• Non ci sono risultati.

Biomass residues revaluation with energy production in a nursery company

N/A
N/A
Protected

Academic year: 2021

Condividi "Biomass residues revaluation with energy production in a nursery company"

Copied!
11
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Ecological

Engineering

j o u r n a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / e c o l e n g

Biomass

residues

revaluation

with

energy

production

in

a

nursery

company

Carlo

Carcasci

,

Leonardo

Mussato,

Matteo

Neri

DIEF:DepartmentofIndustrialEngineering,UniversityofFlorence,viaSantaMarta,3-50139Florence,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received13February2017

Receivedinrevisedform27April2017 Accepted5May2017 Keywords: Nurserywaste Biomasschipper Greenhouseheater Biomassheater

ORC(Organicrankinecycle) Residuesrevaluation

a

b

s

t

r

a

c

t

IntheTuscanyregion,Italy,nurseriesproducealargeamountofbiomassresidualandtreatitaswaste

productfromworkingactivity,usually.Theaimofthisstudyistoevaluateadifferentwaytouseresiduals

forthenurserycompanyVannucciPiante(Pistoia),fromtheavailabilityofresidualstothethermaldemand

ofthecompany.Thepossibilityofinternallytreatingthebiomassinordertotransformitintosolidfuel

hasalsobeentakenintoaccount.Thethermaldemandderivesfromtheheatingofgreenhousesand

officesduringthewinterperiod.Thethermalenergyrequirementandthesolidbiomassfuelavailability

arestudiedinordertobeconciliated.Threedifferentsolutionshavebeenevaluated,considering

co-generationandincentivebonusfortheproductionofthermalandelectricenergy,asprovidedbythe

Italianlaw.Thefeasibilityofthesolutionshasbeenanalysedandtheresultshavebeencompared,in

ordertodescribethebestsolutionineconomicterms.Asemergedinthisstudy,policiesforrenewable

energyinItalyarenotuptothetaskofsupportingthosetypeofinvestment,inparticularforagricultural

wasterevaluation.

©2017ElsevierB.V.Allrightsreserved.

1. Introduction

ThenurserysectorinEuropeinvolves90,000haofcultivated

landand120,000hafornurseries.Productionreached19.8billion

Eurosin2011,mainlyconcentratedintheNetherlands(33%),Italy

(13%),France(12%),Germany(12%)andSpain(11%).AsforItaly,up

to13,000haconcernpottedflowersandplants.Despitethelarge

areatakenbynurseriesandthesector’seconomicrelevance,most

Italiancompaniesarecharacterizedbytheirlimitedsize:64%of

nurserieshavelessthan1haofextension(Sarrietal.,2013).

Agriculturalgreenhousesareas havegreatlyrisen worldwide

over the last few decades. A large amount of energy input is

required,inordertomaintainanappropriatetemperatureforcrop

growthduringthewinterandsummerseasons.Energydemand

predictionneedstoenhanceenergymanagementandenergy

sav-ingsoftheagriculturalgreenhouses.

Thedemandforenergyinagriculturehasincreasedconsiderably

withtheintroductionofhigh-yieldingvarietiesandmechanized

crop-productionpractices.Therefore,itisnecessarytoimplement

aswitchfromconventionaltoalternativeenergysources.

Gener-∗ Correspondingauthor.

E-mailaddresses:carlo.carcasci@unifi.it,[email protected]fi.it (C.Carcasci).

ally,studieshavebeenconcentratedonworldwideproductionof

fieldcropssuchaswheat,rice,soybean,cotton,maize,mustard,

clusterbean,greengram,pearlmillet,sugarcane,etc.inorderto

improvetheenergyoutput–inputanalysesandtoinvestigatetheir

relationships(Unmoleetal.,1987;Satpathyetal.,1991;Singhetal.,

1999;Singhetal.,2000;Sahaetal.,2002).Atthesametime,

agricul-turalcompanies’residualsaremainlycomposedbybiomass,and

smallerpercentagesbyplastic,paperandiron.

EvenifItaliannurseries’areaisonly1.2%oftheutilized

agri-culturearea(ISTAT, 2013(istitutonazionale distatistica),2013),

nurseries represent the most considerableworking activity for

someItaliandistricts.

Overthelastfewyears,severalmachinemanufacturershave

beenofferingdedicatedimplementsforcollectingpruningresidue.

