevisedform11January2011 Accepted12January2011

Available online 31 January 2011 Keywords:

FPGA

WirelessCapsuleEndoscopy Sensor

a

b

s

t

r

a

c

t

Thisworkpresentsadevelopmentsystem,basedonFieldProgrammableGateArray(FPGA),thatwas

specificallydesignedfortestingtheentireelectronicstobeintegratedinanendoscopiccapsule,suchasa

camera,animagecompressionengine,ahigh-speedtelemetricsystem,illuminationandinertialsensors.

Thankstoitshighflexibility,severalfeaturesweretestedandevaluated,thusallowingtofindtheoptimal

configuration,intermsofpowerconsumption,performancesandsize,tobefitinacapsule.Asfinalresult,

anaverageframerateof19framepersecond(fps)overatransmissionchannelof1.5Mbit/swaschosen

asthebestchoiceforthedevelopmentofaminiaturizedendoscopiccapsuleprototype.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

WirelessCapsuleEndoscopy(WCE)isanemergingtechnology which is producing a bigimpact onthepracticeof endoscopy. A typicalendoscopiccapsule isequipped withanimaging sen-sor,anilluminationsystem,animageprocessor,aradio-frequency transmitter and a power sourcewhich provides energy to the wholesystem[1].WCEseemstobesuperiorinthediagnosisof thesmallbowelpathologiestootherpainlessimagingmodalities, suchasX-ray,computerizedtomographicenterographyand mag-neticresonanceenteroclysis,becauseitprovidesadirectvisionof somegastrointestinal(GI)tractsotherwisedifficulttoreach with-outsurgery[2].Thistechnologyhashelpeddoctorstodiagnose pathologies suchas obscure GIbleeding, small-bowel tumours, Crohn’s disease,and celiac disease[3]. Moreover,WCE reduces theinvasivenessandpainoftraditionalproceduresresultingmore acceptableforpatients.

Sinceitscommercialdistributionin2002,differentcapsulesare nowavailableonthemarket[4].Despiteofseveralenhancements

[5],mainlimitationsarestillrelatedtocorepartssuchasthevision system.Thecommerciallyavailableendoscopiccapsuletransmits theimagesattheresolutionof256-by-2568-bitpixelswitha maxi-mumframerateof7fps.Thisframerateisnotenoughforarealtime videostreaming,whichishighlydesirableforacorrectdiagnosis. However,theselimitationsmustbeovercometakingintoaccount

∗ Correspondingauthor.

E-mailaddress:c.cavallotti@sssup.it(C.Cavallotti).

thelimitedpowersupplyandthemaximumdimensions(11mm in diameter(d)×31mminlength(l))suitable fora swallowable device.

OuraimistodevelopaWCEdevicewithrealtimevision,thus framerateatleastof15fpsmustbeguaranteedinordertoavoid flashingimages[6].Moreover,ahighimagequalityintermsof fea-tureperception,noiseandsufficientilluminationhastobeassured toachieveacorrectdiagnosis.

Asapreliminarywork,wedevelopedaversatiledevelopment system,basedonanFPGAdevice,fortestingdifferent configura-tionsofsomesub-moduleswhicharecorepartsinthecapsule, suchasacamera,anilluminationsystem,butalsoahighdatarate transmitterandacompressorenginewhicharecrucialtoreachthe desiredframerate.Themainfeatureoftheproposedsystemisthe highflexibility,whichallowstoinvestigatethewholevision sys-temchainandtohighlightthecriticalissues.TheFPGAcoremakes developmentsystemeasy-fittingtodifferentconfigurationswhich canbetestedwithoutanyphysicalhardwarechange.Thissystem canbeusedasacasestudyforassessingtheoptimumconfiguration intermsofperformance,powerconsumptionandoverall dimen-sions,andtosolvethecriticalaspectsbeforetostartthedesignof theminiaturizedversionsuitableforWCEapplications.

2. Developmentsystemarchitecture

The system is composedby three units: a dedicated vision board, a main control board and a third board for debug pur-poses(Figs.1and2).Inthefollowingsectionstheseboardswill bedescribedindetails.

0924-4247/$–seefrontmatter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.sna.2011.01.010

(2)

Fig.1. Developmentsystemwithopticsandilluminationsystem.

