Contents lists available atScienceDirect
Ecological
Engineering
j o u r n a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / e c o l e n g
Biomass
residues
revaluation
with
energy
production
in
a
nursery
company
Carlo
Carcasci
∗,
Leonardo
Mussato,
Matteo
Neri
DIEF:DepartmentofIndustrialEngineering,UniversityofFlorence,viaSantaMarta,3-50139Florence,Italy
a
r
t
i
c
l
e
i
n
f
o
Articlehistory:
Received13February2017
Receivedinrevisedform27April2017 Accepted5May2017 Keywords: Nurserywaste Biomasschipper Greenhouseheater Biomassheater
ORC(Organicrankinecycle) Residuesrevaluation
a
b
s
t
r
a
c
t
IntheTuscanyregion,Italy,nurseriesproducealargeamountofbiomassresidualandtreatitaswaste
productfromworkingactivity,usually.Theaimofthisstudyistoevaluateadifferentwaytouseresiduals
forthenurserycompanyVannucciPiante(Pistoia),fromtheavailabilityofresidualstothethermaldemand
ofthecompany.Thepossibilityofinternallytreatingthebiomassinordertotransformitintosolidfuel
hasalsobeentakenintoaccount.Thethermaldemandderivesfromtheheatingofgreenhousesand
officesduringthewinterperiod.Thethermalenergyrequirementandthesolidbiomassfuelavailability
arestudiedinordertobeconciliated.Threedifferentsolutionshavebeenevaluated,considering
co-generationandincentivebonusfortheproductionofthermalandelectricenergy,asprovidedbythe
Italianlaw.Thefeasibilityofthesolutionshasbeenanalysedandtheresultshavebeencompared,in
ordertodescribethebestsolutionineconomicterms.Asemergedinthisstudy,policiesforrenewable
energyinItalyarenotuptothetaskofsupportingthosetypeofinvestment,inparticularforagricultural
wasterevaluation.
©2017ElsevierB.V.Allrightsreserved.
1. Introduction
ThenurserysectorinEuropeinvolves90,000haofcultivated
landand120,000hafornurseries.Productionreached19.8billion
Eurosin2011,mainlyconcentratedintheNetherlands(33%),Italy
(13%),France(12%),Germany(12%)andSpain(11%).AsforItaly,up
to13,000haconcernpottedflowersandplants.Despitethelarge
areatakenbynurseriesandthesector’seconomicrelevance,most
Italiancompaniesarecharacterizedbytheirlimitedsize:64%of
nurserieshavelessthan1haofextension(Sarrietal.,2013).
Agriculturalgreenhousesareas havegreatlyrisen worldwide
over the last few decades. A large amount of energy input is
required,inordertomaintainanappropriatetemperatureforcrop
growthduringthewinterandsummerseasons.Energydemand
predictionneedstoenhanceenergymanagementandenergy
sav-ingsoftheagriculturalgreenhouses.
Thedemandforenergyinagriculturehasincreasedconsiderably
withtheintroductionofhigh-yieldingvarietiesandmechanized
crop-productionpractices.Therefore,itisnecessarytoimplement
aswitchfromconventionaltoalternativeenergysources.
Gener-∗ Correspondingauthor.
E-mailaddresses:carlo.carcasci@unifi.it,[email protected]fi.it (C.Carcasci).
ally,studieshavebeenconcentratedonworldwideproductionof
fieldcropssuchaswheat,rice,soybean,cotton,maize,mustard,
clusterbean,greengram,pearlmillet,sugarcane,etc.inorderto
improvetheenergyoutput–inputanalysesandtoinvestigatetheir
relationships(Unmoleetal.,1987;Satpathyetal.,1991;Singhetal.,
1999;Singhetal.,2000;Sahaetal.,2002).Atthesametime,
agricul-turalcompanies’residualsaremainlycomposedbybiomass,and
smallerpercentagesbyplastic,paperandiron.
EvenifItaliannurseries’areaisonly1.2%oftheutilized
agri-culturearea(ISTAT, 2013(istitutonazionale distatistica),2013),
nurseries represent the most considerableworking activity for
someItaliandistricts.
Overthelastfewyears,severalmachinemanufacturershave
beenofferingdedicatedimplementsforcollectingpruningresidue.
These machines generally derive from conventional mulchers,
equippedwithastoragebinorwithablower,thelatterdesigned
todirecttheflowofcomminutedresiduestoaconveyorbelt(Daou
etal.,2009).Inorder toseparatebiomassfromsoilpart,many
authorsproposetouseinnovativeshakermachineforoptimizing
theprocess(Boncinellietal.,2015).
Theinputenergy(anditscost)ofafarm isstudiedinmany
paper.MohammadiandOmid(2010)determinedtheenergyuse
efficiency for theproduction of cucumber and compared input
energy usewithinputcosts inthe Tehranprovince, Iran.They
http://dx.doi.org/10.1016/j.ecoleng.2017.05.006 0925-8574/©2017ElsevierB.V.Allrightsreserved.
