• Non ci sono risultati.

Search for new physics in final states with a lepton and missing transverse energy in pp collisions at the LHC

N/A
N/A
Protected

Academic year: 2021

Condividi "Search for new physics in final states with a lepton and missing transverse energy in pp collisions at the LHC"

Copied!
17
0
0

Testo completo

(1)

Search for new physics in final states with a lepton and missing transverse

energy in

pp collisions at the LHC

S. Chatrchyan et al.* (CMS Collaboration)

(Received 12 February 2013; published 8 April 2013)

This Letter describes the search for an enhanced production rate of events with a charged lepton and a neutrino in high-energypp collisions at the LHC. The analysis uses data collected with the CMS detector, with an integrated luminosity of5:0 fb1 at pffiffiffis¼ 7 TeV, and a further 3:7 fb1 at pffiffiffis¼ 8 TeV. No evidence is found for an excess. The results are interpreted in terms of limits on a heavy charged gauge boson (W0) in the sequential standard model, a split universal extra dimension model, and contact interactions in the helicity-nonconserving model. For the last, values of the binding energy below 10.5 (8.8) TeV in the electron (muon) channel are excluded at a 95% confidence level. Interpreting the‘ final state in terms of a heavyW0with standard model couplings, masses below 2.90 TeV are excluded.

DOI:10.1103/PhysRevD.87.072005 PACS numbers: 12.60.Cn, 13.85.Rm, 14.70.Pw

I. INTRODUCTION

New heavy gauge bosons are predicted by various ex-tensions of the standard model (SM). The sequential stan-dard model (SSM) [1] postulates the existence of a W0 boson, a heavy analogue of theW. In such a theory, the W0 is expected to appear as a narrow resonance with decay modes and branching fractions similar to those of theW. ForW0masses above 180 GeV, where thet b decay channel opens up, the predicted branching fraction is about 8.5% for each of the leptonic final states. Previous searches [2,3] with pp collision data at pffiffiffis¼ 7 TeV by the Compact Muon Solenoid (CMS) and ATLAS experiments at the Large Hadron Collider (LHC), based on an integrated luminosity of up to5 fb1, have excluded SSMW0bosons with masses up to 2.6 TeV.

Other models for new physics predict the same final state, such as those with universal extra dimensions (UED) and bulk fermions, or split UED [4,5]. Such mod-els of extended space-time assume one additional com-pact dimension of radius R. The split-UED parameter space is defined by 1=R and , with  being the bulk mass parameter of the fermion field in five dimensions. For suitable nonzero values of , as assumed by split-UED models, the cross sections are sufficiently large to allow observation by LHC experiments. All SM particles have corresponding Kaluza-Klein (KK) partners, for in-stanceWKKn , wheren denotes the nth KK excitation mode. Only KK-even modes of WKKn couple to SM fermions, owing to KK-parity conservation [6]. Modes withn  4 have a smaller cross section and are not expected to be

accessible at pffiffiffis¼ 8 TeV, hence the only mode consid-ered isn ¼ 2.

Motivated by the observation of mass hierarchies in the fermion sector, theories have been developed where lep-tons and quarks are composite objects [7]. At energies much lower than the binding energy of these fundamental constituents, typically called, quark and lepton compo-siteness would manifest itself as a four-fermion contact interaction (CI). One of the possible contact interactions between two quarks, a neutrino, and a charged lepton, is described by the helicity-nonconserving (HNC) model [8]. The corresponding cross section is proportional to the square of the partonic center-of-mass energy and to 4. While CDF has set a limit on > 2:81 TeV [9] based on a final state with an electron and a neutrino, no limit in the HNC model has yet been set in the muon channel.

In this Letter, a search is presented for an excess of events with an isolated charged lepton (an electron or muon) and a neutrino in the final state, using the CMS detector. The data sample corresponds to an integrated luminosity of5:0 fb1 at pffiffiffis¼ 7 TeV collected in 2011, and3:7 fb1atpffiffiffis¼ 8 TeV collected in 2012. The CMS 2011 result has been published in Ref. [2].

II. THE CMS DETECTOR

The central feature of the CMS apparatus is a super-conducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the superconducting sole-noid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter. Muons are measured in gas-ionization detectors embedded in the steel return yoke. Extensive forward calorimetry complements the coverage provided by the barrel and end cap detectors. A more detailed description of the CMS detector can be found in Ref. [10]. CMS uses a right-handed coordinate system, with the origin at the nominal interaction point, the x

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published article’s title, journal citation, and DOI.

(2)

axis pointing to the center of the LHC, they axis pointing up (perpendicular to the LHC plane), and thez axis along the anticlockwise-beam direction. The polar angle  is measured from the positivez axis and the azimuthal angle  is measured in the x-y plane.

III. THE SEARCH STRATEGY

Candidate events with at least one high transverse mo-mentum (pT) electron or muon are selected using single-lepton triggers. Isolated high-pTleptons are reconstructed

using very stringent quality criteria while the neutrino gives rise to experimentally observed missing transverse energy (EmissT ). The details on lepton identification and Emiss

T reconstruction, as optimized for the 2011 analysis,

can be found in Ref. [2]. The discriminating variable of this analysis is the transverse mass MT of the lepton-EmissT system, calculated as MT¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2  p‘ T EmissT  ð1  cos ‘;Þ q ; (1)

where ‘;is the azimuthal angle between the charged lepton’s transverse momentump‘Tand theEmissT direction. InW0decays, as well as for the other models considered, the lepton andEmissT are expected to be almost back to back in the transverse plane, and balanced in transverse energy. Additional kinematic criteria therefore select events with a ratio of the leptonp‘Tand theEmissT ,0:4 < p‘T=EmissT < 1:5, along with the requirement of the angular difference, j‘; j < 0:2. For simulated SSM W0 events with

masses between 0.5 and 2.5 TeV passing these selection criteria, the signal efficiency (including 90% geometrical acceptance) is found to be 70%–75% with 2% uncertainty in the electron channel and 67%–72% with 1% uncertainty in the muon channel. For the HNC contact-interaction model the signal efficiency is independent of the interac-tion scale and has been determined from simulation to be 80% with 1% uncertainty for the electron channel and 77% with 4% uncertainty for the muon channel. The transverse mass distributions for accepted SM events in the electron and muon channels are shown in Fig. 1, along with two example W0 signals. The observed event with the highest transverse mass in the electron channel hasMT¼ 2:38  0:05 TeV based on ET¼ 1:2 TeV with 1% uncertainty. In

the muon channel the maximum transverse mass isMT¼ 1:33  0:03 TeV with a measured p‘

T of 690  22 GeV.

The two types of processes,W0production and composite-ness, can be distinguished by examining the shape of the lepton-Emiss

T transverse mass spectrum. Both processes

manifest themselves through an excess of events at the

FIG. 1 (color online). Observed lepton-EmissT transverse mass distributions in the electron (top) and the muon (bottom) channel. The dashed lines show the parametrization of the background as described in the text (labeled as BG parametri-zation in the legend). Simulated signal distributions for a SSM W0 are also shown, including detector resolution effects. The simulated background labeled as ‘‘diboson’’ includesWW, ZZ, andWZ contributions. The last bin contains the contributions of all bins above the displayed range.

) V e G ( T M 1500 Events / 40 GeV -2 10 -1 10 1 10 2 10 W + HNC = 4 TeV = 7 TeV W + HNC = 9 TeV W + HNC W only CMS Simulation, 3.7 fb-1, 2012, s = 8 TeV 1000 2000 2500 3000

FIG. 2 (color online). Simulated transverse mass distribution shown for contact interaction (HNC model), in the muonþ EmissT channel at generator level for CI signals with  ¼ 4, 7, and 9 TeV, and the SM background (W ! ).

(3)

high end of the spectrum. The W0 signal events are ex-pected to concentrate in a Jacobian peak around the W0 mass, as shown in Fig. 1. Compositeness would rather yield an unstructured excess, with the excess relative to the standard model contribution increasing as a function of MT, as shown in Fig.2.

IV. SIGNAL AND BACKGROUNDS

The W0 (this also includes WKKn¼2) and CI signals are generated at leading order (LO) withPYTHIA 6.4.26 [11] using the CTEQ6L1 [12] parton distribution functions. They are scaled to the next-to-next-to-leading order (NNLO) cross section calculated with FEWZ [13,14] for eachW0(WKKn¼2) mass point. In the absence of higher-order calculations, LO cross sections are used for the CI model. The primary source of background is the off-peak, high-MT tail of the standard model W ! ‘ decays. Other important backgrounds arise from tt, Drell-Yan, and diboson (WW, WZ, ZZ) events. An important back-ground also comes from QCD multijet processes, but this is largely removed by the analysis selections and therefore cannot be readily distinguished in Fig. 1. Contributions from decays with  leptons in the final state that subse-quently decay to an electron or muon and neutrinos are considered as well, but found to be negligible. ThePYTHIA 6 generator is used for all background processes except for tt, which is generated withMADGRAPH4 [15] in combina-tion withPYTHIA. The numbers of Monte Carlo events are normalized using the integrated luminosity of the recorded data and with NNLO cross sections, except diboson and multijet samples, for which the next-to-leading order and LO cross sections are used, respectively. In all event samples, additional minimum bias interactions are super-imposed onto the main background processes to match the luminosity profile of the analyzed data set.

The background prediction is based on the transverse mass distributions of these simulations, as seen in Fig.1. The summed background distribution is parametrized with a function of form fðMTÞ ¼ðMa

TþbÞc to avoid event TABLE I. Data, background, and signal event yields for different transverse mass thresholds.

MT> 1:0 TeV MT> 1:5 TeV MT> 2:0 TeV

Electron channel Data 3 1 1 SM background 6:8  0:4 0:69þ0:050:04 0:13  0:02 MW0¼ 2:5 TeV 9:7  0:3 7:5  0:2 4:7  0:2 MW0¼ 3 TeV 1:98  0:06 1:5  0:05 1:15þ0:050:04 CI, ¼ 4 TeV 220  5 72  3 21  1 CI, ¼ 9 TeV 8:6  0:2 2:8  0:1 0:81þ0:050:04 Muon channel Data 9 0 0 SM background 6:5þ1:91:5 0:92þ0:490:32 0:20þ0:140:08 MW0¼ 2:5 TeV 9:4  0:3 7:0  0:5 4:1þ0:80:7 MW0¼ 3 TeV 1:9  0:1 1:4  0:1 0:94þ0:120:10 CI, ¼ 4 TeV 240  20 80þ1513 28þ86 CI, ¼ 9 TeV 34  3 12þ32 3:5þ1:20:9 (GeV) W' M 500 1000 1500 2000 2500 3000 3500 4000 B (fb)× σ 1 10 2 10 3 10 4 10 5 10 Observed 95% CL limit ν eObserved 95% CL limit W' ν µ → Observed 95% CL limit W' Expected 95% CL limit σ 1 ± Expected 95% CL limit σ 2 ± Expected 95% CL limit SSM W' NNLO PDF uncertainty = 10 TeV NNLO µ with KK W = 0.05 TeV NNLO µ with KK W = 8 TeV s , 2012, -1 CMS, 3.7 fb miss T + E µ , miss T e + E

FIG. 3 (color online). Limits on the cross section times the single channel branching fraction (  B) for heavy bosons based on the 2012 data for the electron and the muon channels. For the individual channels, only the observed limits are shown. For the combination, the observed limit, the expected limit, the 1, and the 2 bands are displayed. The model assumes equal branching fractions for the electron and the muon channel, hence the combination corresponds to doubling the number of events. All limits are displayed for the single channel branching fraction. The W0 mass limits are derived with a Bayesian method for the models of a SSMW0andWKKn¼2in split UED. TheWKKn¼2is the lowest mass state that can couple to SM fermions and has the same final state as the SM-like W0. Because it has even KK parity, it can be produced singly.