These machines generally derive from conventional mulchers,

equippedwithastoragebinorwithablower,thelatterdesigned

todirecttheflowofcomminutedresiduestoaconveyorbelt(Daou

etal.,2009).Inorder toseparatebiomassfromsoilpart,many

authorsproposetouseinnovativeshakermachineforoptimizing

theprocess(Boncinellietal.,2015).

Theinputenergy(anditscost)ofafarm isstudiedinmany

paper.MohammadiandOmid(2010)determinedtheenergyuse

efficiency for theproduction of cucumber and compared input

energy usewithinputcosts inthe Tehranprovince, Iran.They

http://dx.doi.org/10.1016/j.ecoleng.2017.05.006 0925-8574/©2017ElsevierB.V.Allrightsreserved.

(2)

Nomenclature

Ci Thermalenergyvalorisationcoefficient(from

ital-ianlaw“Contotermico”)[D/kWh]

Ce Emissionvalorisationcoefficient(fromitalianlaw

“Contotermico”)[−]

E Annualenergy[MJ/y]

flowbio Flowrateofdrummachine

i Interestrate[−]

Ia Annual incentivefor biomass boiler(from italian

law“Contotermico”)

Mo Moistureondrybasis[%]

M Mass[kg]

Mbio Quantityofgreenresiduesprocessed;

LHV Lowerheatingvalues[MJ/kgMJ/Sm3]

n Yearofinvestment[y]

NPVn Netpresentvalueatyearn[D]

Pn Nominal thermal power(from italianlaw“Conto

termico”)[kW]

Powdrum Mechanicalpowersupplybydrummachine

PI Profitabilityindex[−]

PBP Paybackperiod[y]

Q Thermalpower[kW]

r Latentheatofvaporization[MJ/kg]

S0 Initialcosts[D]

Sdiesel Costofdieselusedbydrummachine

Sk Annualcashflow[D]

t Timeofestimatedannualworkofboilers[h](from

italianlaw“Contotermico”)

twork Timeofworkingmachinetoprocessacertain

quan-tityofbiomass[h] Greeksymbols ␩ Efficiency Subscripts bio Biomass d Dieselfuel dry Dry ng Naturalgas w Water wet Wet Acronyms

LHV LowerHeatingValues

NPV NetPresentValue

ORC OrganicRankineCycle

PBP PayBackPeriod

PI ProfitabilityIndex

alsointroducedamathematicalmodelbasedongreenhousefarms.

Hamedanietal.(2011)examinedtheenergyusepatternsandthe

relationshipbetweenenergyinputandyieldforgrapeproduction

inMalayerregionofHamadanProvince,Iran.Otherresearchers

Rafieeetal.,(2013)examinedenergyusepatternsandthe

relation-shipbetweenenergyinputsandyieldforpruneproductioninthe

TehranprovinceofIranandtheypresentedacomprehensive

pic-tureofthecurrentstatusofenergyconsumptionandsomeenergy

indices.

Otherstudiesfocusedonenergyconsumptionofgreenhouses.

(B.OzkanC.F.,2007)examinedtheenergyusepatternsandcost

ofproductionina greenhouseand open-fieldgrapeproduction.

Canakci andAkinci(2006) investigatedtheenergy usepatterns

in greenhousevegetable production, in order todeterminethe

energy output–inputratioand theirrelationships.Kuswardhani

etal.(2013)estimatedenergyconsumptionperunitfloorareaof

greenhouseandopenfieldfortomato,chiliandlettuceproduction

inIndonesia.Amodel-optimizedprediction(MOP)methodology

is proposed (Yang et al., 2016), in order to predict theenergy

demand ofgreenhouses witha better performanceof accuracy

andcost.(B.OzkanA.K.,2004)examinedtheenergyequivalents

ofinputsandoutputingreenhousevegetableproduction inthe

Antalyaprovince,Turkey,fortheproductionoffourgreenhouse

crops(tomato,cucumber,eggplantandpepper).

Manyotherresearchersstudiedtheuseofpruning.Pruningcan

betreatedinordertorecovermajorquantitiesoforganicmaterials,

inparticularwood-chipandsubstrate.Wood-chipcanbeusedasa

bio-filterorasabio-fueldependingontheefficiencyofseparation

andthequalityintermsoftype,heatvalue,moistureandsize.