Nomenclature
Ci Thermalenergyvalorisationcoefficient(from
ital-ianlaw“Contotermico”)[D/kWh]
Ce Emissionvalorisationcoefficient(fromitalianlaw
“Contotermico”)[−]
E Annualenergy[MJ/y]
flowbio Flowrateofdrummachine
i Interestrate[−]
Ia Annual incentivefor biomass boiler(from italian
law“Contotermico”)
Mo Moistureondrybasis[%]
M Mass[kg]
Mbio Quantityofgreenresiduesprocessed;
LHV Lowerheatingvalues[MJ/kg−MJ/Sm3]
n Yearofinvestment[y]
NPVn Netpresentvalueatyearn[D]
Pn Nominal thermal power(from italianlaw“Conto
termico”)[kW]
Powdrum Mechanicalpowersupplybydrummachine
PI Profitabilityindex[−]
PBP Paybackperiod[y]
Q Thermalpower[kW]
r Latentheatofvaporization[MJ/kg]
S0 Initialcosts[D]
Sdiesel Costofdieselusedbydrummachine
Sk Annualcashflow[D]
t Timeofestimatedannualworkofboilers[h](from
italianlaw“Contotermico”)
twork Timeofworkingmachinetoprocessacertain
quan-tityofbiomass[h] Greeksymbols Efficiency Subscripts bio Biomass d Dieselfuel dry Dry ng Naturalgas w Water wet Wet Acronyms
LHV LowerHeatingValues
NPV NetPresentValue
ORC OrganicRankineCycle
PBP PayBackPeriod
PI ProfitabilityIndex
alsointroducedamathematicalmodelbasedongreenhousefarms.
Hamedanietal.(2011)examinedtheenergyusepatternsandthe
relationshipbetweenenergyinputandyieldforgrapeproduction
inMalayerregionofHamadanProvince,Iran.Otherresearchers
Rafieeetal.,(2013)examinedenergyusepatternsandthe
relation-shipbetweenenergyinputsandyieldforpruneproductioninthe
TehranprovinceofIranandtheypresentedacomprehensive
pic-tureofthecurrentstatusofenergyconsumptionandsomeenergy
indices.
Otherstudiesfocusedonenergyconsumptionofgreenhouses.
(B.OzkanC.F.,2007)examinedtheenergyusepatternsandcost
ofproductionina greenhouseand open-fieldgrapeproduction.
Canakci andAkinci(2006) investigatedtheenergy usepatterns
in greenhousevegetable production, in order todeterminethe
energy output–inputratioand theirrelationships.Kuswardhani
etal.(2013)estimatedenergyconsumptionperunitfloorareaof
greenhouseandopenfieldfortomato,chiliandlettuceproduction
inIndonesia.Amodel-optimizedprediction(MOP)methodology
is proposed (Yang et al., 2016), in order to predict theenergy
demand ofgreenhouses witha better performanceof accuracy
andcost.(B.OzkanA.K.,2004)examinedtheenergyequivalents
ofinputsandoutputingreenhousevegetableproduction inthe
Antalyaprovince,Turkey,fortheproductionoffourgreenhouse
crops(tomato,cucumber,eggplantandpepper).
Manyotherresearchersstudiedtheuseofpruning.Pruningcan
betreatedinordertorecovermajorquantitiesoforganicmaterials,
inparticularwood-chipandsubstrate.Wood-chipcanbeusedasa
bio-filterorasabio-fueldependingontheefficiencyofseparation
andthequalityintermsoftype,heatvalue,moistureandsize.
Sub-stratecanbereintroducedinfield,inordertomaintaingroundlevel
ormixitwithvirginsubstrate(Sarrietal.,2013).Someresearchers
studiedpruningharvesters(PicchiandSpinelli,2010;Croceetal.,
2013)orproductionofcompostandbiogasfromgreen residues
(Chilosietal.,2015;Baldietal.,2016).Otherresearchersproposed
a prune recycling.In fact, (Z.González,A. Rosal, A. Requejo,A.
Rodríguez,2011)characterizedchemicallyorangetreepruningand
useitinpulpingandcombustionprocesses.Moreover,they
pro-poseditasasuitablecheapenergysourcebycombustion.Energetic
andeconomicanalysisofatri-generationsystemfueledonlywith
treepruningresiduesareproposed(Denticed’Accadiaetal.,2016;
Clodoveoetal.,2016).
Pistoia(43◦54N,10◦41E.30a.s.l.),isacitylocatedinthe
Tus-canyregion,inthecenter-northofItaly, andithasthegreatest
plantnurserydistrictinthecountry.Thisareaischaracterizedby
anaveragerainfallof1300mmperyear,averagewinter
temper-aturearound5/7◦Cwithminimumpeaksof−10◦Candsummer
temperaturearound21/23◦Cwithmaximumpeaksof40◦C.The
soilconsistsofalluvialdepositswhicharefertileandrichinsand
and silt.Theabove-mentionedconditionsareidealfor
cultivat-ingoutdoorornamentalplants.ThisisthereasonwhyPistoiahas
becomethemostimportantnurserydistrictinItalyandamajor
oneinEuropeallovertheyears(Lucchettietal.,2016).
Currently,thisdistricthasabout4100haoffield-grownplants,
1000haofpot-grownplants,andabout100haforgreenhouse
culti-vations.Thecompaniesoperatinginthissectoraremorethan1500,
with5500workers.Halfofthemareemployees,whiletheothers
areentrepreneursandindependentsmallfarmers.Theestimated
grosssaleableproductionisaround500millioneuros,with300
mil-lioneurosofexport.Pistoia’snurseryproductionrepresentsabout
25%ofthenationalproductionandmorethanhalfofitisexported
(Lucchettietal.,2016).
GreenresiduesinthePistoiadistrictaregenerallytreatedlike
wastesbynurseries,eveniftheItalianlawcouldacknowledgethis
typeofresiduesasaby-productofnurseryactivity.
Reusingbiomassasenergysupplyforthenurserycanreduce
CO2emission,butisitaneconomicallycompetitivealternativeto
fossilfuel?