2.1. Visionboard

ThecoreofthevisionboardisacustomComplementary Metal-Oxide Semiconductor(CMOS)imagesensor,calledVector2.The chip was produced in the UMC 0.18!-CIS (CMOS Image Sen-sor)technologyandincludesaQuarterofVGA(QVGA)320× 240 pixel array witha Bayer Color Filter Array(CFA) up, the com-pletereadoutchannel,a10-bitAnalog-to-Digitalconverter(ADC), aseriesofDigital-to-Analogconverters(DAC)forinternal refer-encesanddigitalblocksforthechipcontrol[7].AnI2C-likeinput isusedforsettingand controlwhilea seriallow-voltage differ-entialsignaling (LVDS) output interface allows totransmit the data.Arollingshutterread-outisimplementedinorderto max-imize sensitivity of the sensor. Its highsensitivity, low power consumptionandasimplecontrolofthefullchipmakeitsuitable for WCE applications. Taking into account thephysical dimen-sion of the Vector2 sensing area (1.408mminhorizontal(d)× 1.056mminvertical(

v

))andthedepthoffocusfrom1mmto10 mmwhichisdrivenbythefinalapplication,acommercial posi-tivefocallens(NT45-589,EdmundOptics,NewJersey,USA)was chosen,withafocallengthof1mmandadiameterof1mm,thus

achievingafieldofviewof82◦(h)×61(

v

).Aplastic,unreflective

holderwasalsodesignedinordertofixandaligntheoptical mod-uleinfrontofthechip.Thevisionboardallowstoconnectdifferent types ofilluminationsystems. Fourwhite light-emittingdiodes (LED)werearrangedontoaroundshapeprintedcircuitboard(PCB). Thedesignofthisilluminationsystemwascarriedoutconsidering atrade-offbetweenpowerconsumption,sizeandtheamountof lightnecessaryfordiagnosticpurposes.Takingintoaccountthese features high efficiency LEDs (Nesw007AT, Nichia, Nokushima, Japan) were chosenwith a dimensionof 1.2mminheight(h)× 2mminwidth(w)×1.3mminthickness(t)andlightintensityof 1000mcdwithapowerconsumptionof15mA@3.3V[8].

ThewhiteLEDsboardcanbereplacedwithcolorLEDsboard withnomajordesignchangesinthehardware,inordertoobtain whitelightbycolorlightcombination[9]ortoenablespectroscopic imaging,suchasautofluorescenceimaging[10].Inthesecases,the colorLEDsarecontrolledbyindependentdrivingcircuits imple-mentedontheFPGAenablingaprecisecontrolontheamountof lightprovidedtothescene,aswillbeexplanedinmoredetailsin Section3.1.

2.2. ControlboardandFPGAarchitecture

ThecontrolboardisbasedonaFPGAwhichimplementsthe mainfunctionalitiesofthewholesystem.FPGAswereintroducedas analternativetodigitalcustomIntegratedCircuits(ICs)for imple-mentingtheentiresystemononechipandtoprovideflexibility of re-programmabilitytotheuser[11]. Therefore,thanksto its high-flexibilityandlowcost,FPGArepresentsthebestchoicefor testingdifferentsolutionstoselecttheoptimalforourapplication. AdetailedbenchmarkanalysiswascarriedouttochooseanFPGA, suitablenotonlyfortestingpurposebutalsotobeintegratedin afutureminiaturizedversionofthesystem,whichwillbefitted inanendoscopicpill.Asconsequence,parameterssuchaspower consumption,physicalsizeandoverallgatecountweretakeninto account.AcompactsystemfromSiliconBlue(iCE65L08)was cho-senbeing4.79(h)×4.37(

v

)mmin sizewitha verylow power consumption(12mA@32MHz).ThesefeaturesmaketheiCE65L08 suitabletobefitinanendoscopicpill.

(3)

Inordertohavearealtimevideo streaming,aframerateof atleast15fpsisneeded.However,increasingtheamountofdata causeshugeincreaseinpowerconsumptionintheRFtransmission

[12],thatisthemainconstraintinWCE.Hence,applyingimage compressionisnecessaryforlimitingthetransmissionworkload andsavingthepowerdissipation.

A compression engine which is well suited for WCE must havelowpowerconsumption,logicresourcesandlimited mem-orysizeneededforthecompression.CurrentJPEGcompression chipsrequiretheavailabilityofaconsiderableamountofhardware resourcesresultinginahighpowerconsumption(typicallymore than 100mW),which is notacceptablein this application[13]. Amongsimplededicatedalgorithms,wechosethelow-complexity compressionenginedevelopedby[14]becauseitsperformances arecomparablewithJPEG2000,butloweringthecomplexity allow-ingitsimplementationonthechosenFPGA.