Sub-stratecanbereintroducedinfield,inordertomaintaingroundlevel

ormixitwithvirginsubstrate(Sarrietal.,2013).Someresearchers

studiedpruningharvesters(PicchiandSpinelli,2010;Croceetal.,

2013)orproductionofcompostandbiogasfromgreen residues

(Chilosietal.,2015;Baldietal.,2016).Otherresearchersproposed

a prune recycling.In fact, (Z.González,A. Rosal, A. Requejo,A.

Rodríguez,2011)characterizedchemicallyorangetreepruningand

useitinpulpingandcombustionprocesses.Moreover,they

pro-poseditasasuitablecheapenergysourcebycombustion.Energetic

andeconomicanalysisofatri-generationsystemfueledonlywith

treepruningresiduesareproposed(Denticed’Accadiaetal.,2016;

Clodoveoetal.,2016).

Pistoia(43◦54N,10◦41E.30a.s.l.),isacitylocatedinthe

Tus-canyregion,inthecenter-northofItaly, andithasthegreatest

plantnurserydistrictinthecountry.Thisareaischaracterizedby

anaveragerainfallof1300mmperyear,averagewinter

temper-aturearound5/7◦Cwithminimumpeaksof−10◦Candsummer

temperaturearound21/23◦Cwithmaximumpeaksof40◦C.The

soilconsistsofalluvialdepositswhicharefertileandrichinsand

and silt.Theabove-mentionedconditionsareidealfor

cultivat-ingoutdoorornamentalplants.ThisisthereasonwhyPistoiahas

becomethemostimportantnurserydistrictinItalyandamajor

oneinEuropeallovertheyears(Lucchettietal.,2016).

Currently,thisdistricthasabout4100haoffield-grownplants,

1000haofpot-grownplants,andabout100haforgreenhouse

culti-vations.Thecompaniesoperatinginthissectoraremorethan1500,

with5500workers.Halfofthemareemployees,whiletheothers

areentrepreneursandindependentsmallfarmers.Theestimated

grosssaleableproductionisaround500millioneuros,with300

mil-lioneurosofexport.Pistoia’snurseryproductionrepresentsabout

25%ofthenationalproductionandmorethanhalfofitisexported

(Lucchettietal.,2016).

GreenresiduesinthePistoiadistrictaregenerallytreatedlike

wastesbynurseries,eveniftheItalianlawcouldacknowledgethis

typeofresiduesasaby-productofnurseryactivity.

Reusingbiomassasenergysupplyforthenurserycanreduce

CO2emission,butisitaneconomicallycompetitivealternativeto

fossilfuel?

Theaimofthepresentstudyistoanalyzethebenefitsof

differ-enttreatmentsofbiomass,intermsofwasterecycling,revaluation

ofbiomasswasteandenergysaving,aswellasthepossibilityto

usedifferentenergy sources.Thermaland electric energiescan

beproducedstartingfromthewood-chipsource:theirquantities

areevaluatedinordertocovertheenergyneedsofthecompany.

Biomassproductionsystemandenergygenerationplantsare

deter-minedintermsoftechnicaldataandeconomiccosts.

ThisstudyisreferredtoVannucciPiante,oneofthelargest

nurs-eries locatedinPistoia.Evenifthestudyis referredtoa single

(3)

nurs-Fig.1.−Costsfordisposingofbiomasswasteproductsin2014forVannucciPiante.

Fig.2.−Thermalenergyplantatpresent.

erycompanies.InthespecificcaseofPistoia,benefitscaninvolve

theentirenurserydistrictandthelocaleconomy.

2. Currentsituation

Datausedinthisresearchlikedisposalcost,wastevolume

pro-ductionand fuelconsumption have beenprovided byVannucci

Pianteandtheyarereferredtotheyear2014(Fig.1).

Biomassresidualiscurrentlybeingtreatedasawasteproduct,

soitisdisposedbyanexternalcompany.Thepartofsoilpresentin

thewasteisseparatedfromthebiomasspartanditisbroughtback

toVannucciPiante.Thisservicerepresentsacostforthecompany:

theservicecosts12D/t.Annualbiomassdisposalcostsaremore

relevantinthesummerseasonwhentheplantsarepruned(Fig.2).