Theaimofthepresentstudyistoanalyzethebenefitsof
differ-enttreatmentsofbiomass,intermsofwasterecycling,revaluation
ofbiomasswasteandenergysaving,aswellasthepossibilityto
usedifferentenergy sources.Thermaland electric energiescan
beproducedstartingfromthewood-chipsource:theirquantities
areevaluatedinordertocovertheenergyneedsofthecompany.
Biomassproductionsystemandenergygenerationplantsare
deter-minedintermsoftechnicaldataandeconomiccosts.
ThisstudyisreferredtoVannucciPiante,oneofthelargest
nurs-eries locatedinPistoia.Evenifthestudyis referredtoa single
nurs-Fig.1.−Costsfordisposingofbiomasswasteproductsin2014forVannucciPiante.
Fig.2.−Thermalenergyplantatpresent.
erycompanies.InthespecificcaseofPistoia,benefitscaninvolve
theentirenurserydistrictandthelocaleconomy.
2. Currentsituation
Datausedinthisresearchlikedisposalcost,wastevolume
pro-ductionand fuelconsumption have beenprovided byVannucci
Pianteandtheyarereferredtotheyear2014(Fig.1).
Biomassresidualiscurrentlybeingtreatedasawasteproduct,
soitisdisposedbyanexternalcompany.Thepartofsoilpresentin
thewasteisseparatedfromthebiomasspartanditisbroughtback
toVannucciPiante.Thisservicerepresentsacostforthecompany:
theservicecosts12D/t.Annualbiomassdisposalcostsaremore
relevantinthesummerseasonwhentheplantsarepruned(Fig.2).
Ontheotherside,thermalenergyproductionisnecessary
dur-ingthewinterseason(Fig.3),mainlyinorder160to:
–Servegreenhousesinordertopreserveandimprovethegrowth
ofsomevarietiesofplants;
–Heatcompanyofficesandindoorworkingbuild.
Greenhousesareheatedbyanumberofdieselfuelheaters(90%
efficiency)evenlydistributedineachgreenhouseandsuppliedby
pipeplantsthatstartfromexternalstoragetanks.Officesareserved
bynatural gasboilers(95%efficiency). Fig.4 shows theannual
energycosts,limitedtocoldmonths.Thesecostsaremore
rele-vantfromNovembertoFebruary,whentheambienttemperature
islow.
2.1. Biomassproduction
Biomassresidualsproductionisduetodifferentworkingand
maintenanceoperationsinnurserycompany:
• Pruningandfelling;
• Unsoldplantswhichcannotbesoldduringnextseason;
• Plantsdamagedbychemical,biologicorweatheragents
compro-misingtheirappearance.
Biomassphysicalfeaturesdependontheproductionperiodof
theyear(Fig.5).MostplantsaresoldtoforeignandItalianbuyers
duringthewinterandspringseasons.Attheendofthisperiod,a
Table1
–Installedthermalpower.
Site Power[kW]
GreenhousessiteA 2300
GreenhousessiteB 3900
Offices 200
TOTAL 6400
largepartofunsoldplantscannotbecultivatedasecondtime,and thisiswhypruningproductionincreasesfromMaytoJuly.In2014 VannucciPiantehasproduced5407tofwastelinkedtobiomassand soil.
The moisturelevel is a fundamental parameter,in order to evaluatewood-chipquality.Moistureonadrybasisisdefinedas ((AssociazioneItalianaEnergieAgroforestali),2009):
M0= mmbiow
kgw/kgbio,dry
(1)
Theaverageannualmediumvalueofmoistureofnewbiomass
residuals isabout70% (Francescato, 2009(AssociazioneItaliana
Energie Agroforestali), 2009). Wood-chip produced with
nurs-ery’sresiduesisconsideredofB1categoryinwood-chipmarket
((AssociazioneItalianaEnergieAgroforestali),2009).
Moistureleveldeterminestheheatvalueofthistypeof
wood-chipandthesellingandbuyingprice(Fig.6)(Franceschi,2015).
Its value depends on the time of production and the variety
of plant residuals. The lower heating value for dry biomass is
assumed LHVbio,dry=17MJ/kgdry (Francescato, 2009(Associazione
ItalianaEnergieAgroforestali),2009).TheLHVofwetbiomassis
obtainedbyenergybalance,takingthelatentheatofvaporization
intoaccount.
LHVwet=
LHVdry+Mo·r
1+Mo (2)
Thebuyingpriceisgivenbywood-chipmarket.Thesellingprice
isconsideredthe2/3ofbuyingprice(Franceschi,2015).
Moisturevalueschangeduringstoragetime:therateofchange
depends on the place and time of storage, weather conditions
during thestorage period and thesize of wood-chip. Moisture
reductiondeterminesa massdecreaseduringthedryingperiod
((Associazione Italiana Energie Agroforestali), 2009) (Simpson, 1998).
2.2. Thermalenergydemand
Therearetwodifferentgreenhousessites.Theyare450mfar
fromeachotherandtheycover11,230m2and21,270m2ofarea
respectively.Atpresent,eachgreenhousehas4/5heaters(using
dieselfuel)of100kWand140kWsizeforatotalof20x100kW
and30x140kW.Thermalpowerofgeneratorsis2300kWforthe
firstsiteand3900kWforthesecondsite.Officesarelocatedina
twofloorbuildingandhaveatotalareaof2170m2.Theyareserved
bytwonaturalgasboilersof100kW.Theentireinstalledthermal
poweris6400kW(Table1).