TheFPGAisalsousedtodistributetheclocktothewhole sys-tem. The imagesensor is then driven by a 8MHz@1.8V clock, whiletheFPGAinternallogicbya16MHz@1.8Vwithanexternal 32MHz@3.3VoscillatorininputtotheFPGA.

AsinFig.2,severallogicblockswereimplementedontheFPGA inordertocarryoutsomebasictaskssuchastheVector2 config-uration,theimageacquisitionandilluminationcontrol.Moreover, asimplePC-basedsoftwareallowstheusertoconfiguretheFPGA andthevisionchipandtoshowtheacquiredimagesonscreen throughtheUSBconnection.TheVector2configurationtaskis per-formedbytheUSBInterface,theInstruction(n.b.)ControlandI2C Masterblocks.Theconfigurationdata,sentbytheuserthroughthe developedsoftware,arereceivedbytheUSBInterfaceblockthat interconnectstheFPGAwiththeexternalCypress FX2USB con-troller.TheInstructionControlblockdecodestheinstructionsand sendstheconfigurationdatatotheI2CMasterblock.Finally,theI2C MasterconfigurestheVector2chipthroughtheI2Cbus.The Instruc-tionControlblocksendsconfigurationdataalsototheLEDDriverin ordertocontroltheLEDsandtheamountoflightprovidedtothe scene,asitwillbeexplainedinSection3.1.Aftertheconfiguration phase,theVector2Receiverdecodesthedataacquiredbythevision chip,convertingtheLVDSsignalstoa10-bitparallelformat.Then theacquiredframesarestoredintheexternalSRAMchip,whichis usedasaframebuffer.Thememorizedframescanbereadfromthe SRAMbytheMemoryControllerblockandsenttothePCthrough theUSBInterfaceblockandexternalUSBcontroller.

Thelogicblocksimplementedinthisconfigurationarewritten withVHSICHardwareDescriptionLanguage(VHDL),anduse31%1

ofthetotalFPGA(2400logiccells)andcanoperateatamaximum frequencyofabout41MHz.Thepowerconsumptionofthe devel-opedsystemislessthan360mWanditsplitsasfollows:40mW fortheVector2chip,about10mWfortheFPGAand310mWfor debugblockswhichwillbenotforeseeninthefinalminiaturized prototype.

2.3. Debugboard

Thesystemisalsoequippedwithadebugboardtoincreasethe flexibilityofthesystem.TheboardisequippedwiththeCypress FX2USBcontrollerthatprovideshigh-speedconnectionandfully configurabilitybytheintegrated8051microcontroller.Thedebug boardisalsoequippedbytheCypressCY7C1339GSRAMchipthat isusedasframebufferfortheacquisitionofimagesfromthe sen-sorchipandtostoreadditionaldataforimageprocessing.Finally, severalconnectorsareusedtomonitoreachpinoftheFPGA.The

1WeusethelogiccellsasameasureoftheFPGAresourcesoccupation.The pre-sentedareaoccupationreferstothebasicconfiguration,withoutthecompressor, brightnesscontrolblockorwirelesstransmitterblock.

Fig.3.Acquiredimagesfromdifferentgastrointestinaltracts,duringexvivotests.

purposeofthisboardistoprovidearealtimedebugplatformforthe wholedemosystem.APC-basedsoftwareisusedtosetupthe reg-istersoftheFPGAandoftheVector2chipandtomonitorthestatus ofthesystemthroughtheUSBconnection.Theacquiredimagesare storedintheSRAM,senttothePCandshownonthescreen.Finally, theUSBconnectionisusedalsoforthecontroloftheillumination andtheLEDdrivers.

3. Testsandsub-modulesintegration

Some experiments were done totest separately and finally togethereachsub-modulewhichwillbeintegratedinthefinalpill.

3.1. Imagesacquisitionandbrightnesscontrol

Atfirst,imagesfromexvivoanimaltissuewereacquiredusing thevisionboard,withtheopticsandwhiteillumination,inorder todefinetheimagerandilluminationcontrolsettingsnecessaryto achieveasuitableimagequalityfordiagnosticpurposes(Fig.3(a) and(b)).AsimpleLEDdriverwasimplementedintheFPGAable tosettheamountoflightdrivingtheLEDsbyaPulseWidth Mod-ulation(PWM)technique.TheLEDdriverswitchesonandoffthe

(4)

Fig.4.Imageblocksusedtobrightnesslevelestimationandbrightnesscontrolarchitecture.

illuminationduringtheintegrationtimeoftheopticalsensor,thus modulatingtheaveragecurrentprovidedtotheLEDs.Thelength ofthecurrentpulsesprovidedtotheilluminationsystemandtheir numberaresetbyafewinternalregisters,whichcanbemodifided inrealtimewiththeUSBconnection.However,theillumination isswitchedononlywhentheopticalsensorisinitsintegration phaseinordertoavoidflickeringeffects.InthecaseofRGBLEDs, threedriverscontrolledbythreedifferentgroupsofregistersare implementedontheFPGAinordertodriveeach groupof LEDs independentely.SinceinarealapplicationsuchasWCE,itisnot desirabletomanuallysettheproperamountoflight,wealso imple-mentedanautomaticbrightnesscontrolsystem.