(4)

fluctuations due to the limited size of the Monte Carlo event sample, also shown in Fig.1. In the low mass control region, e.g. forMT> 500 GeV, the background prediction in the electron channel is 169 events from a direct count and155  16 events from the parametrization. The corre-sponding event numbers in the muon channel are 162 and 138  12, from the direct count and the parametrization, respectively. The number of observed events in each chan-nel is 153. The expected background due to SM processes drops significantly with increasing MT. The number of events observed and the number expected from the pa-rametrization, above three characteristic high MT thresh-olds, are shown in TableIfor the electron and the muon channels. Also summarized are the expected numbers of W0 and CI signal events, as evaluated from simulation,

including systematic uncertainties due to imperfections in the description of the detector performance.

V. RESULTS AND EXCLUSION LIMITS For determining the exclusion limits, systematic uncertainties on the signal and background yields are included via nuisance parameters with a log-normal

prior distribution in the same way as in our previous analysis from Ref. [2]. The lepton-energy calibration and resolution distort the transverse mass spectrum. Uncertainties in the energy scale and the energy resolu-tion make comparable contriburesolu-tions to the overall uncer-tainty in the electron channel: the energy scale has an uncertainty of 1(3)% in the barrel (end caps) and the resolution has an uncertainty of 1.4(3)% for the barrel (end caps) [16]. For muons, the dominant uncertainty stems from the momentum scale, which is taken to be 5%  pT=TeV [17] and results in larger errors on the

background and signal event yields in the muon channel, as can be seen in Table I. The muon pT resolution has been determined with cosmic ray muons to be 10% at high pTwith an uncertainty of 0.6% [17].

Similarly, the impact of theEmissT energy scale is mod-eled by shifting the hadronic component event by event by 10%, while the resolution is taken into account by a 10% smearing. In all cases, the impact on the expected number of signal events is around 1% for each source of uncer-tainty. The background parametrization procedure is re-peated using the distorted distributions. Additionally, an uncertainty is derived by fitting the undistorted background with two different functions. The estimates shown in Table I include a systematic uncertainty that covers the range of results from these fits, with the statistical uncer-tainty coming from the fit to the original distribution. Additionally, an uncertainty of 4.4% is considered on the integrated luminosity [18].

The number of data events above a transverse mass threshold MminT is compared to the expected number of signal and background events, with the MTmin threshold being optimized for the best expected exclusion limit, using steps of 50 GeV. Very similar results are achieved

TABLE II. Exclusion limits in TeV on the SSMW0mass for the electron and muon channel as well as their combinations based on5:0 fb1of 2011 data atpffiffiffis¼ 7 TeV and 3:7 fb1 of 2012 data atpffiffiffis¼ 8 TeV.

Obs. Exp. Obs. Exp. Obs. Exp.

Channel 2011 2011 2012 2012 2011 þ 2012 2011 þ 2012 e 2.40 2.45 2.60 2.70 2.70 2.75  2.40 2.45 2.75 2.65 2.75 2.70 e þ  2.50 2.60 2.85 2.80 2.90 2.90 (GeV) W' M 1000 1500 2000 2500 3000 SSM W' σ / excl. σ -3 10 -2 10 -1 10 1 10 Observed 95% CL limit Expected 95% CL limit σ 1 ± Expected 95% CL limit σ 2 ± Expected 95% CL limit = 7 / 8 TeV s , 2011 / 2012, -1 CMS, 5.0 / 3.7 fb miss T e + E (GeV) W' M 1000 1500 2000 2500 3000 SSM W' σ / excl. σ -3 10 -2 10 -1 10 1 10 Observed 95% CL limit Expected 95% CL limit σ 1 ± Expected 95% CL limit σ 2 ± Expected 95% CL limit = 7 / 8 TeV s , 2011 / 2012, -1 CMS, 5.0 / 3.7 fb miss T + E µ (GeV) W' M 1000 1500 2000 2500 3000 SSM W' σ / excl. σ -3 10 -2 10 -1 10 1 10 Observed 95% CL limit Expected 95% CL limit σ 1 ± Expected 95% CL limit σ 2 ± Expected 95% CL limit = 7 / 8 TeV s , 2011 / 2012, -1 CMS, 5.0 / 3.7 fb miss T + E µ , miss T e + E

FIG. 4 (color online). Combination of 2011 and 2012 data for the electron and the muon channels using5:0 fb1of data atpffiffiffis¼ 7 TeV from 2011 and 3:7 fb1of data atpffiffiffis¼ 8 TeV from 2012. The left and middle plots show the individual combinations for the electron (left) and muon channel (right). To the right the combination of both is displayed. The limits are derived with a Bayesian method. Plotted is the signal strength modifierexcl=SSM W0as a function of theW0mass, whereexclis the cross section excluded at a 95% C.L. andSSM W0is the cross section predicted by the SSM. AllW0mass points below the ratioexcl=SSM W0 ¼ 1, shown as a red dashed line, are excluded in the sequential standard model.

(5)

when optimizing for discovery. The same optimization procedure is applied for the W0 and CI searches but the optimizedMTthresholds are specific to each analysis. For aW0mass of up to 2.5 TeV the optimization tends to select a value forMTmin a little below the peak of the Jacobian, retaining most of the events in the peak. To keep a signifi-cant signal contribution for higher masses, the MTmin threshold is shifted to lower values owing to the increasing off-shell fraction. For CI no such effect exists and the optimized MTmin threshold is roughly constant around 1 TeV.

No significant excess has been observed in the data, and upper limits are set on the production cross section times the branching fraction  BðW0 ! ‘Þ, with ‘ ¼ e or , using a Bayesian method with the assumption of a flat prior for the parameter of interest. The expected and observed upper cross section limits on a SSMW0, at 95% confidence level (C.L.), forpffiffiffis¼ 8 TeV data, are shown in Fig.3for both channels and their combination. Using the central value of the theoretical NNLO SSMW0cross section times branching fraction, which is assumed to be identical in the two channels, we exclude masses less than 2.60 TeV in the electron and 2.75 TeV in the muon channel. The expected limits are 2.70 TeV and 2.65 TeV, respectively. The ob-served limit forW0 ! e is slightly lower than the expec-tation because of one event with a transverse mass of 2.3 TeV (Fig. 1). Combining both channels, the limit increases to 2.85 TeV (Table II). To further enhance the sensitivity, the new results can be combined with the published [2]pffiffiffis¼ 7 TeV results, based on an integrated

luminosity of5 fb1, thus extending the limit to 2.90 TeV as shown in Fig.4and TableII.

The limit can be reinterpreted in terms of the WKKn¼2 mass, as shown in Fig. 3, for values of the Dirac mass term  ¼ 0:05 TeV and  ¼ 10 TeV and directly trans-lated to bounds on the split-UED parameter space, ð1=R; Þ (Fig.5). The four-fermion contact interaction of the HNC model is excluded for values of < 10:5 TeV in the electron channel and < 8:8 TeV in the muon channel (Fig. 6). While the expected sensitivity is comparable in both search channels, the exclusion limit in the electron

FIG. 5 (color online). The 95% C.L. limits on the split-UED parameters and 1=R derived from the W0 mass limits taking into account the corresponding width of the WKKn¼2. For the 3:7 fb1 of 2012 data, the individual limits for the electron and muon channels are shown together with their combination, improving the excluded parameter space based on the 2011 data shown in yellow. (TeV) Λ 6 8 10 12 14 B (fb)× σ 1 10 2 10 3 10 4 10 Observed 95% CL limit Expected 95% CL limit σ 1 ± Expected 95% CL limit σ 2 ± Expected 95% CL limit HNC contact interaction LO PDF uncertainty = 8 TeV s , 2012, -1 CMS, 3.7 fb CI miss T e + E (TeV) Λ 6 8 10 12 14 B (fb)× σ 1 10 2 10 3 10 4 10 Observed 95% CL limit Expected 95% CL limit σ 1 ± Expected 95% CL limit σ 2 ± Expected 95% CL limit HNC contact interaction LO PDF uncertainty = 8 TeV s , 2012, -1 CMS, 3.7 fb CI miss T + E µ

FIG. 6 (color online). Bayesian limits on the cross section times the single channel branching fraction (  B) for contact interactions (HNC model) in the electronþ EmissT (top) and the muonþ EmissT channel (bottom) based on an integrated luminos-ity of3:7 fb1ofpffiffiffis¼ 8 TeV data. The expected limit in either channel excludes values of the new interaction scale < 9 TeV. The observed limit, driven by the data, excludes < 10:5 TeV (8.8) in the electron (muon) channel. The signal efficiency is independent of.

(6)

channel is higher because of a downward fluctuation of data (see Table I) in the search region of MT> 1 TeV. These limits are summarized in TableIII.

VI. SUMMARY

A search for new physics has been carried out usingpp collisions recorded with the CMS detector at center-of-mass energies ofpffiffiffis¼ 7 and 8 TeV. The transverse mass spectrum of either electrons or muons and missing trans-verse energy has been measured. The observed spectra are consistent with the standard model expectation, and mass limits on sequential standard model W0 and WKKn¼2 have been set at the 95% C.L. These are the most stringent limits to date. For the first time, a limit on the compositeness scale  has been set for contact interactions in the HNC model based on the final state with a muon andEmissT . The corresponding exclusion limit in the electron channel sig-nificantly improves the existing one.

ACKNOWLEDGMENTS

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully

acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MEYS (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS, and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

[1] G. Altarelli, B. Mele, and M. Ruiz-Altaba,Z. Phys. C 45, 109 (1989).

[2] CMS Collaboration,J. High Energy Phys. 08 (2012) 023. [3] ATLAS Collaboration,Eur. Phys. J. C 72, 2241 (2012). [4] C.-R. Chen, M. M. Nojiri, S. C. Park, J. Shu, and M.

Takeuchi,J. High Energy Phys. 09 (2009), 078.

[5] K. Kong, S. C. Park, and T. G. Rizzo,J. High Energy Phys. 04 (2010), 081.

[6] T. Appelquist, H.-C. Cheng, and B. A. Dobrescu, Phys. Rev. D 64, 035002 (2001).

[7] H. Terazawa, M. Yasue, K. Akama, and M. Hayashi,Phys. Lett. 112B, 387 (1982).

[8] K. D. Lane, F. E. Paige, T. Skwarnicki, and W. J. Womersley,Phys. Rep. 278, 291 (1997).

[9] T. Aolder et al. (CDF Collaboration),Phys. Rev. Lett. 87, 231803 (2001).

[10] CMS Collaboration,JINST 3, S08004 (2008).

[11] T. Sjostrand, S. Mrenna, and P. Z. Skands,J. High Energy Phys. 05 (2006), 026.

[12] J. Pumplin, D. R. Stump, J. Huston, H. L. Lai, P. Nadolsky, and W. K. Tung,J. High Energy Phys. 07 (2002) 012. [13] R. Gavin, Y. Li, F. Petriello, and S. Quackenbush,Comput.

Phys. Commun. 182, 2388 (2011).