Ontheotherside,thermalenergyproductionisnecessary

dur-ingthewinterseason(Fig.3),mainlyinorder160to:

–Servegreenhousesinordertopreserveandimprovethegrowth

ofsomevarietiesofplants;

–Heatcompanyofficesandindoorworkingbuild.

Greenhousesareheatedbyanumberofdieselfuelheaters(90%

efficiency)evenlydistributedineachgreenhouseandsuppliedby

pipeplantsthatstartfromexternalstoragetanks.Officesareserved

bynatural gasboilers(95%efficiency). Fig.4 shows theannual

energycosts,limitedtocoldmonths.Thesecostsaremore

rele-vantfromNovembertoFebruary,whentheambienttemperature

islow.

2.1. Biomassproduction

Biomassresidualsproductionisduetodifferentworkingand

maintenanceoperationsinnurserycompany:

• Pruningandfelling;

• Unsoldplantswhichcannotbesoldduringnextseason;

• Plantsdamagedbychemical,biologicorweatheragents

compro-misingtheirappearance.

Biomassphysicalfeaturesdependontheproductionperiodof

theyear(Fig.5).MostplantsaresoldtoforeignandItalianbuyers

duringthewinterandspringseasons.Attheendofthisperiod,a

Table1

–Installedthermalpower.

Site Power[kW]

GreenhousessiteA 2300

GreenhousessiteB 3900

Offices 200

TOTAL 6400

largepartofunsoldplantscannotbecultivatedasecondtime,and thisiswhypruningproductionincreasesfromMaytoJuly.In2014 VannucciPiantehasproduced5407tofwastelinkedtobiomassand soil.

The moisturelevel is a fundamental parameter,in order to evaluatewood-chipquality.Moistureonadrybasisisdefinedas ((AssociazioneItalianaEnergieAgroforestali),2009):

M0= mmbiow



kgw/kgbio,dry



(1)

Theaverageannualmediumvalueofmoistureofnewbiomass

residuals isabout70% (Francescato, 2009(AssociazioneItaliana

Energie Agroforestali), 2009). Wood-chip produced with

nurs-ery’sresiduesisconsideredofB1categoryinwood-chipmarket

((AssociazioneItalianaEnergieAgroforestali),2009).

Moistureleveldeterminestheheatvalueofthistypeof

wood-chipandthesellingandbuyingprice(Fig.6)(Franceschi,2015).

Its value depends on the time of production and the variety

of plant residuals. The lower heating value for dry biomass is

assumed LHVbio,dry=17MJ/kgdry (Francescato, 2009(Associazione

ItalianaEnergieAgroforestali),2009).TheLHVofwetbiomassis

obtainedbyenergybalance,takingthelatentheatofvaporization

intoaccount.

LHVwet=

LHVdry+Mo·r

1+Mo (2)

Thebuyingpriceisgivenbywood-chipmarket.Thesellingprice

isconsideredthe2/3ofbuyingprice(Franceschi,2015).

Moisturevalueschangeduringstoragetime:therateofchange

depends on the place and time of storage, weather conditions

during thestorage period and thesize of wood-chip. Moisture

reductiondeterminesa massdecreaseduringthedryingperiod

((Associazione Italiana Energie Agroforestali), 2009) (Simpson, 1998).

2.2. Thermalenergydemand

Therearetwodifferentgreenhousessites.Theyare450mfar

fromeachotherandtheycover11,230m2and21,270m2ofarea

respectively.Atpresent,eachgreenhousehas4/5heaters(using

dieselfuel)of100kWand140kWsizeforatotalof20x100kW

and30x140kW.Thermalpowerofgeneratorsis2300kWforthe

firstsiteand3900kWforthesecondsite.Officesarelocatedina

twofloorbuildingandhaveatotalareaof2170m2.Theyareserved

bytwonaturalgasboilersof100kW.Theentireinstalledthermal

poweris6400kW(Table1).

Theannualconsumptionofnaturalgasanddieselfuelsis

(4)

Fig.3.−Thermalenergycostsin2014forVannucciPiante.

Fig.4. −Annualbiomasswasteandsoilfractionproductionin2014forVannucciPiante.

Fig.5. −LowHeatingValue,SellingandBuyingPricesofB1categorywoodchipvaryingmoisture(Franceschi,2015),((AssociazioneItalianaEnergieAgroforestali),2009).

(5)

Table2

–TechnicaldataandcostsofBiomasstreatmentmachines.