Inmodernvisionsystems,thebrightnessoftheacquiredimages dependsonseveralfactors.Amongothers,themostimportantones arethelens,thesensitivityandintegrationtimeofthevisionsensor andtheillumination.Inourprototypethelensischosenbasedon thefieldofviewandsizerequirements,whiletheintegrationtime ofthesensorisfixedinordertoachievethedesiredframerate.Asa consequence,wecansetthebrightnessoftheimagesbycontrolling theamountoflightprovidedtothescene.Thisisequivalentto con-troltheexposuretimeinstandarddigitalcameras.Exposurecontrol algorithmstypicallydividetheacquiredimageinseveralblocksand computetheaverageluminancesignalineachblock.Thentheblock luminancevaluesarecombinedwithdifferentweightsinorderto estimatebacklitorfrontlitscene[15].Sinceinourapplicationthe onlypossiblecaseisthefrontlitbecausetheonlysourceoflightare theLEDs,wedecidedtocomputetheaverageluminancesignalof asingle128×128pixelsblockinthecentreoftheimage(Fig.4). Moreover,wecannotcomputetheluminancevaluesofthepixels becauseoftheBayerCFAmountedontheVector2chipandthe lackofthedemosaicingblock.Consequently,wedecidedto esti-matethebrightnessbasedonlyonthegreenpixelvaluesbecause thegreencomponentmostlycontributestotheluminanceofan image[16]andinaBayerfiltertheirnumberaredoublethanthe redand blueones.Thebrightness controlblockreadsthepixel valuesrecoveredbythereceiveranddrivestheLEDdriverblock accordinglywiththeestimatedbrightnesslevel.Hence,theLEDs intensityiscontrolledtomaintainthebrightnesswithinadefined interval.TheLEDsaredrivenbythedefinedsequenceofcurrent pulsesonlyduringthesensorintegrationtimeinorder to min-imizethepowerconsumption. Thisstrategy allowsnot only to accuratelycontroltheamountoflightprovidedtothescenebut alsotosimulateaglobalshutter.Theentiresensorstartsgathering lightwhentheLEDsareturnedon,whilethecontentsofthe sen-sorarereadoutwhentheyareturnedoff,thusminimizingimage artefacts[17].

TheFPGA implementationoftheproposedbrightness control blockuses320logiccells,whiletheimpactonthemaximumclock frequencyisminimal.

3.2. Columnpatternnoisecorrection

TheCMOSimagersoftensufferfromFixedPatternNoise(FPN)

[18].FPNisanon-temporalspatialnoise,anditiscausedbythe non-uniformityofthetransistor’scharacteristicswithinthepixels andthecolumnamplifier,thisresultingfromfabricationprocess tolerances.ThepixelFPNnoiseisusuallyremovedatthepixellevel byhardwaresubtraction,whileawaytoeliminatethecolumnFPN isasubtractionbetweentheacquiredimageandareferencedark image.Thissimplemethodrequiresthatthedarkimageisacquired and stored intotheFPGA or intheexternal SRAM. Sincea full framecannotbememorizedinsidetheFPGAbecauseofthelack ofmemoryandintherealapplicationitisnotdesirabletousean externalSRAM,wedevelopedandtestedanalternativeversionof thealgorithmthatreducesthememoryrequirements.Ourideais tocomputethemeanvaluesoftheevenandoddrowsofadark imageandtorecursivelysubtractthesefromtheacquiredimages. Inthisway,thememoryrequirementsofthearchitecturecanbe reducedtotworowsonly(2×320×10bits).Wecomputetwo dif-ferentmeanvaluesforevenandoddrowsbecausetheCFAmounted ontheimagerusesapatternof2×2pixels.