Theannualconsumptionofnaturalgasanddieselfuelsis
Fig.3.−Thermalenergycostsin2014forVannucciPiante.
Fig.4. −Annualbiomasswasteandsoilfractionproductionin2014forVannucciPiante.
Fig.5. −LowHeatingValue,SellingandBuyingPricesofB1categorywoodchipvaryingmoisture(Franceschi,2015),((AssociazioneItalianaEnergieAgroforestali),2009).
Table2
–TechnicaldataandcostsofBiomasstreatmentmachines.
DrumscreenerPezzolatoL3000mini DrumchipperPezzolatoPZ250
Workingpower[kW] 15 60
Biomassflow[t/h] 6 8
Price[D] 30,400. 30,000.
Annualfuelcost[D/year] 5290. 13,750.
Annuallaborcost[D/year] 27,030. 17,580.
energyisdeterminedusingtheannualconsumptionsofdieselfuel andnaturalgasfuel,theirlowerheatingvalues(LHV−fordiesel fuelis43MJ/kgand35MJ/Sm3fornaturalgasfuel)andtheboilers
thermalefficiencies:
EH=LHVd·md·d+LHVng·mng·ng (3)
3. Alternativesolutions
Biomassnurseryresidualscanbetreatedandrevaluedin dif-ferentways. Italianlawsallowtheuseofbiomass residualas a by-productofthenursery.Therefore,residualsarenotconsidered wastematerialsandthecompanydoesnotneedtodisposeofthe biomassas waste.In ordertoreevaluate biomassand different heatingsupplies,theidentifiedpossibilitiesare:
1.Production of wood-chip used to supply wood-chip boilers. Biomassprocessingtakesplacewithinthecompanyandit pro-duces substrate which is fed back to fields and wood-chip. Wood-chipisstoredintoanopen-sides specificallydedicated warehouse.Dieselfuelheatersarereplacedbywood-chip boil-ers, positioned into boilers sites, and the heating supply is performedbyhotwaterpipesplants.
2.Production of wood-chip,which is entire soldto wood-chip tradersandproviders.Thermalenergyforgreenhousesis gener-atedbynaturalgasheatersthatreplaceactualheaters.
3.Productionofwood-chipusedtofeedanOrganicRankineCycle (ORC)plantinordertocogenerateelectricpowerandthermal power.
Eachsolutionisoptimizedintermsofinvestmentreturns, fol-lowingthreeindicators(especiallywarehouse’ssize):
NPVn=−S0+ n
k=1 Sk (i+1)k (4) PI=NPV20 S0 (5) PBP=n0:NPVn0=0 (6)whereNPVnis NetPresent Valueindicatorrelatedtonyears of
investment,S0 isinitialcosts,Sk isannualcashflow,PIisProfit
IndexindicatorandPBPisPayBackPeriodindicator. 3.1. Biomassprocessing
Inordertoobtainusefulandsaleableproducts,biomassis pro-cessedwithtwosequentiallytreatments:
• Separationofwoodpartsfromthesubstrate:thetreatmentis performedbyaseparatingmachine,whichhasarotatingdrum screener.Forthispurpose,thedrumscreener“PezzolatoL3000 mini”hasbeenchosen(Table2).
• Woodpartsarechippedinordertoobtainlittlepartsof
wood-chip.Sizereductionensuresabetterdryingandabetteruseofthe
warehouse.Actually,wood-chiphasahigherdensitythan
pre-chippedwoodandittakeslessspace.Drumchipper“Pezzolato
PZ250”hasbeenchosenforchippingtreatment(Table2).
Inordertoestimateannualdieselandlaborcostsforthese
oper-ations,costoflaborperhourslabor=25D/hhasbeenconsidered.
Then,themediumcostofdieselfuel,whichissdiesel=0.827D/l.The
followingequationshavebeenappliedwiththesevalues:
twork=
Mbio
flowbio
Sdiesel=
twork·Powdrum
·LHVdiesel
Slabor=twork·slabor
Where:
• twork isthetimethedrummachinetakestoprocessacertain
quantityofbiomass/residues
• Mbioisthequantityofbiomass/residuesprocessed
• flowbioistheflowrateofthedrummachine
• Sdieselisthecostofdieselusedbythemachinefortworkoftime
• is the efficiency of machine, assumed to be 25% for both
machines
• LHVdieselisthelowerheatingvalueofdieselfuel
• Powdrumisthemechanicalpoweroutcomeofdrummachine
Separationprocesswithdrumscreenerhandlesagreater
quan-tityof mass than drum chipper becauseat this stage,biomass
containsanimportantpartofsoil(Fig.5).
3.2. Solution1–Heatingplantofgreenhousespoweredby
producedwood-chipandsaleofsurplusoflatter
Inordertosupplythermalenergytogreenhousesandoffices
therearetworeferenceconfigurations:centralizedand
decentral-ized.Aheatingplantimplementedbywood-chipboilersrequires
additionalcomponents,forexamplewood-chiptanksand
auto-maticsystemsforfuelsupply,waterthermalstorages,ashremoval
systems,andmanyothers.Forthisreason,thecentralized
configu-rationisnormallychosen.Consideringthelocationofgreenhouses
andoffices,twothermalcentralsareneeded:oneforagreenhouses
groupandonefortheoffices.Theconsideredpowerboilershave
asizeof500kW.Thisisthebestcompromisebetweenmachine
costandincentivesprovidedbyItalianlaw.Inparticular,for
refer-encemodel,the“TurbomatTM500”(Table3),producedbyFroling,
hasbeenchosen.Then,Centralizedconfigurationisnecessaryfor
transportingtheheatfromthecentralstogreenhousesandoffices
usinghotwaterasheattransferfluid(Figs.7and8,Table4).