[14] S. Quackenbush, R. Gavin, Y. Li, and F. Petriello,Comput. Phys. Commun. 184, 209 (2013).

[15] J. Alwall, P. Demin, S. de Visscher, R. Frederix, M. Herquet, F. Maltoni, T. Plehn, D. L. Rainwater, and T. Stelzer,J. High Energy Phys. 09 (2007) 028.

TABLE III. Exclusion limits for other model interpretations for the electron and muon channel or their combination based on3:7 fb1 of 2012 data atpffiffiffis¼ 8 TeV.

Model Channel Observed limit Expected limit

Wn¼2 KK  ¼ 0:05 TeV e þ  mWn¼2 KK < 1:5 TeV mWn¼2KK < 1:4 TeV Wn¼2 KK  ¼ 10:0 TeV e þ  mWn¼2 KK < 3:3 TeV mWn¼2KK < 3:2 TeV HNC CI e  < 10:5 TeV  < 9:0 TeV HNC CI   < 8:8 TeV  < 9:0 TeV

(7)

[16] CMS Collaboration, CMS Detector Performance Summary, Report No. CMS-DP-2012-007, 2012, http:// cds.cern.ch/record/1457922.

[17] CMS CollaborationJINST 7, P10002 (2012).

[18] CMS Collaboration, CMS Physics Analysis Summary, Report No. CMS-PAS-LUM-12-001, 2012, http:// cds.cern.ch/record/1457922.

S. Chatrchyan,1V. Khachatryan,1A. M. Sirunyan,1A. Tumasyan,1W. Adam,2E. Aguilo,2T. Bergauer,2 M. Dragicevic,2J. Ero¨,2C. Fabjan,2,bM. Friedl,2R. Fru¨hwirth,2,bV. M. Ghete,2N. Ho¨rmann,2J. Hrubec,2 M. Jeitler,2,bW. Kiesenhofer,2V. Knu¨nz,2M. Krammer,2,bI. Kra¨tschmer,2D. Liko,2I. Mikulec,2M. Pernicka,2,a D. Rabady,2,cB. Rahbaran,2C. Rohringer,2H. Rohringer,2R. Scho¨fbeck,2J. Strauss,2A. Taurok,2W. Waltenberger,2

C.-E. Wulz,2,bV. Mossolov,3N. Shumeiko,3J. Suarez Gonzalez,3S. Alderweireldt,4M. Bansal,4S. Bansal,4 T. Cornelis,4E. A. De Wolf,4X. Janssen,4S. Luyckx,4L. Mucibello,4S. Ochesanu,4B. Roland,4R. Rougny,4

M. Selvaggi,4H. Van Haevermaet,4P. Van Mechelen,4N. Van Remortel,4A. Van Spilbeeck,4F. Blekman,5 S. Blyweert,5J. D’Hondt,5R. Gonzalez Suarez,5A. Kalogeropoulos,5M. Maes,5A. Olbrechts,5S. Tavernier,5 W. Van Doninck,5P. Van Mulders,5G. P. Van Onsem,5I. Villella,5B. Clerbaux,6G. De Lentdecker,6V. Dero,6 A. P. R. Gay,6T. Hreus,6A. Le´onard,6P. E. Marage,6A. Mohammadi,6T. Reis,6L. Thomas,6C. Vander Velde,6 P. Vanlaer,6J. Wang,6V. Adler,7K. Beernaert,7A. Cimmino,7S. Costantini,7G. Garcia,7M. Grunewald,7B. Klein,7

J. Lellouch,7A. Marinov,7J. Mccartin,7A. A. Ocampo Rios,7D. Ryckbosch,7M. Sigamani,7N. Strobbe,7 F. Thyssen,7M. Tytgat,7S. Walsh,7E. Yazgan,7N. Zaganidis,7S. Basegmez,8G. Bruno,8R. Castello,8L. Ceard,8

C. Delaere,8T. du Pree,8D. Favart,8L. Forthomme,8A. Giammanco,8,dJ. Hollar,8V. Lemaitre,8J. Liao,8 O. Militaru,8C. Nuttens,8D. Pagano,8A. Pin,8K. Piotrzkowski,8J. M. Vizan Garcia,8N. Beliy,9T. Caebergs,9 E. Daubie,9G. H. Hammad,9G. A. Alves,10M. Correa Martins Junior,10T. Martins,10M. E. Pol,10M. H. G. Souza,10

W. L. Alda´ Ju´nior,11W. Carvalho,11J. Chinellato,11A. Custo´dio,11E. M. Da Costa,11D. De Jesus Damiao,11 C. De Oliveira Martins,11S. Fonseca De Souza,11H. Malbouisson,11M. Malek,11D. Matos Figueiredo,11

L. Mundim,11H. Nogima,11W. L. Prado Da Silva,11A. Santoro,11L. Soares Jorge,11A. Sznajder,11 E. J. Tonelli Manganote,11A. Vilela Pereira,11T. S. Anjos,12bC. A. Bernardes,12bF. A. Dias,12a,e T. R. Fernandez Perez Tomei,12aE. M. Gregores,12bC. Lagana,12aF. Marinho,12aP. G. Mercadante,12b S. F. Novaes,12aSandra S. Padula,12aV. Genchev,13,cP. Iaydjiev,13,cS. Piperov,13M. Rodozov,13S. Stoykova,13

G. Sultanov,13V. Tcholakov,13R. Trayanov,13M. Vutova,13A. Dimitrov,14R. Hadjiiska,14V. Kozhuharov,14 L. Litov,14B. Pavlov,14P. Petkov,14J. G. Bian,15G. M. Chen,15H. S. Chen,15C. H. Jiang,15D. Liang,15S. Liang,15

X. Meng,15J. Tao,15J. Wang,15X. Wang,15Z. Wang,15H. Xiao,15M. Xu,15J. Zang,15Z. Zhang,15 C. Asawatangtrakuldee,16Y. Ban,16Y. Guo,16W. Li,16S. Liu,16Y. Mao,16S. J. Qian,16H. Teng,16D. Wang,16

L. Zhang,16W. Zou,16C. Avila,17C. A. Carrillo Montoya,17J. P. Gomez,17B. Gomez Moreno,17 A. F. Osorio Oliveros,17J. C. Sanabria,17N. Godinovic,18D. Lelas,18R. Plestina,18,fD. Polic,18I. Puljak,18,c Z. Antunovic,19M. Kovac,19V. Brigljevic,20S. Duric,20K. Kadija,20J. Luetic,20D. Mekterovic,20S. Morovic,20 L. Tikvica,20A. Attikis,21M. Galanti,21G. Mavromanolakis,21J. Mousa,21C. Nicolaou,21F. Ptochos,21P. A. Razis,21

M. Finger,22M. Finger, Jr.,22Y. Assran,23,gS. Elgammal,23,hA. Ellithi Kamel,23,iA. M. Kuotb Awad,23,j M. A. Mahmoud,23,jA. Radi,23,k,lM. Kadastik,24M. Mu¨ntel,24M. Murumaa,24M. Raidal,24L. Rebane,24A. Tiko,24

P. Eerola,25G. Fedi,25M. Voutilainen,25J. Ha¨rko¨nen,26A. Heikkinen,26V. Karima¨ki,26R. Kinnunen,26 M. J. Kortelainen,26T. Lampe´n,26K. Lassila-Perini,26S. Lehti,26T. Linde´n,26P. Luukka,26T. Ma¨enpa¨a¨,26 T. Peltola,26E. Tuominen,26J. Tuominiemi,26E. Tuovinen,26D. Ungaro,26L. Wendland,26A. Korpela,27T. Tuuva,27

M. Besancon,28S. Choudhury,28F. Couderc,28M. Dejardin,28D. Denegri,28B. Fabbro,28J. L. Faure,28F. Ferri,28 S. Ganjour,28A. Givernaud,28P. Gras,28G. Hamel de Monchenault,28P. Jarry,28E. Locci,28J. Malcles,28 L. Millischer,28A. Nayak,28J. Rander,28A. Rosowsky,28M. Titov,28S. Baffioni,29F. Beaudette,29L. Benhabib,29

L. Bianchini,29M. Bluj,29,mP. Busson,29C. Charlot,29N. Daci,29T. Dahms,29M. Dalchenko,29L. Dobrzynski,29 A. Florent,29R. Granier de Cassagnac,29M. Haguenauer,29P. Mine´,29C. Mironov,29I. N. Naranjo,29M. Nguyen,29

C. Ochando,29P. Paganini,29D. Sabes,29R. Salerno,29Y. Sirois,29C. Veelken,29A. Zabi,29J.-L. Agram,30,n J. Andrea,30D. Bloch,30D. Bodin,30J.-M. Brom,30M. Cardaci,30E. C. Chabert,30C. Collard,30E. Conte,30,n

F. Drouhin,30,nJ.-C. Fontaine,30,nD. Gele´,30U. Goerlach,30P. Juillot,30A.-C. Le Bihan,30P. Van Hove,30 S. Beauceron,31N. Beaupere,31O. Bondu,31G. Boudoul,31S. Brochet,31J. Chasserat,31R. Chierici,31,c D. Contardo,31P. Depasse,31H. El Mamouni,31J. Fay,31S. Gascon,31M. Gouzevitch,31B. Ille,31T. Kurca,31 M. Lethuillier,31L. Mirabito,31S. Perries,31L. Sgandurra,31V. Sordini,31Y. Tschudi,31P. Verdier,31S. Viret,31

(8)

Z. Tsamalaidze,32,oC. Autermann,33S. Beranek,33B. Calpas,33M. Edelhoff,33L. Feld,33N. Heracleous,33 O. Hindrichs,33R. Jussen,33K. Klein,33J. Merz,33A. Ostapchuk,33A. Perieanu,33F. Raupach,33J. Sammet,33 S. Schael,33D. Sprenger,33H. Weber,33B. Wittmer,33V. Zhukov,33,pM. Ata,34J. Caudron,34E. Dietz-Laursonn,34

D. Duchardt,34M. Erdmann,34R. Fischer,34A. Gu¨th,34T. Hebbeker,34C. Heidemann,34K. Hoepfner,34 D. Klingebiel,34S. Knutzen,34P. Kreuzer,34M. Merschmeyer,34A. Meyer,34P. Millet,34M. Olschewski,34

K. Padeken,34P. Papacz,34H. Pieta,34H. Reithler,34S. A. Schmitz,34F. Schneider,34L. Sonnenschein,34 J. Steggemann,34D. Teyssier,34S. Thu¨er,34M. Weber,34M. Bontenackels,35V. Cherepanov,35Y. Erdogan,35 G. Flu¨gge,35H. Geenen,35M. Geisler,35W. Haj Ahmad,35F. Hoehle,35B. Kargoll,35T. Kress,35Y. Kuessel,35

J. Lingemann,35,cA. Nowack,35I. M. Nugent,35L. Perchalla,35O. Pooth,35P. Sauerland,35A. Stahl,35 M. Aldaya Martin,36I. Asin,36N. Bartosik,36J. Behr,36W. Behrenhoff,36U. Behrens,36M. Bergholz,36,q A. Bethani,36K. Borras,36A. Burgmeier,36A. Cakir,36L. Calligaris,36A. Campbell,36E. Castro,36F. Costanza,36 D. Dammann,36C. Diez Pardos,36T. Dorland,36G. Eckerlin,36D. Eckstein,36G. Flucke,36A. Geiser,36I. Glushkov,36