Atfirst,theilluminationisswitchedoffandtheFPGAstartsto acquireadarkimage.Eachcoupleofrowsisaccumulatedina two-rowsmemoryinsidetheFPGA.Attheendoftheacquisition,the averagevaluesarecomputed.ThentheLEDsareswitchedonand whenthenextimageisreceivedbytheFPGA,thereferencedark rowsaresubstractedfromeachcoupleofrowacquired.Fig.5(a) showstheimagewiththeFPN,whileFig.5(b)showstheresult ofthecorrectionstrategy.Theresultingimageisbetterinterms ofperceivedresolution.Inordertoevaluatetheeffectivenessof ouralgorithmwecalculatedthestandarddeviationofthe origi-nalimageandtheelaboratedone.Since thefixedpatternnoise isashort-rangenoise,weacquiredawhiteimagewithanuniform illuminationinordertoexcludethecontributionofimagecontrasts anddarkfixedpatternnoise.Weobservedthatthestandard devi-ationoftheimageafterelaborationis20%lessthantheoriginal one.

3.3. Compressorimplementation

In ordertofulfiltheframeraterequirements, a image com-pressorwasimplementedontheFPGA.Severalcompressorswere

(5)

Fig.5. Originalimageanddenoisedimagewithreconstructeddarkimage.

tested[13,19]takingintoaccountthepowerlimitationandsmall sizeconditionswhicharethemainfeaturesofWCE.Forthese rea-sons,alow-power,low-complexitylossycompressorspecifically developed for capsule endoscopy was chosen [14]. The imple-mentedcompressorisbasedonintegerversionofdiscretecosine transform(DCT)andperformssequentiallyfouroperations:color transformation, image transformation, coefficients quantization andentropycoding.Thisconfigurationconsumesabout77%ofthe resourcesoftheFPGAand25blockRAMsandcanworkata fre-quencyofupto39MHz.

Finally,theresultsoftheimplementationofthechosen com-pressorcanbeseeninFig.6(a)and(b).Thefirstpictureshows animage acquiredwithan integrationtimeof 50ms and LEDs switchedonfor25ms,whilethesecondoneshowsthesameimage afterthecompressionstagewitharatioofabout8.Ascanbeseen, thecompressorintroducessomeartifactsduetothelossynatureof thecompressionalgorithm,butthequalityoftheimageissufficient fordiagnosticpurposes.Asafinalremark,itcanbenotedthatthe compressionratiocanbesetthroughaproperchoiceofthe com-pressorparameters,thusallowingthereductionoftheamountof databetween8and20[14].

Fig.6.Acquiredimagesbeforeandaftercompression.

Fig.7. Miniaturizedprototype.

4. Conclusionsandfutureworks

AnFPGA-baseddevelopmentsystemwasdesignedinorderto test a complete wireless imaging acquisition chain suitable for WCE.Thefinalgoalistoachieveasmoothrealtimevideostream withatleast15fpsandlowpowerconsumption.

(6)

Themainchallengefacedintegratingthesystem,inorder to enablearealtimediagnosis,wasrelatedtoimagecompressionand wirelessvideostreamtransmissionvs.theoriginaldatapayload.

After the analysis of several wireless technologies [20], we decidedtoimplementthetransmitterpresentedinRef.[21].The chosensolutionisbasedonnear-fieldtechnologyandpresentsthe bestperformanceintermsofdatarateandthebestefficiencyin termsofpowerconsumptionvs.datarate[20],enablinga trans-missionof1.5Mbit/swithapowerconsumptionof2mW@1.8V.

SincetheVector2imagerresolutionisaQVGAandeachpixelis decodedby10bits,theoriginalamountofdataforeachframeis 768kbit.Consideringanaveragecompressionratioof10,the min-imumframerateis19.53fpswithanoverallpowerconsumption of90mA@3.3Vand26mA@1.8V.

Consideringtheresultsobtainedwiththedevelopmentsystem, aminiaturizedversionwasdesignedandnowundertest(Fig.7). Theprototypeconsistsoftwoboardsconnectedbyapermanent flexible interconnectionwitha diameterof9.9 mmin order to fitinapillcasewithaninnerdiameterof10mm.Moreover,the additionalthreeflexiblecircuitpartsallowtheconnectionofother boardswithcomponentsrequiredbythesystem,suchasbattery orwirelesspowersupply[22]andinertialsensors[23].

Acknowledgements

TheworkdescribedinthispaperwasfundedbytheEuropean CommissionintheframeworkofVECTOR FP6Europeanproject EU/IST-2006-033970.

References

[1]P.Swain,Thefutureofwirelesscapsuleendoscopy,WorldJournalof Gastroen-terology14(26)(2008)4142–4145.

[2]Z.Fireman,Y.Kopelman,Newfrontiersincapsuleendoscopy,Journalof Gas-troenterologyandHepatology22(8)(2007)1174–1177.