Thecostofsuchaplantis580,000D,estimatedbythecompany
TIESSEIS.R.L.(Pistoia,IT).
ItalianEconomicandIndustryMinistrypromotesenergysaving,
introducing“ContoTermico”decree(DM28/12/12)whichprovides
anincentivebonusIaforthefirst5yearsofoperation.Thisincentive
isaimedatbiomassheaters.Theamountoftheincentiveforeach
Fig.7.–Biomass-fedthermalenergyplant.
Fig.8.−VariationofNPV20andPIbyvaryingthesizeofwarehouse.
Table3
–TechnicaldataofTurbomatTM500. TurbomatTM500SPS4000−Froling
NominalPower(KW) 500
Efficiency(Mo≤50%) 94%
Temperatureofexhaustgasatnominalcondition[◦C] 140
MaxPressure[bar] 6
MinTemperaturereturn[◦C] 65
MaxwaterTemperature[◦C] 90
Totalweight[Kg] 8400
Ia=Pn·t·Ci·Ce
Ci[D/kWh]isacoefficientaboutthermalenergyvalorization,
whichdependsonthethermalpowerofeachboiler.Inthepresent caseCi=0.020D/kWh(Pn=35.÷500.kW).
tistheoperationtime(hoursperyear)anditdependsonthe plantlocation’sclimaticzone.t=1400hbecausePistoiaisinthe“D” climaticzone(eachdistrictofItalyisclassifiedonclimaticzone from“A”to“F”).
Ce is a coefficientaboutemission ofprimary particulateper
Sm3ofair.InthisanalysisC
e=1.2becausetheboileremissionsare
between15mg/Sm3and20mg/Sm3.
Table5
–Technicaldataofnaturalgasheaters.
Nominalpower[kW] 85.0
Heaternaturalgasconsumption[Sm3/h] 8.767
Efficiency 95%
Table6
−ComparisonofNPV20andPIinopenfieldsolutionstorageand350m2warehouse
storage.
Openfieldstorage Warehouse350m2storage
NPV20 D1,064,537 D732,187
PI 3.23 1.75
Thewood-chipproducedbytransformationofbiomassisstored inawarehouse,implementedbyafarmbuildingopenedonthree sideswithusefulheightof5.m,specificcapacityestimatedof2. t/m2andaspecificcostof250.
D/m2(AgenziadelleEntrate-Ufficio
Provinciale,2015).Itisassumedthatwood-chipisstoredmonthly
andthatthemoistureofwood-chipdecreasesby10%permonth
((AssociazioneItalianaEnergieAgroforestali),2009).Ifitisnotused
Table4
−Thermalpowerrequirement.
ThermalunitA ThermalunitB
Users GreenhousesgroupA+Offices GreenhousesgroupB
Fig.9.−Naturalgasfeedingathermalenergyplant.
Table7
−ThermalpowerrequirementinORCsolution.
ThermalunitA ThermalunitB+ORC Users GreenhousesgroupA+Offices GreenhousesgroupB Powerrequirement(kW)2300+200=2500 3900
Table8
–TechnicaldataofORCmodule. ORCTurboden3CHPMode
ThermalpowerIN[kW] 1971
Electricpowergenerated[kW] 300
Electricefficiency 15.5%
Thermalpowerforcogeneration[kW] 1636
ThermalefficiencyCOG 83%
Watertouserstemperature[◦C] 75
Waterreturntemperature[◦C] 55
OperatingTime[hours] 4661
Table9
−NPV20andPIofORCsolution.
ORC
NPV20 D1,085,558
PI 0.24
orsoldbeforehand,themoisturereachesatleasta20% stabiliza-tion(Simpson,1998).Ifthewoodchipstockedinthewarehouse
hasMo≤50%,itisutilizedforsatisfyingthethermalrequirement.
OtherwisethenecessarywoodchipispurchasedatMo=20%.The
warehousehasamaximumcapacitythatdependsonitssize.This
limitcanbeovercomebysellingthesurplusofthedriestwood-chip
availableinstock.Theprofitabilityofinvestmentinthissolutionis
studiedvaryingthesizeofwarehousetoidentifytheoptimalsize
(Fig.9);amaximumofNPV20forthesize450m2andamaximum
ofPIforthesize400m2arepresent.Theconfigurationof“0m2”
representsavirtualsituationinwhichthewood-chip,produced
duringthemonth,isentirelysoldandthethermalrequirementis
satisfiedpurchasingdrywood-chip(Mo=20%).
InthisconfigurationPIassumestheabsolutemaximumvalue.
It is reasonablethat buildingnew warehouses is not
economi-callyprofitable.Moreover,thebestconfigurationforthissolution
isassumedtobea450m2warehouse.
3.3. Solution2–Sellingofallproducedwoodchipandsupplying
thermaldemandbynaturalgasheatgenerators
Adifferentsolutionisproposedinordertoreduceinitialcosts
andsimplifytheplant.Inthissolution,allwoodchipisstoredin
awarehouseandsoldwhenwoodchipreachesMo=20%orwhen
thewarehouseisfull.Thermalenergyforgreenhousesisproduced
bythecombustionofnaturalgas.Thefeasibilityofanaturalgas
heatingsystemdependsonthenaturalgasgridandthelocation
ofgreenhouses.Naturalgasheatersareplacedintogreenhouses
asreplacementofdieselfuelheaters:theydirectlytransferheatto
air,withoutneedingahotwaterdistributionsystem.Bydoingso,
heatingplantresultscheaperthantheprevioussolutionandthere
isnolostheatduetoheattransportation.Thenaturalgassupply
isperformedbyapipesystemthatlinkseverygreenhousetomain
gaspipe(Fig.10).