DrumscreenerPezzolatoL3000mini DrumchipperPezzolatoPZ250

Workingpower[kW] 15 60

Biomassflow[t/h] 6 8

Price[D] 30,400. 30,000.

Annualfuelcost[D/year] 5290. 13,750.

Annuallaborcost[D/year] 27,030. 17,580.

energyisdeterminedusingtheannualconsumptionsofdieselfuel andnaturalgasfuel,theirlowerheatingvalues(LHV−fordiesel fuelis43MJ/kgand35MJ/Sm3fornaturalgasfuel)andtheboilers

thermalefficiencies:

EH=LHVd·md·d+LHVng·mng·ng (3)

3. Alternativesolutions

Biomassnurseryresidualscanbetreatedandrevaluedin dif-ferentways. Italianlawsallowtheuseofbiomass residualas a by-productofthenursery.Therefore,residualsarenotconsidered wastematerialsandthecompanydoesnotneedtodisposeofthe biomassas waste.In ordertoreevaluate biomassand different heatingsupplies,theidentifiedpossibilitiesare:

1.Production of wood-chip used to supply wood-chip boilers. Biomassprocessingtakesplacewithinthecompanyandit pro-duces substrate which is fed back to fields and wood-chip. Wood-chipisstoredintoanopen-sides specificallydedicated warehouse.Dieselfuelheatersarereplacedbywood-chip boil-ers, positioned into boilers sites, and the heating supply is performedbyhotwaterpipesplants.

2.Production of wood-chip,which is entire soldto wood-chip tradersandproviders.Thermalenergyforgreenhousesis gener-atedbynaturalgasheatersthatreplaceactualheaters.

3.Productionofwood-chipusedtofeedanOrganicRankineCycle (ORC)plantinordertocogenerateelectricpowerandthermal power.

Eachsolutionisoptimizedintermsofinvestmentreturns, fol-lowingthreeindicators(especiallywarehouse’ssize):

NPVn=−S0+ n



k=1 Sk (i+1)k (4) PI=NPV20 S0 (5) PBP=n0:NPVn0=0 (6)

whereNPVnis NetPresent Valueindicatorrelatedtonyears of

investment,S0 isinitialcosts,Sk isannualcashflow,PIisProfit

IndexindicatorandPBPisPayBackPeriodindicator. 3.1. Biomassprocessing

Inordertoobtainusefulandsaleableproducts,biomassis pro-cessedwithtwosequentiallytreatments:

• Separationofwoodpartsfromthesubstrate:thetreatmentis performedbyaseparatingmachine,whichhasarotatingdrum screener.Forthispurpose,thedrumscreener“PezzolatoL3000 mini”hasbeenchosen(Table2).

• Woodpartsarechippedinordertoobtainlittlepartsof

wood-chip.Sizereductionensuresabetterdryingandabetteruseofthe

warehouse.Actually,wood-chiphasahigherdensitythan

pre-chippedwoodandittakeslessspace.Drumchipper“Pezzolato

PZ250”hasbeenchosenforchippingtreatment(Table2).

Inordertoestimateannualdieselandlaborcostsforthese

oper-ations,costoflaborperhourslabor=25D/hhasbeenconsidered.

Then,themediumcostofdieselfuel,whichissdiesel=0.827D/l.The

followingequationshavebeenappliedwiththesevalues:

twork=

Mbio

flowbio

Sdiesel=

twork·Powdrum

·LHVdiesel

Slabor=twork·slabor

Where:

• twork isthetimethedrummachinetakestoprocessacertain

quantityofbiomass/residues

• Mbioisthequantityofbiomass/residuesprocessed

• flowbioistheflowrateofthedrummachine

• Sdieselisthecostofdieselusedbythemachinefortworkoftime

• ␩ is the efficiency of machine, assumed to be 25% for both

machines

• LHVdieselisthelowerheatingvalueofdieselfuel

• Powdrumisthemechanicalpoweroutcomeofdrummachine

Separationprocesswithdrumscreenerhandlesagreater

quan-tityof mass than drum chipper becauseat this stage,biomass

containsanimportantpartofsoil(Fig.5).