[3]S.D.Ladas,K.Triantafyllou,C.Spada,M.E.Riccioni,J.F.Rey,Y.Niv,M.Delvaux, R.deFranchis,G.Costamagna,theESGEClinicalGuidelinesCommittee, Euro-peansocietyofgastrointestinalendoscopy(esge):Recommendation(2009)on clinicaluseofvideocapsuleendoscopytoinvestigatesmall-bowel,esophageal andcolonicdiseases,Endoscopy42(2010)220–227.

[4]J.L.Toennies,G.Tortora,M.Simi,P.Valdastri,R.J.Webster,Swallowable med-icaldevicesfordiagnosisandsurgery:thestateoftheart,Proceedingsofthe InstitutionofMechanicalEngineers.PartC.JournalofMechanicalEngineering Science224(7)(2010)1397–1414.

[5]A.Moglia,A.Menciassi,M.O.Schurr,P.Dario,Wirelesscapsuleendoscopy:from diagnosticdevicestomultipurposeroboticsystems,BiomedicalMicrodevices 9(2)(2007)235–243.

[6]J.Y.C.Chen,J.E.Thropp,Reviewoflowframerateeffectsonhumanperformance, Systems,ManandCybernetics,PartA:SystemsandHumans,IEEETransactions on37(6)(2007)1063–1076.

[7]M.Vatteroni,D.Covi,C.Cavallotti,L.Clementel,P.Valdastri,A.Menciassi, P.Dario,A.Sartori,Smartopticalcmossensorforendoluminalapplications, SensorsandActuatorsA:Physical162(2)(2010)297–303.

[8]http://www.nichia.co.jp/.

[9]N.Narendran,N.Maliyagoda,L.Deng,R.M.Pysar,Characterizingledsfor gen-eralilluminationapplications:mixed-colorandphosphor-basedwhitesources, Proc.SPIE4445,(2001)137.

[10]M.Kato,M.Kaise,J.Yonezawa,K.Goda,H.Toyoizumi,N.Yoshimura,Y.Yoshida, M.Kawamura,H.Tajiri,Trimodalimagingendoscopymayimprove diagnos-tic accuracyofearlygastricneoplasia:afeasibilitystudy,Gastrointestinal Endoscopy70(5)(2009)899–906.

[11]N.Sulaiman,Z.A.Obaid,M.H.Marhaban,M.N.Hamidon,Designand implemen-tationoffpga-basedsystems–areview,AustralianJournalofBasicandApplied Sciences3(4)(2009)3575–3596.

[12]K.Wahid,S.B.Ko,D.Teng,Efficienthardwareimplementationofanimage compressorforwirelesscapsuleendoscopyapplications,in:NeuralNetworks, 2008.IJCNN2008.(IEEEWorldCongressonComputationalIntelligence).IEEE InternationalJointConferenceon,2008,pp.2761–2765.

[13]D.Turgis,R.Puers,Imagecompressioninvideoradiotransmissionforcapsule endoscopy,SensorsandActuatorsA:Physical123-124(2005)129–136. [14]P.Turcza,T.Zielinski,M.Duplaga,Hardwareimplementationaspectsofnew

lowcomplexityimagecodingalgorithmforwirelesscapsuleendoscopy, Com-putationalScienceICCS(2008)476–485.

[15] R.Ramanath,W.E.Snyder,Y.Yoo,M.S.Drew,Colorimageprocessingpipeline, SignalProcessingMagazine,IEEE22(1)(2005)34–43.

[16]Q.K.Vuong,S.H.Yun,S.Kim,Anewautoexposuresystemtodetecthigh dynamicrangeconditionsusingcmostechnology,in:ConvergenceandHybrid InformationTechnology,2008.ICCIT’08.ThirdInternationalConferenceon, 2008,pp.577–580.

[17]S.Lauxtermann,A.Lee,J.Stevens,A.Joshi,Comparisonofglobalshutterpixels forCMOSimagesensors,in:Proc,2007InternationalImageSensorWorkshop, OgunquitMaine,USAJune7–10,2007.

[18] A.Theuwissen,Digitalimaging:imagecapturing,imagesensors,technologies andapplications,CEIEurope,2004.

[19] M.-C.Lin,L.-R.Dung,P.-K.Weng,Anultra-low-powerimagecompressorfor capsuleendoscope,BioMedicalEngineeringOnLine5(1)(2006)14. [20] M.R.Yuce,T.Dissanayake,H.C.Keong,Wirelesstelemetryforelectronicpill

technology,in:IEEESENSORS2009,2009.