Incomparisonwiththepreviousplant,thereisnolabor
require-mentforwoodchipsupply andheatingboilerscleaning,and no
labor for biomass storage place and systems either. Moreover,
biomasstreatmentiscompletelyseparatedfromthermalenergy
production.Thereisnopossibilitytobenefitofincentivesinthis
case,andnaturalgasismoreexpensivethanwoodchip.Asforthe
thermalenergydemand,73heatersof85kWeachhavebeentaken
intoaccount(Tables4and5).
AsinSolution1,Fig.11showstheprofitabilityoftheinvestment,
varyingthesizeofthewarehouse.
Fig.11 showsthatthebestsolutionintermsofNPV20hasa
warehouseof350–400m2.
Biomassstoragewarehouseisaconsiderablecostofthe
invest-ment. Its feasibility also depends on the availability of areas
necessarytorealizeit.Adifferentsolutionisproposedinorder
toreduceinitialcostsandsimplifytheplant.Biomassresidualsare
storedinanopenfieldareaacrosstheyear,duringproductiontime.
Naturaldehumidificationoccursduringthestorageperiod,in
par-ticularduringspringandsummermonths.Treatmentofbiomassis
carriedoutduringsummermonths,whenaveragemoisturelevelis
atitslowest.Inthiscasebiomassissubjecttoweatheragentsandis
directlyincontactwiththeground,evenifinmostoftheyearit
pre-servesitsoriginalsizeanditislessdecomposablethanwoodchip.
Producedwoodchipisimmediatelysoldtotraders.Consideringthe
amountofbiomassproducedbyVannucciPiante,biomasscouldbe
workedinJuly,AugustandSeptember,hypothetically.Theaverage
moisturelevelisconsidered50%andtheestimatedmassreduction
duetodecompositionisof20%(Simpson,1998).Soldwoodchip
ispriced30D/ton(Franceschi,2015).Consideringmassreduction
due todehumidification and decomposition, woodchip
produc-tionis about 2978ton/year. Woodchip sale proceedsstands at
89,949D/year.NPV20andPIarereportedinTable.
3.4. Solution3–ORCincogenerationwithboilerpoweredby
wood-chipbyproduct
Inthissolution,electricenergyisproducedinordertoextract
thehighesteconomicvaluefromthebiomass.Thermaland
elec-tricenergiesareproducedinaco-generativeplant.Twothermal
energyunitsandoneORC(Organic-fluidRankineCycle)systemare
assumedtobenecessary(Fig.12,Table6).Theheatgeneratedby
ORCcanbeusedtosatisfyathermaldemandwhenitisrequested,
orcanbedissipatedbyadrycoolingtower.
Asforthechoiceofthermalboilers,thesameconsiderationsof
Fig.10.−VariationofNPV20andPIvaryingthesizeofwarehouse.
Fig.11.−ThermalandelectricenergyproductionplantwithORC.
heatpipeplantdescribedinSolution1havebeenused.
Consid-eringthequantityofwoodchipproducedinayearandinorder
tomaximizetheworkingtime,theelectricpowersizeofORC
co-generatorisof300·kWel(Table6).Theannualquantityofproduced
woodchippermitstheORCmoduletoworkonly4661hperyear
(Tables7and8).
Woodchipproducedbytransformingofbiomassisstoredina
warehouse,thatinthiscaseisdesignedtomaximizeitsuse.
Boil-ersofthermalcentralsguaranteetherighttoreceiveanincentive
bonus,asmentioned for Solution1. Theministerial decree DM
23/6/2016givestherighttoreceiveabasicincentiverateforelectric
energyproducedfor20years,inordertorealizeanelectricenergy
plantgeneratorpoweredbywoodchip.TheratethattheVannucci
Piantecompanypaysfortheelectricenergyislowerthantherate
providedbyincentives.Therefore,theanalysisofproductivityof
thissolutioncanbeobtainedfromtheelectricityconsumptionof
company.
4. Results
All proposed solutions are compared in terms of economic
returnswiththreeindicatorsofequations1,2,3.
Theeconomicvaluationofthesolutionshasbeenreportedin
Fig.13andTable9.
Initialcostsareextremely different.Naturalgassolutionhas
thelowestcostandthisismostlyduetothelowcostofnatural
gasheaters.ORCsolutionisthemostexpensiveone:initialcosts
amounttoD 4,500,000.ThisisduetothehighcostofORCmodule
respecttootherinitialcostsofthesolution.Suchasolutioncould
befavourableonlyifcashflowisgoodduringtheinvestmentyears.
Fig.12.−Initialcostsoftheproposedsolutions.
Fig.13.−Annualcashflowforeachproposedsolution.
hasanintermediateinitialcost:inthiscasethemostrelevantcost
derivesfromthewoodchipboilers.Thebiomasstreatment
machin-erycostisnotsosignificant,incomparisonwiththeothercostsof
investments.Inthisway,thewoodchipproductioncanbeeasily
performedineconomicterms.
AnnualcashflowsarereportedinFig.14,anddetailsinTable10.
AlthoughtheNaturalgasheaterssolutionhasthelowestinitial
costs,annualcostsarehigherthanintheothertwosolutions.This
isduetothenaturalgaspurchasecost.Theannualcostsforthe
othertwosolutionsarecomparable.