P. Gunnellini,36S. Habib,36J. Hauk,36G. Hellwig,36H. Jung,36M. Kasemann,36P. Katsas,36C. Kleinwort,36 H. Kluge,36A. Knutsson,36M. Kra¨mer,36D. Kru¨cker,36E. Kuznetsova,36W. Lange,36J. Leonard,36W. Lohmann,36,q

B. Lutz,36R. Mankel,36I. Marfin,36M. Marienfeld,36I.-A. Melzer-Pellmann,36A. B. Meyer,36J. Mnich,36 A. Mussgiller,36S. Naumann-Emme,36O. Novgorodova,36F. Nowak,36J. Olzem,36H. Perrey,36A. Petrukhin,36

D. Pitzl,36A. Raspereza,36P. M. Ribeiro Cipriano,36C. Riedl,36E. Ron,36M. Rosin,36J. Salfeld-Nebgen,36 R. Schmidt,36,qT. Schoerner-Sadenius,36N. Sen,36A. Spiridonov,36M. Stein,36R. Walsh,36C. Wissing,36 V. Blobel,37H. Enderle,37J. Erfle,37U. Gebbert,37M. Go¨rner,37M. Gosselink,37J. Haller,37T. Hermanns,37 R. S. Ho¨ing,37K. Kaschube,37G. Kaussen,37H. Kirschenmann,37R. Klanner,37J. Lange,37T. Peiffer,37N. Pietsch,37 D. Rathjens,37C. Sander,37H. Schettler,37P. Schleper,37E. Schlieckau,37A. Schmidt,37M. Schro¨der,37T. Schum,37

M. Seidel,37J. Sibille,37,rV. Sola,37H. Stadie,37G. Steinbru¨ck,37J. Thomsen,37L. Vanelderen,37C. Barth,38 C. Baus,38J. Berger,38C. Bo¨ser,38T. Chwalek,38W. De Boer,38A. Descroix,38A. Dierlamm,38M. Feindt,38 M. Guthoff,38,cC. Hackstein,38F. Hartmann,38,cT. Hauth,38,cM. Heinrich,38H. Held,38K. H. Hoffmann,38 U. Husemann,38I. Katkov,38,pJ. R. Komaragiri,38P. Lobelle Pardo,38D. Martschei,38S. Mueller,38Th. Mu¨ller,38

M. Niegel,38A. Nu¨rnberg,38O. Oberst,38A. Oehler,38J. Ott,38G. Quast,38K. Rabbertz,38F. Ratnikov,38 N. Ratnikova,38S. Ro¨cker,38F.-P. Schilling,38G. Schott,38H. J. Simonis,38F. M. Stober,38D. Troendle,38R. Ulrich,38

J. Wagner-Kuhr,38S. Wayand,38T. Weiler,38M. Zeise,38G. Anagnostou,39G. Daskalakis,39T. Geralis,39 S. Kesisoglou,39A. Kyriakis,39D. Loukas,39I. Manolakos,39A. Markou,39C. Markou,39E. Ntomari,39 L. Gouskos,40T. J. Mertzimekis,40A. Panagiotou,40N. Saoulidou,40I. Evangelou,41C. Foudas,41P. Kokkas,41 N. Manthos,41I. Papadopoulos,41G. Bencze,42C. Hajdu,42P. Hidas,42D. Horvath,42,sF. Sikler,42V. Veszpremi,42 G. Vesztergombi,42,tA. J. Zsigmond,42N. Beni,43S. Czellar,43J. Molnar,43J. Palinkas,43Z. Szillasi,43J. Karancsi,44

P. Raics,44Z. L. Trocsanyi,44B. Ujvari,44S. B. Beri,45V. Bhatnagar,45N. Dhingra,45R. Gupta,45M. Kaur,45 M. Z. Mehta,45M. Mittal,45N. Nishu,45L. K. Saini,45A. Sharma,45J. B. Singh,45Ashok Kumar,46Arun Kumar,46

S. Ahuja,46A. Bhardwaj,46B. C. Choudhary,46S. Malhotra,46M. Naimuddin,46K. Ranjan,46P. Saxena,46 V. Sharma,46R. K. Shivpuri,46S. Banerjee,47S. Bhattacharya,47K. Chatterjee,47S. Dutta,47B. Gomber,47Sa. Jain,47

Sh. Jain,47R. Khurana,47A. Modak,47S. Mukherjee,47D. Roy,47S. Sarkar,47M. Sharan,47A. Abdulsalam,48 D. Dutta,48S. Kailas,48V. Kumar,48A. K. Mohanty,48,cL. M. Pant,48P. Shukla,48T. Aziz,49R. M. Chatterjee,49

S. Ganguly,49M. Guchait,49,uA. Gurtu,49,vM. Maity,49,wG. Majumder,49K. Mazumdar,49G. B. Mohanty,49 B. Parida,49K. Sudhakar,49N. Wickramage,49S. Banerjee,50S. Dugad,50H. Arfaei,51,xH. Bakhshiansohi,51

S. M. Etesami,51,yA. Fahim,51,xM. Hashemi,51,zH. Hesari,51A. Jafari,51M. Khakzad,51

M. Mohammadi Najafabadi,51S. Paktinat Mehdiabadi,51B. Safarzadeh,51,aaM. Zeinali,51M. Abbrescia,52a,52b L. Barbone,52a,52bC. Calabria,52a,52b,cS. S. Chhibra,52a,52bA. Colaleo,52aD. Creanza,52a,52cN. De Filippis,52a,52c,c

M. De Palma,52a,52bL. Fiore,52aG. Iaselli,52a,52cG. Maggi,52a,52cM. Maggi,52aB. Marangelli,52a,52bS. My,52a,52c S. Nuzzo,52a,52bN. Pacifico,52aA. Pompili,52a,52bG. Pugliese,52a,52cG. Selvaggi,52a,52bL. Silvestris,52a

G. Singh,52a,52bR. Venditti,52a,52bP. Verwilligen,52aG. Zito,52aG. Abbiendi,53aA. C. Benvenuti,53a D. Bonacorsi,53a,53bS. Braibant-Giacomelli,53a,53bL. Brigliadori,53a,53bP. Capiluppi,53a,53bA. Castro,53a,53b

F. R. Cavallo,53aM. Cuffiani,53a,53bG. M. Dallavalle,53aF. Fabbri,53aA. Fanfani,53a,53bD. Fasanella,53a,53b P. Giacomelli,53aC. Grandi,53aL. Guiducci,53a,53bS. Marcellini,53aG. Masetti,53aM. Meneghelli,53a,53b,c A. Montanari,53aF. L. Navarria,53a,53bF. Odorici,53aA. Perrotta,53aF. Primavera,53a,53bA. M. Rossi,53a,53b

(9)

M. Chiorboli,54a,54bS. Costa,54a,54bR. Potenza,54a,54bA. Tricomi,54a,54bC. Tuve,54a,54bG. Barbagli,55a V. Ciulli,55a,55bC. Civinini,55aR. D’Alessandro,55a,55bE. Focardi,55a,55bS. Frosali,55a,55bE. Gallo,55aS. Gonzi,55a,55b M. Meschini,55aS. Paoletti,55aG. Sguazzoni,55aA. Tropiano,55a,55bL. Benussi,56S. Bianco,56S. Colafranceschi,56,bb

F. Fabbri,56D. Piccolo,56P. Fabbricatore,57aR. Musenich,57aS. Tosi,57a,57bA. Benaglia,58aF. De Guio,58a,58b L. Di Matteo,58a,58b,cS. Fiorendi,58a,58bS. Gennai,58a,cA. Ghezzi,58a,58bM. T. Lucchini,58a,cS. Malvezzi,58a R. A. Manzoni,58a,58bA. Martelli,58a,58bA. Massironi,58a,58bD. Menasce,58aL. Moroni,58aM. Paganoni,58a,58b D. Pedrini,58aS. Ragazzi,58a,58bN. Redaelli,58aT. Tabarelli de Fatis,58a,58bS. Buontempo,59aN. Cavallo,59a,59c A. De Cosa,59a,59b,cO. Dogangun,59a,59bF. Fabozzi,59a,59cA. O. M. Iorio,59a,59bL. Lista,59aS. Meola,59a,59d,cc M. Merola,59aP. Paolucci,59a,cP. Azzi,60aN. Bacchetta,60a,cD. Bisello,60a,60bA. Branca,60a,60b,cR. Carlin,60a,60b

P. Checchia,60aT. Dorigo,60aF. Gasparini,60a,60bU. Gasparini,60a,60bA. Gozzelino,60aK. Kanishchev,60a,60c S. Lacaprara,60aI. Lazzizzera,60a,60cM. Margoni,60a,60bA. T. Meneguzzo,60a,60bJ. Pazzini,60a,60bN. Pozzobon,60a,60b

P. Ronchese,60a,60bF. Simonetto,60a,60bE. Torassa,60aM. Tosi,60a,60bS. Vanini,60a,60bP. Zotto,60a,60b A. Zucchetta,60a,60bG. Zumerle,60a,60bM. Gabusi,61a,61bS. P. Ratti,61a,61bC. Riccardi,61a,61bP. Torre,61a,61b

P. Vitulo,61a,61bM. Biasini,62a,62bG. M. Bilei,62aL. Fano`,62a,62bP. Lariccia,62a,62bG. Mantovani,62a,62b M. Menichelli,62aA. Nappi,62a,62b,aF. Romeo,62a,62bA. Saha,62aA. Santocchia,62a,62bA. Spiezia,62a,62b S. Taroni,62a,62bP. Azzurri,63a,63cG. Bagliesi,63aJ. Bernardini,63aT. Boccali,63aG. Broccolo,63a,63cR. Castaldi,63a R. T. D’Agnolo,63a,63c,cR. Dell’Orso,63aF. Fiori,63a,63b,cL. Foa`,63a,63cA. Giassi,63aA. Kraan,63aF. Ligabue,63a,63c T. Lomtadze,63aL. Martini,63a,ddA. Messineo,63a,63bF. Palla,63aA. Rizzi,63a,63bA. T. Serban,63a,eeP. Spagnolo,63a P. Squillacioti,63a,cR. Tenchini,63aG. Tonelli,63a,63bA. Venturi,63aP. G. Verdini,63aL. Barone,64a,64bF. Cavallari,64a

D. Del Re,64a,64bM. Diemoz,64aC. Fanelli,64a,64bM. Grassi,64a,64b,cE. Longo,64a,64bP. Meridiani,64a,c F. Micheli,64a,64bS. Nourbakhsh,64a,64bG. Organtini,64a,64bR. Paramatti,64aS. Rahatlou,64a,64bL. Soffi,64a,64b

N. Amapane,65a,65bR. Arcidiacono,65a,65cS. Argiro,65a,65bM. Arneodo,65a,65cC. Biino,65aN. Cartiglia,65a S. Casasso,65a,65bM. Costa,65a,65bN. Demaria,65aC. Mariotti,65a,cS. Maselli,65aE. Migliore,65a,65bV. Monaco,65a,65b

M. Musich,65a,cM. M. Obertino,65a,65cN. Pastrone,65aM. Pelliccioni,65aA. Potenza,65a,65bA. Romero,65a,65b M. Ruspa,65a,65cR. Sacchi,65a,65bA. Solano,65a,65bA. Staiano,65aS. Belforte,66aV. Candelise,66a,66bM. Casarsa,66a