[21] J.Thone,S.Radiom,D.Turgis,R.Carta,G.Gielen,R.Puers,Designofa2mbpsfsk near-fieldtransmitterforwirelesscapsuleendoscopy,SensorsandActuators A:Physical156(1)(2008)43–48.

[22]R.Carta,J.Thon,R.Puers,Awirelesspowersupplysystemforroboticcapsular endoscopes,SensorsandActuatorsA:Physical162(2)(2010)177–183. [23]G.Ciuti,P.Valdastri,A.Menciassi,P.Dario,Roboticmagneticsteeringand

locomotionofcapsuleendoscopefordiagnosticandsurgicalendoluminal pro-cedures,Robotica28(SpecialIssue02)(2010)199–207.

Biographies

CarmelaCavallottireceivedadegreeinbiomedicalengineering(withhonours) fromtheCampusBio-MedicoUniversityinRomeinDecember2007.Sheiscurrently aPhDstudentinbioroboticsattheCRIMLaboftheScuolaSuperioreSant’Annain Pisa.Hermainresearchinterestsareinthefieldsofvisionsystemsforbiomedical applications.

PierantonioMerlinowasborninUdine,Italy,in1980.Hereceivedthelaureadegree inelectricalengineering(summacumlaude)fromtheUniversityofUdine,Italy, in2005andthePhDdegreeinelectricalengineeringfromthesameInstitutionin 2009.Hisresearchinterestsincludesthestudyandrealizationofelectronic sys-temsforpervasivecomputingapplications,communicationandpowertechnologies forwireless/contactlessapplications.Currentlyheisworkingonvisionsystemsfor endoscopicapplications.

MonicaVatteroniwasborninLaSpezia,Italy,in1975.ShereceivedanM.S.degreein electricalengineeringfromtheUniversityofPisa(Italy)in2001andaPhDdegreein physicsfromtheUniversityofTrento(Italy),in2008.From2002to2008,sheworked forNeuriCam,Trento(Italy),aspixelengineerandanaloguedesigner,andin2005 shebecameresponsibleforthedevelopmentofCMOSImageSensors.Presently, sheworksfortheScuolaSuperioreSant’AnnainPisa(Italy)aspostdoctoralfellow, wheresheisresponsiblefortheresearchanddevelopmentofimagesensorsand visionsystemsforbiomedicalapplications.Sheistheauthorandco-authorof sev-eralconferenceandjournalpublicationsandofthreepatents.Herinterestsinclude CMOSimagesensors,lownoiseanalogueelectronics,highdynamicrangepixelsand endoscopicvisionsystems.

PietroValdastrireceivedadegreeinelectronicengineering(withhonours)from theUniversityofPisainFebruary2002.InthesameyearhejoinedtheCRIMLab oftheScuolaSuperioreSant’AnnainPisaasaPhDstudent.In2006heobtained aPhDinbioengineeringfromtheScuolaSuperioreSant’Annadiscussinga the-sistitled“Multi-AxialForceSensinginMinimallyInvasiveRoboticSurgery”.Heis nowassistantprofessoratCRIMLab,withmainresearchinterestsinthefieldof implantableroboticsystemsandactivecapsularendoscopy.Heiscurrently work-ingonseveralEuropeanprojectsforthedevelopmentofminimallyinvasiveand wirelessbiomedicaldevices.

AntonioAbramowasborninBologna,Italy,in1962.Hereceivedthelaureadegree inelectricalengineering(magnacumlaude)fromtheUniversityofBologna,Italy, in1987,andthePhDdegreeinelectricalengineeringfromthesameInstitutionin 1995.HisexperienceincludesresearchperiodswiththeIntelCorporation,Santa Clara(CA),USA(1992),attheCenterforIntegratedSystems,StanfordUniversity, Stanford(CA),USA(2000).BetweenOctober1993andDecember1994hewas resi-dentscientistattheAT&TBellLaboratories,MurrayHill(NJ),USA,whilefrom1995 to1997hewaspost-docattheDepartmentofPhysics,UniversityofModena,Italy. AntonioAbramoisco-authorofabout70scientificpublicationsonInternational JournalsandConferences.Inyears2001–2002hehasbeenappointedmemberof the“ModelingandSimulation”technicalsub-committeeoftheIEEEInternational ElectronDeviceMeeting(IEDM)Conference,andinyear2003Chairofthesame sub-committee.Presently,heisassociateprofessorofelectronicsattheUniversity ofUdine,Italy.Afterabout10yearsofscientificactivityinthefieldofmodelingand simulationofcarriertransportinelectrondevices,startingfromyear2001his scien-tificinteresthasmovedtothedesignofcircuitandsystemforwirelessapplications, tothestudyofneuralnetworkscircuitsforreconfigurableplatforms,tothedesign ofwearablesystems,andtowardsthemethodologiesfordistributedcomputingin wirelesssensornetworks.