3.2. Solution1–Heatingplantofgreenhousespoweredby

producedwood-chipandsaleofsurplusoflatter

Inordertosupplythermalenergytogreenhousesandoffices

therearetworeferenceconfigurations:centralizedand

decentral-ized.Aheatingplantimplementedbywood-chipboilersrequires

additionalcomponents,forexamplewood-chiptanksand

auto-maticsystemsforfuelsupply,waterthermalstorages,ashremoval

systems,andmanyothers.Forthisreason,thecentralized

configu-rationisnormallychosen.Consideringthelocationofgreenhouses

andoffices,twothermalcentralsareneeded:oneforagreenhouses

groupandonefortheoffices.Theconsideredpowerboilershave

asizeof500kW.Thisisthebestcompromisebetweenmachine

costandincentivesprovidedbyItalianlaw.Inparticular,for

refer-encemodel,the“TurbomatTM500”(Table3),producedbyFroling,

hasbeenchosen.Then,Centralizedconfigurationisnecessaryfor

transportingtheheatfromthecentralstogreenhousesandoffices

usinghotwaterasheattransferfluid(Figs.7and8,Table4).

Thecostofsuchaplantis580,000D,estimatedbythecompany

TIESSEIS.R.L.(Pistoia,IT).

ItalianEconomicandIndustryMinistrypromotesenergysaving,

introducing“ContoTermico”decree(DM28/12/12)whichprovides

anincentivebonusIaforthefirst5yearsofoperation.Thisincentive

isaimedatbiomassheaters.Theamountoftheincentiveforeach

(6)

Fig.7.–Biomass-fedthermalenergyplant.

Fig.8.−VariationofNPV20andPIbyvaryingthesizeofwarehouse.

Table3

–TechnicaldataofTurbomatTM500. TurbomatTM500SPS4000−Froling

NominalPower(KW) 500

Efficiency(Mo≤50%) 94%

Temperatureofexhaustgasatnominalcondition[◦C] 140

MaxPressure[bar] 6

MinTemperaturereturn[◦C] 65

MaxwaterTemperature[◦C] 90

Totalweight[Kg] 8400

Ia=Pn·t·Ci·Ce

Ci[D/kWh]isacoefficientaboutthermalenergyvalorization,

whichdependsonthethermalpowerofeachboiler.Inthepresent caseCi=0.020D/kWh(Pn=35.÷500.kW).

tistheoperationtime(hoursperyear)anditdependsonthe plantlocation’sclimaticzone.t=1400hbecausePistoiaisinthe“D” climaticzone(eachdistrictofItalyisclassifiedonclimaticzone from“A”to“F”).

Ce is a coefficientaboutemission ofprimary particulateper

Sm3ofair.InthisanalysisC

e=1.2becausetheboileremissionsare

between15mg/Sm3and20mg/Sm3.

Table5

–Technicaldataofnaturalgasheaters.

Nominalpower[kW] 85.0

Heaternaturalgasconsumption[Sm3/h] 8.767

Efficiency 95%

Table6

−ComparisonofNPV20andPIinopenfieldsolutionstorageand350m2warehouse

storage.

Openfieldstorage Warehouse350m2storage

NPV20 D1,064,537 D732,187

PI 3.23 1.75

Thewood-chipproducedbytransformationofbiomassisstored inawarehouse,implementedbyafarmbuildingopenedonthree sideswithusefulheightof5.m,specificcapacityestimatedof2. t/m2andaspecificcostof250.

D/m2(AgenziadelleEntrate-Ufficio

Provinciale,2015).Itisassumedthatwood-chipisstoredmonthly

andthatthemoistureofwood-chipdecreasesby10%permonth

((AssociazioneItalianaEnergieAgroforestali),2009).Ifitisnotused

Table4

−Thermalpowerrequirement.

ThermalunitA ThermalunitB

Users GreenhousesgroupA+Offices GreenhousesgroupB

(7)

Fig.9.−Naturalgasfeedingathermalenergyplant.

Table7

−ThermalpowerrequirementinORCsolution.

ThermalunitA ThermalunitB+ORC Users GreenhousesgroupA+Offices GreenhousesgroupB Powerrequirement(kW)2300+200=2500 3900

Table8

–TechnicaldataofORCmodule. ORCTurboden3CHPMode

ThermalpowerIN[kW] 1971

Electricpowergenerated[kW] 300

Electricefficiency 15.5%

Thermalpowerforcogeneration[kW] 1636

ThermalefficiencyCOG 83%

Watertouserstemperature[◦C] 75

Waterreturntemperature[◦C] 55

OperatingTime[hours] 4661

Table9

−NPV20andPIofORCsolution.