F. Cossutti,66a,cG. Della Ricca,66a,66bB. Gobbo,66aM. Marone,66a,66b,cD. Montanino,66a,66bA. Penzo,66a A. Schizzi,66a,66bT. Y. Kim,67S. K. Nam,67S. Chang,68D. H. Kim,68G. N. Kim,68D. J. Kong,68Y. D. Oh,68 H. Park,68D. C. Son,68J. Y. Kim,69Zero J. Kim,69S. Song,69S. Choi,70D. Gyun,70B. Hong,70M. Jo,70H. Kim,70

T. J. Kim,70K. S. Lee,70D. H. Moon,70S. K. Park,70Y. Roh,70M. Choi,71J. H. Kim,71C. Park,71I. C. Park,71 S. Park,71G. Ryu,71Y. Choi,72Y. K. Choi,72J. Goh,72M. S. Kim,72E. Kwon,72B. Lee,72J. Lee,72S. Lee,72H. Seo,72

I. Yu,72M. J. Bilinskas,73I. Grigelionis,73M. Janulis,73A. Juodagalvis,73H. Castilla-Valdez,74 E. De La Cruz-Burelo,74I. Heredia-de La Cruz,74R. Lopez-Fernandez,74J. Martı´nez-Ortega,74 A. Sanchez-Hernandez,74L. M. Villasenor-Cendejas,74S. Carrillo Moreno,75F. Vazquez Valencia,75 H. A. Salazar Ibarguen,76E. Casimiro Linares,77A. Morelos Pineda,77M. A. Reyes-Santos,77D. Krofcheck,78 A. J. Bell,79P. H. Butler,79R. Doesburg,79S. Reucroft,79H. Silverwood,79M. Ahmad,80M. I. Asghar,80J. Butt,80 H. R. Hoorani,80S. Khalid,80W. A. Khan,80T. Khurshid,80S. Qazi,80M. A. Shah,80M. Shoaib,80H. Bialkowska,81 B. Boimska,81T. Frueboes,81M. Go´rski,81M. Kazana,81K. Nawrocki,81K. Romanowska-Rybinska,81M. Szleper,81

G. Wrochna,81P. Zalewski,81G. Brona,82K. Bunkowski,82M. Cwiok,82W. Dominik,82K. Doroba,82 A. Kalinowski,82M. Konecki,82J. Krolikowski,82M. Misiura,82W. Wolszczak,82N. Almeida,83P. Bargassa,83

A. David,83P. Faccioli,83P. G. Ferreira Parracho,83M. Gallinaro,83J. Seixas,83J. Varela,83P. Vischia,83 I. Belotelov,84P. Bunin,84I. Golutvin,84I. Gorbunov,84A. Kamenev,84V. Karjavin,84G. Kozlov,84A. Lanev,84 A. Malakhov,84P. Moisenz,84V. Palichik,84V. Perelygin,84M. Savina,84S. Shmatov,84V. Smirnov,84A. Volodko,84 A. Zarubin,84S. Evstyukhin,85V. Golovtsov,85Y. Ivanov,85V. Kim,85P. Levchenko,85V. Murzin,85V. Oreshkin,85

I. Smirnov,85V. Sulimov,85L. Uvarov,85S. Vavilov,85A. Vorobyev,85An. Vorobyev,85Yu. Andreev,86 A. Dermenev,86S. Gninenko,86N. Golubev,86M. Kirsanov,86N. Krasnikov,86V. Matveev,86A. Pashenkov,86 D. Tlisov,86A. Toropin,86V. Epshteyn,87M. Erofeeva,87V. Gavrilov,87M. Kossov,87N. Lychkovskaya,87V. Popov,87

G. Safronov,87S. Semenov,87I. Shreyber,87V. Stolin,87E. Vlasov,87A. Zhokin,87V. Andreev,88M. Azarkin,88 I. Dremin,88M. Kirakosyan,88A. Leonidov,88G. Mesyats,88S. V. Rusakov,88A. Vinogradov,88A. Belyaev,89 E. Boos,89M. Dubinin,89,eL. Dudko,89A. Ershov,89A. Gribushin,89V. Klyukhin,89O. Kodolova,89I. Lokhtin,89

A. Markina,89S. Obraztsov,89M. Perfilov,89S. Petrushanko,89A. Popov,89L. Sarycheva,89,aV. Savrin,89 A. Snigirev,89I. Azhgirey,90I. Bayshev,90S. Bitioukov,90V. Grishin,90,cV. Kachanov,90D. Konstantinov,90

(10)

V. Krychkine,90V. Petrov,90R. Ryutin,90A. Sobol,90L. Tourtchanovitch,90S. Troshin,90N. Tyurin,90A. Uzunian,90 A. Volkov,90P. Adzic,91,ffM. Djordjevic,91M. Ekmedzic,91D. Krpic,91,ffJ. Milosevic,91M. Aguilar-Benitez,92

J. Alcaraz Maestre,92P. Arce,92C. Battilana,92E. Calvo,92M. Cerrada,92M. Chamizo Llatas,92N. Colino,92 B. De La Cruz,92A. Delgado Peris,92D. Domı´nguez Va´zquez,92C. Fernandez Bedoya,92J. P. Ferna´ndez Ramos,92 A. Ferrando,92J. Flix,92M. C. Fouz,92P. Garcia-Abia,92O. Gonzalez Lopez,92S. Goy Lopez,92J. M. Hernandez,92 M. I. Josa,92G. Merino,92J. Puerta Pelayo,92A. Quintario Olmeda,92I. Redondo,92L. Romero,92J. Santaolalla,92

M. S. Soares,92C. Willmott,92C. Albajar,93G. Codispoti,93J. F. de Troco´niz,93H. Brun,94J. Cuevas,94 J. Fernandez Menendez,94S. Folgueras,94I. Gonzalez Caballero,94L. Lloret Iglesias,94J. Piedra Gomez,94 J. A. Brochero Cifuentes,95I. J. Cabrillo,95A. Calderon,95S. H. Chuang,95J. Duarte Campderros,95M. Felcini,95,gg

M. Fernandez,95G. Gomez,95J. Gonzalez Sanchez,95A. Graziano,95C. Jorda,95A. Lopez Virto,95J. Marco,95 R. Marco,95C. Martinez Rivero,95F. Matorras,95F. J. Munoz Sanchez,95T. Rodrigo,95A. Y. Rodrı´guez-Marrero,95

A. Ruiz-Jimeno,95L. Scodellaro,95I. Vila,95R. Vilar Cortabitarte,95D. Abbaneo,96E. Auffray,96G. Auzinger,96 M. Bachtis,96P. Baillon,96A. H. Ball,96D. Barney,96J. F. Benitez,96C. Bernet,96,fG. Bianchi,96P. Bloch,96

A. Bocci,96A. Bonato,96C. Botta,96H. Breuker,96T. Camporesi,96G. Cerminara,96T. Christiansen,96 J. A. Coarasa Perez,96D. D’Enterria,96A. Dabrowski,96A. De Roeck,96S. Di Guida,96M. Dobson,96 N. Dupont-Sagorin,96A. Elliott-Peisert,96B. Frisch,96W. Funk,96G. Georgiou,96M. Giffels,96D. Gigi,96K. Gill,96

D. Giordano,96M. Girone,96M. Giunta,96F. Glege,96R. Gomez-Reino Garrido,96P. Govoni,96S. Gowdy,96 R. Guida,96J. Hammer,96M. Hansen,96P. Harris,96C. Hartl,96J. Harvey,96B. Hegner,96A. Hinzmann,96 V. Innocente,96P. Janot,96K. Kaadze,96E. Karavakis,96K. Kousouris,96P. Lecoq,96Y.-J. Lee,96P. Lenzi,96 C. Lourenc¸o,96N. Magini,96T. Ma¨ki,96M. Malberti,96L. Malgeri,96M. Mannelli,96L. Masetti,96F. Meijers,96 S. Mersi,96E. Meschi,96R. Moser,96M. Mulders,96P. Musella,96E. Nesvold,96L. Orsini,96E. Palencia Cortezon,96

E. Perez,96L. Perrozzi,96A. Petrilli,96A. Pfeiffer,96M. Pierini,96M. Pimia¨,96D. Piparo,96G. Polese,96 L. Quertenmont,96A. Racz,96W. Reece,96J. Rodrigues Antunes,96G. Rolandi,96,hhC. Rovelli,96,iiM. Rovere,96 H. Sakulin,96F. Santanastasio,96C. Scha¨fer,96C. Schwick,96I. Segoni,96S. Sekmen,96A. Sharma,96P. Siegrist,96

P. Silva,96M. Simon,96P. Sphicas,96,jjD. Spiga,96A. Tsirou,96G. I. Veres,96,tJ. R. Vlimant,96H. K. Wo¨hri,96 S. D. Worm,96,kkW. D. Zeuner,96W. Bertl,97K. Deiters,97W. Erdmann,97K. Gabathuler,97R. Horisberger,97 Q. Ingram,97H. C. Kaestli,97S. Ko¨nig,97D. Kotlinski,97U. Langenegger,97F. Meier,97D. Renker,97T. Rohe,97 F. Bachmair,98L. Ba¨ni,98P. Bortignon,98M. A. Buchmann,98B. Casal,98N. Chanon,98A. Deisher,98G. Dissertori,98

M. Dittmar,98M. Donega`,98M. Du¨nser,98P. Eller,98J. Eugster,98K. Freudenreich,98C. Grab,98D. Hits,98 P. Lecomte,98W. Lustermann,98A. C. Marini,98P. Martinez Ruiz del Arbol,98N. Mohr,98F. Moortgat,98 C. Na¨geli,98,llP. Nef,98F. Nessi-Tedaldi,98F. Pandolfi,98L. Pape,98F. Pauss,98M. Peruzzi,98F. J. Ronga,98 M. Rossini,98L. Sala,98A. K. Sanchez,98A. Starodumov,98,mmB. Stieger,98M. Takahashi,98L. Tauscher,98,a A. Thea,98K. Theofilatos,98D. Treille,98C. Urscheler,98R. Wallny,98H. A. Weber,98L. Wehrli,98C. Amsler,99,nn V. Chiochia,99S. De Visscher,99C. Favaro,99M. Ivova Rikova,99B. Kilminster,99B. Millan Mejias,99P. Otiougova,99 P. Robmann,99H. Snoek,99S. Tupputi,99M. Verzetti,99Y. H. Chang,100K. H. Chen,100C. Ferro,100C. M. Kuo,100

S. W. Li,100W. Lin,100Y. J. Lu,100A. P. Singh,100R. Volpe,100S. S. Yu,100P. Bartalini,101P. Chang,101 Y. H. Chang,101Y. W. Chang,101Y. Chao,101K. F. Chen,101C. Dietz,101U. Grundler,101W.-S. Hou,101Y. Hsiung,101

K. Y. Kao,101Y. J. Lei,101R.-S. Lu,101D. Majumder,101E. Petrakou,101X. Shi,101J. G. Shiu,101Y. M. Tzeng,101 X. Wan,101M. Wang,101B. Asavapibhop,102E. Simili,102N. Srimanobhas,102N. Suwonjandee,102A. Adiguzel,103

M. N. Bakirci,103,ooS. Cerci,103,ppC. Dozen,103I. Dumanoglu,103E. Eskut,103S. Girgis,103G. Gokbulut,103 E. Gurpinar,103I. Hos,103E. E. Kangal,103T. Karaman,103G. Karapinar,103,qqA. Kayis Topaksu,103G. Onengut,103