AriannaMenciassireceivedherlaureadegreeinphysics(withhonours)from the University of Pisa in 1995. In the same year, shejoined the CRIM Lab oftheScuolaSuperioreSant’AnnainPisaasaPhDstudentinbioengineering witharesearchprogramonthemicromanipulationofmechanicaland biologi-calmicroobjects.In1999,shereceivedherPhDdegreebydiscussingathesis

(7)

titled“MicrofabricatedGrippersforMicromanipulationofBiologicalandMechanical Objects”.CurrentlysheisaprofessorofbiomedicalroboticsattheScuola Supe-rioreSant’Anna,Pisa.Hermainresearchinterestsareinthefieldsofbiomedical microandnano-robotics,microfabricationtechnologies,micromechatronicsand microsystemtechnologies.SheisworkingonseveralEuropeanprojectsand interna-tionalprojectsforthedevelopmentofmicroandnano-roboticsystemsformedical applications.

PaoloDarioreceivedhislaureadegreeinmechanicalengineeringfromthe Univer-sityofPisain1977.Currently,heisaprofessorofbiomedicalroboticsattheScuola SuperioreSant’Anna,Pisa.Healsoestablishedandteachesthecourseon mechatron-icsattheSchoolofEngineering,UniversityofPisa.Hehasbeenavisitingprofessorat theEcolePolytechniqueFederaledeLausanne(EPFL),Lausanne,Switzerland,andat

WasedaUniversity,Tokyo,Japan.HeisthedirectoroftheCRIMLabofScuola Superi-oreSant’Anna,wherehesupervisesateamofabout70researchersandPhDstudents. Hismainresearchinterestsareinthefieldsofmedicalrobotics,mechatronicsand microengineering,andspecificallyinsensorsandactuatorsfortheabove applica-tions.HeisthecoordinatorofmanynationalandEuropeanprojects,theeditoroftwo booksonthesubjectofroboticsandtheauthorofmorethan200journalpapers.He isamemberoftheBoardoftheInternationalFoundationofRoboticsResearch.Heis anassociateeditoroftheIEEETransactionsonRoboticsandAutomation,amember oftheSteeringCommitteeoftheJournalofMicroelectromechanicalSystemsand aguesteditoroftheSpecialIssueonMedicalRoboticsoftheIEEETransactionson RoboticsandAutomation.HeservesaspresidentoftheIEEERoboticsand Automa-tionSocietyandastheco-chairmanoftheTechnicalCommitteeonMedicalRobotics ofthesamesociety.

Figura

Fig. 2. Top-view block diagram of the three boards. The blocks below the dashed line will be integrated in the wireless endoscopic capsule.
Fig. 3. Acquired images from different gastrointestinal tracts, during ex vivo tests.
Fig. 4. Image blocks used to brightness level estimation and brightness control architecture.
Fig. 5. Original image and denoised image with reconstructed dark image.

Riferimenti

Documenti correlati

12:55– 13:15 Job performance across time: Investigating trajectory classes of performance and their relationship with self efficacy and organizational tenure (M.

The release of CGRP and prostaglandin E 2 (PGE 2 ) from freshly isolated rat trigeminal ganglia was evaluated after oral administration of nimesulide, etoricoxib, and ketoprofen,

Materiali e metodi A 40 pazienti con glioblastoma durante l’intervento chirurgico è stato posizionato un serbatoio di Rickam con un catetere aggettante nella cavità operatoria.

mens (figured specimens DMNH 2020-02-15 to 16): 3 specimens South Sulphur River, Hunt County, Texas, USA, late Maastrichtian, Kemp Clay; 8 specimens Interstate-30 slide

Tra le melodie sono state scritte una grande quantità di canzoni popolari, cosa normale dato che molti artisti sono stati soprattutto di origine popolare, ed

Le ricerche nell’ambito del teatro mul- timediale, della danza interattiva o delle istallazioni di sound art sviluppano infatti i propri codici comunicativi attraverso

Sono, invece, proprio Rina e Dorotea le vere protagoniste della vicenda: essendo poste come le voci narranti del romanzo, sono loro a raccontare, in prima persona, la pro- pria storia

Assuming that the SM is a low energy effective theory of a cutoff theory residing at the Planck scale, we are able to calculate the effective bare parameters of the underlying