Thesolutionwith ORChashighest annual returns.The best
annualreturnforthissolutionisthesaleofelectricenergy
pro-duced,which amountsto aboutD 344,000.Anothersignificant
returninthefirstandthethirdsolutionsisgivenbybonus
incen-tives. Moreover, saving fuel currently used by the company is
anotherimportantreturninallthreesolutions.Lessconsiderable
returnsarethewoodchipsellingandthesavingonbiomasswaste
disposal.
AsshowninFig.14andTable11,NPV20 ofthesolutionsare
similar.Naturalgashasthebestone,theothershavesignificantly
differenttrends.ThetrendofORCsolutionNPVhasthebestrise
during the given period, because this solution hasthe highest
annualreturn.DespiteofNPV20,thePBPsofthesolutionsarevery
different.Naturalgassolutionhasthelowestvalue(2years).The
woodchipboilerssolution’sPBPis7yearsandtheORCsolutionis
theworstonewith13yearsofPBP.AsTable11shows,thebestPI
istheoneforthenaturalgassolution.
5. Conclusions
Theresultsofthisstudyshowthatnaturalgassolutionisthebest
oneineconomicterms,consideringthethreeindicatorsinTable11.
EveniftheNPV20ofwoodchipboilerssolutionisthehighest,the
PBPandPIareconsiderablybetterinnaturalgassolution(Table12).
Theotherstwosolutions,woodchipboilersandORC,exploit
thebiomassby-productsource,representingtwowaysto
imple-mentrenewableenergyproduction.Thistypeofsolutionshashigh
initialcosts.EveniftheItalianEconomicMinistryguarantees
Fig.14. −NPVtrendin20years-longinvestmentforeachproposedsolution.
Table10
−Detailsofinitialcostsforeachproposedsolution.
Woodchipsboilerswarehouse450m2 Naturalgasheaters+woodchipsale ORCcogeneration+woodchipboilers
Thermalunits D1,312,000 D208,780 D1,010,000
Heatpipesystem D580,000 D0 D580,000
Biomasstreatmentmachinery D60,400 D60,400 D60,400
Wood-chipwarehouse D112,500 D0 D343,750
Naturalgasdistributionplant D0 D60,000 D0
ORCPlant D0 D0 D2,500,000
Total D2,064,900 D329,180 D4,494,150
Table11
−Detailsofannualcashflowforeachproposedsolution.
Woodchipsboilerswarehouse450m2 Naturalgasheaters+woodchipsale ORCcogeneration+woodchipboilers
AnnualCosts Biomasstreatment -D71,400 -D63,345 -D63,345
Wood-chippurchase -D10,985 D0 D0
Naturalgaspurchase D0 -D123,160 D0
Plantmaintenance -D20,000 -D10,000 -D30,000
Totalcosts -D102,385 -D196,505 -D93,345
AnnualReturns Savingonwastedisposal D64,880 D64,880 D64,880
Savingonactualfuelpurchase D194,038 D181,940 D194,038
Wood-chipselling D61,619 D89,949 D0
Bonusincentives D218,400 D0 D168,000
Electricenergyselling D0 D0 D343,957
Totalreturns D538,937 D336,769 D770,875
Annualcashflow D436,552 D140,264 D677,530
Table12
−Economicindicatorusedforprofitabilityanalysisofinvestmentsforeachproposedscenario.
Woodchipsboilerswarehouse450m2 Naturalgasheaters+woodchipsale ORCcogeneration+woodchipboilers
NPV20 D1,131,932 D1,064,537 D1,085,558
PI20 0.55 3.23 0.24
PBP 7years 2years 13years
tomake thesesolutions competewithconventional fossilfuels alternatives.
Thisstudy highlights that sellingwood chipproduced with biomassby-productismorereasonablethanusingitinternallyin anurserycompany.
Accordingtotheresultsof this work,policiesonrenewable energies incentives should be strengthen in Italy. Not surpris-ingly,companieslikeVannucciPiantetreatbiomassby-productas awaste.
References
Baldi,E.A.,Corti,A.,Pecorini,I.,2016.BiochemicalMethanePotentialTestsof DifferentAutoclavedandMicrowavedLignocelluloiscOrganicFractionsof MunicipalSolidWaste,vol.56.,pp.143–150(October).
Boncinelli,P.,Sarri,D.,Rimediotti,M.,Vieri,M.,Cini,E.,Lisci,R.,Recchia,L.,2015. Recoveryofwastebiomassinnurseries.Appl.Eng.Agric.31(no.3),377–385. Canakci,M.,Akinci,I.,2006.Energyusepatternanalysesofgreenhousevegetable
production.Energy31,1243–1256.
Chilosi,G.,Muganu,M.,Vettraino,A.,Marinari,S.,Paolocci,M.,Luccioli,E.,Vannini, A.,Aleandri,M.P.,2015.Onfarmproductionofcompostfromnurserygreen residuesanditsusetoreducepeatfortheproductionofolivepotplants.Sci. Hort.193,301–307.
Clodoveo,M.L.,Distaso,E.,Ruggiero,F.,Tamburrano,P.,Amirante,R.,2016.A tri-generationplantfuelledwitholivetreepruningresiduesinApulia:an energeticandeconomicanalysis.Renew.Energy89,411–421.