K. Ozdemir,103S. Ozturk,103,rrA. Polatoz,103K. Sogut,103,ssD. Sunar Cerci,103,ppB. Tali,103,ppH. Topakli,103,oo L. N. Vergili,103M. Vergili,103I. V. Akin,104T. Aliev,104B. Bilin,104S. Bilmis,104M. Deniz,104H. Gamsizkan,104 A. M. Guler,104K. Ocalan,104A. Ozpineci,104M. Serin,104R. Sever,104U. E. Surat,104M. Yalvac,104E. Yildirim,104 M. Zeyrek,104E. Gu¨lmez,105B. Isildak,105,ttM. Kaya,105,uuO. Kaya,105,uuS. Ozkorucuklu,105,vvN. Sonmez,105,ww H. Bahtiyar,106,xxE. Barlas,106K. Cankocak,106Y. O. Gu¨naydin,106,yyF. I. Vardarl,106M. Yu¨cel,106L. Levchuk,107

J. J. Brooke,108E. Clement,108D. Cussans,108H. Flacher,108R. Frazier,108J. Goldstein,108M. Grimes,108 G. P. Heath,108H. F. Heath,108L. Kreczko,108S. Metson,108D. M. Newbold,108,kkK. Nirunpong,108A. Poll,108

S. Senkin,108V. J. Smith,108T. Williams,108L. Basso,109,zzK. W. Bell,109A. Belyaev,109,zzC. Brew,109 R. M. Brown,109D. J. A. Cockerill,109J. A. Coughlan,109K. Harder,109S. Harper,109J. Jackson,109B. W. Kennedy,109

(11)

W. J. Womersley,109R. Bainbridge,110G. Ball,110R. Beuselinck,110O. Buchmuller,110D. Colling,110N. Cripps,110 M. Cutajar,110P. Dauncey,110G. Davies,110M. Della Negra,110W. Ferguson,110J. Fulcher,110D. Futyan,110

A. Gilbert,110A. Guneratne Bryer,110G. Hall,110Z. Hatherell,110J. Hays,110G. Iles,110M. Jarvis,110 G. Karapostoli,110M. Kenzie,110L. Lyons,110A.-M. Magnan,110J. Marrouche,110B. Mathias,110R. Nandi,110 J. Nash,110A. Nikitenko,110,mmJ. Pela,110M. Pesaresi,110K. Petridis,110M. Pioppi,110,aaaD. M. Raymond,110

S. Rogerson,110A. Rose,110C. Seez,110P. Sharp,110,aA. Sparrow,110M. Stoye,110A. Tapper,110

M. Vazquez Acosta,110T. Virdee,110S. Wakefield,110N. Wardle,110T. Whyntie,110M. Chadwick,111J. E. Cole,111 P. R. Hobson,111A. Khan,111P. Kyberd,111D. Leggat,111D. Leslie,111W. Martin,111I. D. Reid,111P. Symonds,111 L. Teodorescu,111M. Turner,111K. Hatakeyama,112H. Liu,112T. Scarborough,112O. Charaf,113S. I. Cooper,113 C. Henderson,113P. Rumerio,113A. Avetisyan,114T. Bose,114C. Fantasia,114A. Heister,114P. Lawson,114D. Lazic,114

J. Rohlf,114D. Sperka,114J. St. John,114L. Sulak,114J. Alimena,115S. Bhattacharya,115G. Christopher,115 D. Cutts,115Z. Demiragli,115A. Ferapontov,115A. Garabedian,115U. Heintz,115S. Jabeen,115G. Kukartsev,115 E. Laird,115G. Landsberg,115M. Luk,115M. Narain,115M. Segala,115T. Sinthuprasith,115T. Speer,115R. Breedon,116

G. Breto,116M. Calderon De La Barca Sanchez,116M. Caulfield,116S. Chauhan,116M. Chertok,116J. Conway,116 R. Conway,116P. T. Cox,116J. Dolen,116R. Erbacher,116M. Gardner,116R. Houtz,116W. Ko,116A. Kopecky,116 R. Lander,116O. Mall,116T. Miceli,116R. Nelson,116D. Pellett,116F. Ricci-Tam,116B. Rutherford,116M. Searle,116

J. Smith,116M. Squires,116M. Tripathi,116R. Vasquez Sierra,116R. Yohay,116V. Andreev,117D. Cline,117 R. Cousins,117J. Duris,117S. Erhan,117P. Everaerts,117C. Farrell,117J. Hauser,117M. Ignatenko,117C. Jarvis,117 G. Rakness,117P. Schlein,117,aP. Traczyk,117V. Valuev,117M. Weber,117J. Babb,118R. Clare,118M. E. Dinardo,118

J. Ellison,118J. W. Gary,118F. Giordano,118G. Hanson,118H. Liu,118O. R. Long,118A. Luthra,118H. Nguyen,118 S. Paramesvaran,118J. Sturdy,118S. Sumowidagdo,118R. Wilken,118S. Wimpenny,118W. Andrews,119 J. G. Branson,119G. B. Cerati,119S. Cittolin,119D. Evans,119A. Holzner,119R. Kelley,119M. Lebourgeois,119 J. Letts,119I. Macneill,119B. Mangano,119S. Padhi,119C. Palmer,119G. Petrucciani,119M. Pieri,119M. Sani,119

V. Sharma,119S. Simon,119E. Sudano,119M. Tadel,119Y. Tu,119A. Vartak,119S. Wasserbaech,119,bbb F. Wu¨rthwein,119A. Yagil,119J. Yoo,119D. Barge,120R. Bellan,120C. Campagnari,120M. D’Alfonso,120 T. Danielson,120K. Flowers,120P. Geffert,120C. George,120F. Golf,120J. Incandela,120C. Justus,120P. Kalavase,120 D. Kovalskyi,120V. Krutelyov,120S. Lowette,120R. Magan˜a Villalba,120N. Mccoll,120V. Pavlunin,120J. Ribnik,120

J. Richman,120R. Rossin,120D. Stuart,120W. To,120C. West,120A. Apresyan,121A. Bornheim,121J. Bunn,121 Y. Chen,121E. Di Marco,121J. Duarte,121M. Gataullin,121D. Kcira,121Y. Ma,121A. Mott,121H. B. Newman,121 C. Rogan,121M. Spiropulu,121V. Timciuc,121J. Veverka,121R. Wilkinson,121S. Xie,121Y. Yang,121R. Y. Zhu,121 V. Azzolini,122A. Calamba,122R. Carroll,122T. Ferguson,122Y. Iiyama,122D. W. Jang,122Y. F. Liu,122M. Paulini,122

H. Vogel,122I. Vorobiev,122J. P. Cumalat,123B. R. Drell,123W. T. Ford,123A. Gaz,123E. Luiggi Lopez,123 J. G. Smith,123K. Stenson,123K. A. Ulmer,123S. R. Wagner,123J. Alexander,124A. Chatterjee,124N. Eggert,124

L. K. Gibbons,124B. Heltsley,124W. Hopkins,124A. Khukhunaishvili,124B. Kreis,124N. Mirman,124 G. Nicolas Kaufman,124J. R. Patterson,124A. Ryd,124E. Salvati,124W. Sun,124W. D. Teo,124J. Thom,124 J. Thompson,124J. Tucker,124Y. Weng,124L. Winstrom,124P. Wittich,124D. Winn,125S. Abdullin,126M. Albrow,126

J. Anderson,126L. A. T. Bauerdick,126A. Beretvas,126J. Berryhill,126P. C. Bhat,126K. Burkett,126J. N. Butler,126 V. Chetluru,126H. W. K. Cheung,126F. Chlebana,126S. Cihangir,126V. D. Elvira,126I. Fisk,126J. Freeman,126

Y. Gao,126D. Green,126O. Gutsche,126J. Hanlon,126R. M. Harris,126J. Hirschauer,126B. Hooberman,126 S. Jindariani,126M. Johnson,126U. Joshi,126B. Klima,126S. Kunori,126S. Kwan,126C. Leonidopoulos,126,ccc

J. Linacre,126D. Lincoln,126R. Lipton,126J. Lykken,126K. Maeshima,126J. M. Marraffino,126 V. I. Martinez Outschoorn,126S. Maruyama,126D. Mason,126P. McBride,126K. Mishra,126S. Mrenna,126 Y. Musienko,126,dddC. Newman-Holmes,126V. O’Dell,126O. Prokofyev,126E. Sexton-Kennedy,126S. Sharma,126 W. J. Spalding,126L. Spiegel,126L. Taylor,126S. Tkaczyk,126N. V. Tran,126L. Uplegger,126E. W. Vaandering,126

R. Vidal,126J. Whitmore,126W. Wu,126F. Yang,126J. C. Yun,126D. Acosta,127P. Avery,127D. Bourilkov,127 M. Chen,127T. Cheng,127S. Das,127M. De Gruttola,127G. P. Di Giovanni,127D. Dobur,127A. Drozdetskiy,127

R. D. Field,127M. Fisher,127Y. Fu,127I. K. Furic,127J. Gartner,127J. Hugon,127B. Kim,127J. Konigsberg,127 A. Korytov,127A. Kropivnitskaya,127T. Kypreos,127J. F. Low,127K. Matchev,127P. Milenovic,127,eee G. Mitselmakher,127L. Muniz,127M. Park,127R. Remington,127A. Rinkevicius,127P. Sellers,127N. Skhirtladze,127

M. Snowball,127J. Yelton,127M. Zakaria,127V. Gaultney,128S. Hewamanage,128L. M. Lebolo,128S. Linn,128 P. Markowitz,128G. Martinez,128J. L. Rodriguez,128T. Adams,129A. Askew,129J. Bochenek,129J. Chen,129

(12)

B. Diamond,129S. V. Gleyzer,129J. Haas,129S. Hagopian,129V. Hagopian,129M. Jenkins,129K. F. Johnson,129 H. Prosper,129V. Veeraraghavan,129M. Weinberg,129M. M. Baarmand,130B. Dorney,130M. Hohlmann,130 H. Kalakhety,130I. Vodopiyanov,130F. Yumiceva,130M. R. Adams,131L. Apanasevich,131Y. Bai,131V. E. Bazterra,131 R. R. Betts,131I. Bucinskaite,131J. Callner,131R. Cavanaugh,131O. Evdokimov,131L. Gauthier,131C. E. Gerber,131

D. J. Hofman,131S. Khalatyan,131F. Lacroix,131C. O’Brien,131C. Silkworth,131D. Strom,131P. Turner,131 N. Varelas,131U. Akgun,132E. A. Albayrak,132B. Bilki,132,fffW. Clarida,132F. Duru,132S. Griffiths,132J.-P. Merlo,132

H. Mermerkaya,132,gggA. Mestvirishvili,132A. Moeller,132J. Nachtman,132C. R. Newsom,132E. Norbeck,132 Y. Onel,132F. Ozok,132,xxS. Sen,132P. Tan,132E. Tiras,132J. Wetzel,132T. Yetkin,132K. Yi,132B. A. Barnett,133

B. Blumenfeld,133S. Bolognesi,133D. Fehling,133G. Giurgiu,133A. V. Gritsan,133Z. J. Guo,133G. Hu,133 P. Maksimovic,133M. Swartz,133A. Whitbeck,133P. Baringer,134A. Bean,134G. Benelli,134R. P. Kenny Iii,134 M. Murray,134D. Noonan,134S. Sanders,134R. Stringer,134G. Tinti,134J. S. Wood,134A. F. Barfuss,135T. Bolton,135