ORC

NPV20 D1,085,558

PI 0.24

orsoldbeforehand,themoisturereachesatleasta20% stabiliza-tion(Simpson,1998).Ifthewoodchipstockedinthewarehouse

hasMo≤50%,itisutilizedforsatisfyingthethermalrequirement.

OtherwisethenecessarywoodchipispurchasedatMo=20%.The

warehousehasamaximumcapacitythatdependsonitssize.This

limitcanbeovercomebysellingthesurplusofthedriestwood-chip

availableinstock.Theprofitabilityofinvestmentinthissolutionis

studiedvaryingthesizeofwarehousetoidentifytheoptimalsize

(Fig.9);amaximumofNPV20forthesize450m2andamaximum

ofPIforthesize400m2arepresent.Theconfigurationof“0m2

representsavirtualsituationinwhichthewood-chip,produced

duringthemonth,isentirelysoldandthethermalrequirementis

satisfiedpurchasingdrywood-chip(Mo=20%).

InthisconfigurationPIassumestheabsolutemaximumvalue.

It is reasonablethat buildingnew warehouses is not

economi-callyprofitable.Moreover,thebestconfigurationforthissolution

isassumedtobea450m2warehouse.

3.3. Solution2–Sellingofallproducedwoodchipandsupplying

thermaldemandbynaturalgasheatgenerators

Adifferentsolutionisproposedinordertoreduceinitialcosts

andsimplifytheplant.Inthissolution,allwoodchipisstoredin

awarehouseandsoldwhenwoodchipreachesMo=20%orwhen

thewarehouseisfull.Thermalenergyforgreenhousesisproduced

bythecombustionofnaturalgas.Thefeasibilityofanaturalgas

heatingsystemdependsonthenaturalgasgridandthelocation

ofgreenhouses.Naturalgasheatersareplacedintogreenhouses

asreplacementofdieselfuelheaters:theydirectlytransferheatto

air,withoutneedingahotwaterdistributionsystem.Bydoingso,

heatingplantresultscheaperthantheprevioussolutionandthere

isnolostheatduetoheattransportation.Thenaturalgassupply

isperformedbyapipesystemthatlinkseverygreenhousetomain

gaspipe(Fig.10).

Incomparisonwiththepreviousplant,thereisnolabor

require-mentforwoodchipsupply andheatingboilerscleaning,and no

labor for biomass storage place and systems either. Moreover,

biomasstreatmentiscompletelyseparatedfromthermalenergy

production.Thereisnopossibilitytobenefitofincentivesinthis

case,andnaturalgasismoreexpensivethanwoodchip.Asforthe

thermalenergydemand,73heatersof85kWeachhavebeentaken

intoaccount(Tables4and5).

AsinSolution1,Fig.11showstheprofitabilityoftheinvestment,

varyingthesizeofthewarehouse.

Fig.11 showsthatthebestsolutionintermsofNPV20hasa

warehouseof350–400m2.

Biomassstoragewarehouseisaconsiderablecostofthe

invest-ment. Its feasibility also depends on the availability of areas

necessarytorealizeit.Adifferentsolutionisproposedinorder

toreduceinitialcostsandsimplifytheplant.Biomassresidualsare

storedinanopenfieldareaacrosstheyear,duringproductiontime.

Naturaldehumidificationoccursduringthestorageperiod,in

par-ticularduringspringandsummermonths.Treatmentofbiomassis

carriedoutduringsummermonths,whenaveragemoisturelevelis

atitslowest.Inthiscasebiomassissubjecttoweatheragentsandis

directlyincontactwiththeground,evenifinmostoftheyearit

pre-servesitsoriginalsizeanditislessdecomposablethanwoodchip.

Producedwoodchipisimmediatelysoldtotraders.Consideringthe

amountofbiomassproducedbyVannucciPiante,biomasscouldbe

workedinJuly,AugustandSeptember,hypothetically.Theaverage

moisturelevelisconsidered50%andtheestimatedmassreduction

duetodecompositionisof20%(Simpson,1998).Soldwoodchip

ispriced30D/ton(Franceschi,2015).Consideringmassreduction

due todehumidification and decomposition, woodchip

produc-tionis about 2978ton/year. Woodchip sale proceedsstands at

89,949D/year.NPV20andPIarereportedinTable.