Croce,S.,Assirelli,A.,DelGiudice,A.,Spinelli,R.,Suardi,A.,Pari,Luigi,Acampora,A., 2013.Productcontaminationandharvestinglossesfrommechanizedrecovery ofolivetreepruningresiduesforenergyuse.Renew.Energy53,350–353. Daou,M.,Rimediotti,M.,Cini,E.,Vieri,M.,Recchia,L.,2009.Newshredding
machineforrecyclingpruningresiduals.BiomassBioenergy33,149–154. Denticed’Accadia,M.,Abagnale,C.,CardoneIodice,M.P.,2016.Energy,economic
andenvironmentalperformanceappraisalofatrigenerationpowerplantfora newdistrict:advantagesofusingarenewablefuel.Appl.Therm.Eng.vol.95, 330–338.
Francescato,V.,2009,“LegnaCippatoePellet–Produzione,RequisitiQualitativi, Compravendita,MercatoePrezzi”,AIEL–AssociazioneItalianaEnergie Agroforestali-internalReport.
CarloFranceschi,(2015),http://www.limentre.it[Online].http://www.limentre.it/ Biomassa/presentazioni/Franceschi.pdf.
González,Z.,Rosal,A.,Requejo,A.,Rodríguez,A.,2011.Productionofpulpand energyusingorangetreeprunings.Bioresour.Technol.102,9330–9334. Hamedani,S.R.,Keyhani,A.,Alimardani,R.,2011.Energyusepatternsand
econometricmodelsofgrapeproductioninHamadanprovinceofIran.Energy 36,6345–6351.
ISTAT,2013.(istitutoNazionaleDiStatistica),CaratteristicheTipologicheDelle AziendeAgricole,6.Censimentogeneraledell’Agricoltura.
Kuswardhani,N.,Soni,P.,Shivakoti,G.P.,2013.Comparativeenergyinputeoutput andfinancialanalysesofgreenhouseandopenfieldvegetablesproductionin WestJava,Indonesia.Energy53,83–92.
Lucchetti,S.,Nicese,F.P.,Lazzerini,G.,2016.GreenHouseGases(GHG)emissions fromtheornamentalplantnurseryindustry:aLifeCycleAssessment(LCA) approachinanurserydistrictincentralItaly.J.Clean.Prod.5(January), 4022–4030.
Mohammadi,A.,Omid,M.,2010.Economicalanalysisandrelationbetweenenergy inputsandyieldofgreenhousecucumberproductioninIran.AppliedEnergy 87,191–196.
Ozkan,B.,Kurklu,A.,Akcaoz,H.,2004.Aninput–outputenergyanalysisin greenhousevegetableproduction:acasestudyforAntalyaregionofTurkey. BiomassBioenergy26,89–95.
Ozkan,B.,Fert,C.,Karadeniz,C.F.,2007.Energyandcostanalysisforgreenhouse andopen-fieldgrapeproduction.Energy32,1500–1504.
Picchi,G.,Spinelli,R.,2010.Industrialharvestingofolivetreepruningresiduefor energybiomass.Bioresour.Technol.101,730–735.
Rafiee,S.,Keyhani,A.,Ebrahimi,A.,Tabatabaie,S.M.H.,2013.Energyandeconomic assessmentofpruneproductioninTehranprovinceofIran.J.Clean.Prod.39, 280–284.
Saha,K.P.,Gosh,P.L.,Hati,K.M.,Bandyopadhyay,K.K.,Mandal,K.G.,2002. Bioenergyandeconomicanalysesofsoybean-basedcropproductionsystems incentralIndia.BiomassBioenergy23,337–345.
Sarri,D.,Rimediotti,M.,Boncinelli,P.,Vieri,M.,Cini,E.,Recchia,L.,2013. Environmentalbenefitsfromtheuseoftheresidualbiomassinnurseries, Resources.Conserv.Recycl.81,31–39.
Satpathy,D.,Senapati,P.C.,Mohapatra,P.K.,1991.Energystudiesincropping systemsinlatericsoilofOrissa,India,AgriculturalMechanizationinAsia, AfricaandLatinAmerica,vol.19.,pp.49–52.
Simpson,W.T.,1998.EquilibriumMoistureContentofWoodinOutdoorLocations intheUnitedStatesandWorldwide.UnitedStatesDepartmentofAgricolture, ForestProductsLaboratory.
Singh,S.,Pannu,C.J.,Singh,J.,Singh,S.,1999.Energyinputandyieldrelationsfor wheatindifferentagro-climaticzonesofthePunjab.Appl.Energy63,287–298. Singh,S.,Pannu,C.J.S.,Singh,J.,Singh,S.,2000.Optimizationofenergyinputfor
raisingcottoncropinPunjab.EnergyConvers.Manage.41,1851–1861. Unmole,H.,Mariani,A.,Tomarchio,L.,Triolo,L.,1987.Energyanalysesof
agriculture:theItaliancasestudyandgeneralsituationindeveloping countries.In:InternationalSymposiumonMechanizationandEnergyin Agriculture,Izmir,Turkey,pp.172–184.
Yang,J.,Zhao,J.,Xu,F.,Shen,Z.,Zhang,L.,Chen,J.,2016.Energydemand forecastingofthegreenhousesusingnonlinearmodelsbasedonmodel optimizedpredictionmethod.Neurocomputing174,1087–1100. AgenziadelleEntrate,UfficioProvincialediFirenze–Territorio,“Prezzariodi
MassimaperlaDeterminazionedellaRenditaCatastaledelleUnita’ ImmobiliariaDestinazioneSpecialeeParticolare(Categorie“D”Ed“E”)conil ProcedimentoIndirettodelCostodiRiproduzioneDeprezzato”,Agenziadelle Entrate,2015.