I. Chakaberia,135A. Ivanov,135S. Khalil,135M. Makouski,135Y. Maravin,135S. Shrestha,135I. Svintradze,135 J. Gronberg,136D. Lange,136F. Rebassoo,136D. Wright,136A. Baden,137B. Calvert,137S. C. Eno,137J. A. Gomez,137

N. J. Hadley,137R. G. Kellogg,137M. Kirn,137T. Kolberg,137Y. Lu,137M. Marionneau,137A. C. Mignerey,137 K. Pedro,137A. Peterman,137A. Skuja,137J. Temple,137M. B. Tonjes,137S. C. Tonwar,137A. Apyan,138G. Bauer,138

J. Bendavid,138W. Busza,138E. Butz,138I. A. Cali,138M. Chan,138V. Dutta,138G. Gomez Ceballos,138 M. Goncharov,138Y. Kim,138M. Klute,138K. Krajczar,138,hhhA. Levin,138P. D. Luckey,138T. Ma,138S. Nahn,138

C. Paus,138D. Ralph,138C. Roland,138G. Roland,138M. Rudolph,138G. S. F. Stephans,138F. Sto¨ckli,138 K. Sumorok,138K. Sung,138D. Velicanu,138E. A. Wenger,138R. Wolf,138B. Wyslouch,138M. Yang,138Y. Yilmaz,138

A. S. Yoon,138M. Zanetti,138V. Zhukova,138B. Dahmes,139A. De Benedetti,139G. Franzoni,139A. Gude,139 S. C. Kao,139K. Klapoetke,139Y. Kubota,139J. Mans,139N. Pastika,139R. Rusack,139M. Sasseville,139 A. Singovsky,139N. Tambe,139J. Turkewitz,139L. M. Cremaldi,140R. Kroeger,140L. Perera,140R. Rahmat,140 D. A. Sanders,140E. Avdeeva,141K. Bloom,141S. Bose,141D. R. Claes,141A. Dominguez,141M. Eads,141J. Keller,141

I. Kravchenko,141J. Lazo-Flores,141S. Malik,141G. R. Snow,141A. Godshalk,142I. Iashvili,142S. Jain,142 A. Kharchilava,142A. Kumar,142S. Rappoccio,142Z. Wan,142G. Alverson,143E. Barberis,143D. Baumgartel,143 M. Chasco,143J. Haley,143D. Nash,143T. Orimoto,143D. Trocino,143D. Wood,143J. Zhang,143A. Anastassov,144

K. A. Hahn,144A. Kubik,144L. Lusito,144N. Mucia,144N. Odell,144R. A. Ofierzynski,144B. Pollack,144 A. Pozdnyakov,144M. Schmitt,144S. Stoynev,144M. Velasco,144S. Won,144D. Berry,145A. Brinkerhoff,145 K. M. Chan,145M. Hildreth,145C. Jessop,145D. J. Karmgard,145J. Kolb,145K. Lannon,145W. Luo,145S. Lynch,145

N. Marinelli,145D. M. Morse,145T. Pearson,145M. Planer,145R. Ruchti,145J. Slaunwhite,145N. Valls,145 M. Wayne,145M. Wolf,145L. Antonelli,146B. Bylsma,146L. S. Durkin,146C. Hill,146R. Hughes,146K. Kotov,146 T. Y. Ling,146D. Puigh,146M. Rodenburg,146C. Vuosalo,146G. Williams,146B. L. Winer,146E. Berry,147P. Elmer,147

V. Halyo,147P. Hebda,147J. Hegeman,147A. Hunt,147P. Jindal,147S. A. Koay,147D. Lopes Pegna,147P. Lujan,147 D. Marlow,147T. Medvedeva,147M. Mooney,147J. Olsen,147P. Piroue´,147X. Quan,147A. Raval,147H. Saka,147

D. Stickland,147C. Tully,147J. S. Werner,147S. C. Zenz,147A. Zuranski,147E. Brownson,148A. Lopez,148 H. Mendez,148J. E. Ramirez Vargas,148E. Alagoz,149V. E. Barnes,149D. Benedetti,149G. Bolla,149D. Bortoletto,149

M. De Mattia,149A. Everett,149Z. Hu,149M. Jones,149O. Koybasi,149M. Kress,149A. T. Laasanen,149 N. Leonardo,149V. Maroussov,149P. Merkel,149D. H. Miller,149N. Neumeister,149I. Shipsey,149D. Silvers,149 A. Svyatkovskiy,149M. Vidal Marono,149H. D. Yoo,149J. Zablocki,149Y. Zheng,149S. Guragain,150N. Parashar,150

A. Adair,151B. Akgun,151C. Boulahouache,151K. M. Ecklund,151F. J. M. Geurts,151W. Li,151B. P. Padley,151 R. Redjimi,151J. Roberts,151J. Zabel,151B. Betchart,152A. Bodek,152Y. S. Chung,152R. Covarelli,152 P. de Barbaro,152R. Demina,152Y. Eshaq,152T. Ferbel,152A. Garcia-Bellido,152P. Goldenzweig,152J. Han,152 A. Harel,152D. C. Miner,152D. Vishnevskiy,152M. Zielinski,152A. Bhatti,153R. Ciesielski,153L. Demortier,153

K. Goulianos,153G. Lungu,153S. Malik,153C. Mesropian,153S. Arora,154A. Barker,154J. P. Chou,154 C. Contreras-Campana,154E. Contreras-Campana,154D. Duggan,154D. Ferencek,154Y. Gershtein,154R. Gray,154 E. Halkiadakis,154D. Hidas,154A. Lath,154S. Panwalkar,154M. Park,154R. Patel,154V. Rekovic,154J. Robles,154 K. Rose,154S. Salur,154S. Schnetzer,154C. Seitz,154S. Somalwar,154R. Stone,154S. Thomas,154M. Walker,154

G. Cerizza,155M. Hollingsworth,155S. Spanier,155Z. C. Yang,155A. York,155R. Eusebi,156W. Flanagan,156 J. Gilmore,156T. Kamon,156,iiiV. Khotilovich,156R. Montalvo,156I. Osipenkov,156Y. Pakhotin,156A. Perloff,156 J. Roe,156A. Safonov,156T. Sakuma,156S. Sengupta,156I. Suarez,156A. Tatarinov,156D. Toback,156N. Akchurin,157

(13)

I. Volobouev,157E. Appelt,158A. G. Delannoy,158C. Florez,158S. Greene,158A. Gurrola,158W. Johns,158P. Kurt,158 C. Maguire,158A. Melo,158M. Sharma,158P. Sheldon,158B. Snook,158S. Tuo,158J. Velkovska,158M. W. Arenton,159

M. Balazs,159S. Boutle,159B. Cox,159B. Francis,159J. Goodell,159R. Hirosky,159A. Ledovskoy,159C. Lin,159 C. Neu,159J. Wood,159S. Gollapinni,160R. Harr,160P. E. Karchin,160C. Kottachchi Kankanamge Don,160 P. Lamichhane,160A. Sakharov,160M. Anderson,161D. A. Belknap,161L. Borrello,161D. Carlsmith,161M. Cepeda,161

S. Dasu,161E. Friis,161L. Gray,161K. S. Grogg,161M. Grothe,161R. Hall-Wilton,161M. Herndon,161A. Herve´,161 P. Klabbers,161J. Klukas,161A. Lanaro,161C. Lazaridis,161R. Loveless,161A. Mohapatra,161M. U. Mozer,161

I. Ojalvo,161F. Palmonari,161G. A. Pierro,161I. Ross,161A. Savin,161W. H. Smith,161and J. Swanson161 (CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia 2

Institut fu¨r Hochenergiephysik der OeAW, Wien, Austria 3National Centre for Particle and High Energy Physics, Minsk, Belarus

4Universiteit Antwerpen, Antwerpen, Belgium 5Vrije Universiteit Brussel, Brussel, Belgium 6Universite´ Libre de Bruxelles, Bruxelles, Belgium

7Ghent University, Ghent, Belgium

8Universite´ Catholique de Louvain, Louvain-la-Neuve, Belgium 9Universite´ de Mons, Mons, Belgium

10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

12aUniversidade Estadual Paulista, Sa˜o Paulo, Brazil 12bUniversidade Federal do ABC, Sa˜o Paulo, Brazil 13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

14University of Sofia, Sofia, Bulgaria 15Institute of High Energy Physics, Beijing, China

16State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China 17

Universidad de Los Andes, Bogota, Colombia 18Technical University of Split, Split, Croatia

19University of Split, Split, Croatia 20Institute Rudjer Boskovic, Zagreb, Croatia

21University of Cyprus, Nicosia, Cyprus 22Charles University, Prague, Czech Republic

23Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

24National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 25

Department of Physics, University of Helsinki, Helsinki, Finland 26Helsinki Institute of Physics, Helsinki, Finland

27Lappeenranta University of Technology, Lappeenranta, Finland 28DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

29Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

30Institut Pluridisciplinaire Hubert Curien, Universite´ de Strasbourg, Universite´ de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

31Universite´ de Lyon, Universite´ Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucle´aire de Lyon, Villeurbanne, France

32Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia 33RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

34RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 35RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

36Deutsches Elektronen-Synchrotron, Hamburg, Germany 37University of Hamburg, Hamburg, Germany 38Institut fu¨r Experimentelle Kernphysik, Karlsruhe, Germany 39

Institute of Nuclear Physics ‘‘Demokritos’’, Aghia Paraskevi, Greece 40University of Athens, Athens, Greece

41University of Ioa´nnina, Ioa´nnina, Greece

42KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary 43Institute of Nuclear Research ATOMKI, Debrecen, Hungary

(14)

45Panjab University, Chandigarh, India 46University of Delhi, Delhi, India 47Saha Institute of Nuclear Physics, Kolkata, India

48Bhabha Atomic Research Centre, Mumbai, India 49Tata Institute of Fundamental Research-EHEP, Mumbai, India 50Tata Institute of Fundamental Research-HECR, Mumbai, India 51Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

52aINFN Sezione di Bari, Bari, Italy 52b

Universita` di Bari, Bari, Italy 52cPolitecnico di Bari, Bari, Italy 53aINFN Sezione di Bologna, Bologna, Italy

53bUniversita` di Bologna, Bologna, Italy 54aINFN Sezione di Catania, Catania, Italy

54bUniversita` di Catania, Catania, Italy 55aINFN Sezione di Firenze, Firenze, Italy

55bUniversita` di Firenze, Firenze, Italy

56INFN Laboratori Nazionali di Frascati, Frascati, Italy 57aINFN Sezione di Genova, Genova, Italy

57bUniversita` di Genova, Genova, Italy 58aINFN Sezione di Milano-Bicocca, Milano, Italy

58bUniversita` di Milano-Bicocca, Milano, Italy 59aINFN Sezione di Napoli, Napoli, Italy 59bUniversita` di Napoli ’Federico II’, Napoli, Italy 59cUniversita` della Basilicata (Potenza), Napoli, Italy

59d

Universita` G. Marconi (Roma), Napoli, Italy 60aINFN Sezione di Padova, Padova, Italy

60bUniversita` di Padova, Padova, Italy 60cUniversita` di Trento (Trento), Padova, Italy

61aINFN Sezione di Pavia, Pavia, Italy 61bUniversita` di Pavia, Pavia, Italy 62aINFN Sezione di Perugia, Perugia, Italy

62bUniversita` di Perugia, Perugia, Italy 63aINFN Sezione di Pisa, Pisa, Italy

63bUniversita` di Pisa, Pisa, Italy 63cScuola Normale Superiore di Pisa, Pisa, Italy

64aINFN Sezione di Roma, Roma, Italy 64bUniversita` di Roma, Roma, Italy 65aINFN Sezione di Torino, Torino, Italy

65bUniversita` di Torino, Torino, Italy

65cUniversita` del Piemonte Orientale (Novara), Torino, Italy 66aINFN Sezione di Trieste, Trieste, Italy

66bUniversita` di Trieste, Trieste, Italy 67Kangwon National University, Chunchon, Korea

68Kyungpook National University, Daegu, Korea

69Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea 70Korea University, Seoul, Korea

71University of Seoul, Seoul, Korea 72

Sungkyunkwan University, Suwon, Korea 73Vilnius University, Vilnius, Lithuania

74Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico 75Universidad Iberoamericana, Mexico City, Mexico

76Benemerita Universidad Autonoma de Puebla, Puebla, Mexico 77Universidad Auto´noma de San Luis Potosı´, San Luis Potosı´, Mexico

78University of Auckland, Auckland, New Zealand 79University of Canterbury, Christchurch, New Zealand

80National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan 81

National Centre for Nuclear Research, Swierk, Poland

82Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland 83Laborato´rio de Instrumentac¸a˜o e Fı´sica Experimental de Partı´culas, Lisboa, Portugal

84Joint Institute for Nuclear Research, Dubna, Russia

(15)

86Institute for Nuclear Research, Moscow, Russia

87Institute for Theoretical and Experimental Physics, Moscow, Russia 88P.N. Lebedev Physical Institute, Moscow, Russia

89Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia 90State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia 91University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

92Centro de Investigaciones Energe´ticas Medioambientales y Tecnolo´gicas (CIEMAT), Madrid, Spain 93Universidad Auto´noma de Madrid, Madrid, Spain

94

Universidad de Oviedo, Oviedo, Spain

95Instituto de Fı´sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain 96CERN, European Organization for Nuclear Research, Geneva, Switzerland

97Paul Scherrer Institut, Villigen, Switzerland

98Institute for Particle Physics, ETH Zurich, Zurich, Switzerland 99Universita¨t Zu¨rich, Zurich, Switzerland

100National Central University, Chung-Li, Taiwan 101National Taiwan University (NTU), Taipei, Taiwan

102Chulalongkorn University, Bangkok, Thailand 103Cukurova University, Adana, Turkey

104Middle East Technical University, Physics Department, Ankara, Turkey 105Bogazici University, Istanbul, Turkey

106Istanbul Technical University, Istanbul, Turkey

107National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine 108University of Bristol, Bristol, United Kingdom

109Rutherford Appleton Laboratory, Didcot, United Kingdom 110

Imperial College, London, United Kingdom 111Brunel University, Uxbridge, United Kingdom

112Baylor University, Waco, Texas, USA

113The University of Alabama, Tuscaloosa, Alabama, USA 114Boston University, Boston, Massachusetts, USA 115Brown University, Providence, New Jersey, USA 116University of California, Davis, Davis, California, USA 117University of California, Los Angeles, Los Angeles, California, USA

118University of California, Riverside, Riverside, California, USA 119University of California, San Diego, La Jolla, California, USA 120University of California, Santa Barbara, Santa Barbara, California, USA

121California Institute of Technology, Pasadena, California, USA 122Carnegie Mellon University, Pittsburgh, Pennsylvania, USA 123University of Colorado at Boulder, Boulder, Colorado, USA

124Cornell University, Ithaca, New York, USA 125Fairfield University, Fairfield, Connecticut, USA 126Fermi National Accelerator Laboratory, Batavia, Illinois, USA

127University of Florida, Gainesville, Florida, USA 128Florida International University, Miami, Florida, USA

129Florida State University, Tallahassee, Florida, USA 130Florida Institute of Technology, Melbourne, Florida, USA 131University of Illinois at Chicago (UIC), Chicago, Illinois, USA

132The University of Iowa, Iowa City, Iowa, USA 133

Johns Hopkins University, Baltimore, Maryland, USA 134The University of Kansas, Lawrence, Kansas, USA 135Kansas State University, Manhattan, Kansas, USA

136Lawrence Livermore National Laboratory, Livermore, California, USA 137University of Maryland, College Park, Maryland, USA 138Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

139University of Minnesota, Minneapolis, Minnesota, USA 140University of Mississippi, Oxford, Mississippi, USA 141University of Nebraska-Lincoln, Lincoln, Nebraska, USA 142

State University of New York at Buffalo, Buffalo, New York, USA 143Northeastern University, Boston, Massachusetts, USA

144Northwestern University, Evanston, Illinois, USA 145University of Notre Dame, Notre Dame, Indiana, USA

(16)

147Princeton University, Princeton, New Jersey, USA 148University of Puerto Rico, Mayaguez, Puerto Rico 149Purdue University, West Lafayette, Indiana, USA 150Purdue University Calumet, Hammond, Indiana, USA

151Rice University, Houston, Texas, USA 152University of Rochester, Rochester, New York, USA 153The Rockefeller University, New York, New York, USA

154Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA 155

University of Tennessee, Knoxville, Tennessee, USA 156Texas A&M University, College Station, Texas, USA

157Texas Tech University, Lubbock, Texas, USA 158Vanderbilt University, Nashville, Tennessee, USA 159University of Virginia, Charlottesville, Virginia, USA

160Wayne State University, Detroit, Michigan, USA 161University of Wisconsin, Madison, Wisconsin, USA

aDeceased.

bAlso at Vienna University of Technology, Vienna, Austria.

cAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland. dAlso at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia. eAlso at California Institute of Technology, Pasadena, CA, USA.

fAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France. g

Also at Suez Canal University, Suez, Egypt.

hAlso at Zewail City of Science and Technology, Zewail, Egypt. iAlso at Cairo University, Cairo, Egypt.

jAlso at Fayoum University, El-Fayoum, Egypt. kAlso at British University in Egypt, Cairo, Egypt.

lNow at Ain Shams University, Cairo, Egypt.

mAlso at National Centre for Nuclear Research, Swierk, Poland. nAlso at Universite´ de Haute Alsace, Mulhouse, France. oAlso at Joint Institute for Nuclear Research, Dubna, Russia.

pAlso at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia. qAlso at Brandenburg University of Technology, Cottbus, Germany.

rAlso at The University of Kansas, Lawrence, KS, USA.

sAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary. tAlso at Eo¨tvo¨s Lora´nd University, Budapest, Hungary.

uAlso at Tata Institute of Fundamental Research - HECR, Mumbai, India. v

Now at King Abdulaziz University, Jeddah, Saudi Arabia.

w

Also at University of Visva-Bharati, Santiniketan, India.

xAlso at Sharif University of Technology, Tehran, Iran. yAlso at Isfahan University of Technology, Isfahan, Iran. zAlso at Shiraz University, Shiraz, Iran.

aaAlso at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran. bbAlso at Facolta` Ingegneria, Universita` di Roma, Roma, Italy.

ccAlso at Universita` degli Studi Guglielmo Marconi, Roma, Italy. ddAlso at Universita` degli Studi di Siena, Siena, Italy.

eeAlso at University of Bucharest, Faculty of Physics, Bucuresti-Magurele, Romania. ffAlso at Faculty of Physics, University of Belgrade, Belgrade, Serbia.

ggAlso at University of California, Los Angeles, CA, USA. hhAlso at Scuola Normale e Sezione dell’INFN, Pisa, Italy.

iiAlso at INFN Sezione di Roma, Roma, Italy. jjAlso at University of Athens, Athens, Greece.

kkAlso at Rutherford Appleton Laboratory, Didcot, United Kingdom. ll

Also at Paul Scherrer Institut, Villigen, Switzerland.

mmAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia. nnAlso at Albert Einstein Center for Fundamental Physics, Bern, Switzerland. ooAlso at Gaziosmanpasa University, Tokat, Turkey.

(17)

ppAlso at Adiyaman University, Adiyaman, Turkey. qqAlso at Izmir Institute of Technology, Izmir, Turkey.

rrAlso at The University of Iowa, Iowa City, IA, USA. ssAlso at Mersin University, Mersin, Turkey.

ttAlso at Ozyegin University, Istanbul, Turkey. uuAlso at Kafkas University, Kars, Turkey.

vvAlso at Suleyman Demirel University, Isparta, Turkey. wwAlso at Ege University, Izmir, Turkey.

xxAlso at Mimar Sinan University, Istanbul, Istanbul, Turkey.

yyAlso at Kahramanmaras Su¨tcu¨ Imam University, Kahramanmaras, Turkey.

zzAlso at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom. aaaAlso at INFN Sezione di Perugia, Universita` di Perugia, Perugia, Italy.

bbbAlso at Utah Valley University, Orem, UT, USA.

cccNow at University of Edinburgh, Scotland, Edinburgh, United Kingdom. ddd

Also at Institute for Nuclear Research, Moscow, Russia.

eeeAlso at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia. fffAlso at Argonne National Laboratory, Argonne, IL, USA.

gggAlso at Erzincan University, Erzincan, Turkey.

hhhAlso at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary. iiiAlso at Kyungpook National University, Daegu, Korea.

Figura

FIG. 1 (color online). Observed lepton-E miss T transverse mass distributions in the electron (top) and the muon (bottom) channel
FIG. 3 (color online). Limits on the cross section times the single channel branching fraction (   B) for heavy bosons based on the 2012 data for the electron and the muon channels
FIG. 4 (color online). Combination of 2011 and 2012 data for the electron and the muon channels using 5:0 fb 1 of data at p ffiffiffi s ¼ 7 TeV from 2011 and 3:7 fb 1 of data at p ffiffiffis ¼ 8 TeV from 2012
FIG. 5 (color online). The 95% C.L. limits on the split-UED parameters  and 1=R derived from the W 0 mass limits taking into account the corresponding width of the W KK n¼2
+2

Riferimenti

Documenti correlati

Il mio incontro con Crimp, il cui esito propongo in forma di intervista, ha se- gnato la mia ricerca di ricostruzione del dibattito critico avvenuto sulle pagine della

While acknowledging that some exceptions in the convergence process emerged in terms of the mean values of the parameters, the authors emphasized the strong link between

Anche altrove la memoria del Pluto è, per lo più, limitata alla ripresa di singole espressioni: è il caso della già citata epistola 104 al fratello, dove, a proposito di un

In una situazione, come quella attuale, in cui il lavoro di riproduzione (femminile e non) si sovrappone sempre più al lavoro produttivo classicamente inteso, è possibile pensare

To better understand the breast cancer progression and therapeutic resistance is crucial deepen the molecular mechanisms related to regulation of cells behavior in the

A metà degli anni Cinquanta, ancora a Rimini, partecipò all’accesa disputa tra Ba- sinio da Parma e Porcelio Pandone sull’im- portanza della conoscenza della lingua gre- ca per

an approximate admission rate to acute psychiatric wards, including voluntary and involuntary patients, of 31.8 per 10,000 residents in the city of Rome in 2002.. Another

In conclusion, our analysis of patients with imatinib-treated chronic myeloid leukemia did not reveal a higher incidence of second primary malignancies; however, the outcome of