3.4. Solution3–ORCincogenerationwithboilerpoweredby

wood-chipbyproduct

Inthissolution,electricenergyisproducedinordertoextract

thehighesteconomicvaluefromthebiomass.Thermaland

elec-tricenergiesareproducedinaco-generativeplant.Twothermal

energyunitsandoneORC(Organic-fluidRankineCycle)systemare

assumedtobenecessary(Fig.12,Table6).Theheatgeneratedby

ORCcanbeusedtosatisfyathermaldemandwhenitisrequested,

orcanbedissipatedbyadrycoolingtower.

Asforthechoiceofthermalboilers,thesameconsiderationsof

(8)

Fig.10.−VariationofNPV20andPIvaryingthesizeofwarehouse.

Fig.11.−ThermalandelectricenergyproductionplantwithORC.

heatpipeplantdescribedinSolution1havebeenused.

Consid-eringthequantityofwoodchipproducedinayearandinorder

tomaximizetheworkingtime,theelectricpowersizeofORC

co-generatorisof300·kWel(Table6).Theannualquantityofproduced

woodchippermitstheORCmoduletoworkonly4661hperyear

(Tables7and8).

Woodchipproducedbytransformingofbiomassisstoredina

warehouse,thatinthiscaseisdesignedtomaximizeitsuse.

Boil-ersofthermalcentralsguaranteetherighttoreceiveanincentive

bonus,asmentioned for Solution1. Theministerial decree DM

23/6/2016givestherighttoreceiveabasicincentiverateforelectric

energyproducedfor20years,inordertorealizeanelectricenergy

plantgeneratorpoweredbywoodchip.TheratethattheVannucci

Piantecompanypaysfortheelectricenergyislowerthantherate

providedbyincentives.Therefore,theanalysisofproductivityof

thissolutioncanbeobtainedfromtheelectricityconsumptionof

company.

4. Results

All proposed solutions are compared in terms of economic

returnswiththreeindicatorsofequations1,2,3.

Theeconomicvaluationofthesolutionshasbeenreportedin

Fig.13andTable9.

Initialcostsareextremely different.Naturalgassolutionhas

thelowestcostandthisismostlyduetothelowcostofnatural

gasheaters.ORCsolutionisthemostexpensiveone:initialcosts

amounttoD 4,500,000.ThisisduetothehighcostofORCmodule

respecttootherinitialcostsofthesolution.Suchasolutioncould

befavourableonlyifcashflowisgoodduringtheinvestmentyears.

(9)

Fig.12.−Initialcostsoftheproposedsolutions.

Fig.13.−Annualcashflowforeachproposedsolution.

hasanintermediateinitialcost:inthiscasethemostrelevantcost

derivesfromthewoodchipboilers.Thebiomasstreatment

machin-erycostisnotsosignificant,incomparisonwiththeothercostsof

investments.Inthisway,thewoodchipproductioncanbeeasily

performedineconomicterms.

AnnualcashflowsarereportedinFig.14,anddetailsinTable10.

AlthoughtheNaturalgasheaterssolutionhasthelowestinitial

costs,annualcostsarehigherthanintheothertwosolutions.This

isduetothenaturalgaspurchasecost.Theannualcostsforthe

othertwosolutionsarecomparable.

Thesolutionwith ORChashighest annual returns.The best

annualreturnforthissolutionisthesaleofelectricenergy

pro-duced,which amountsto aboutD 344,000.Anothersignificant

returninthefirstandthethirdsolutionsisgivenbybonus

incen-tives. Moreover, saving fuel currently used by the company is

anotherimportantreturninallthreesolutions.Lessconsiderable

returnsarethewoodchipsellingandthesavingonbiomasswaste

disposal.

AsshowninFig.14andTable11,NPV20 ofthesolutionsare

similar.Naturalgashasthebestone,theothershavesignificantly

differenttrends.ThetrendofORCsolutionNPVhasthebestrise

during the given period, because this solution hasthe highest

annualreturn.DespiteofNPV20,thePBPsofthesolutionsarevery

different.Naturalgassolutionhasthelowestvalue(2years).The

woodchipboilerssolution’sPBPis7yearsandtheORCsolutionis

theworstonewith13yearsofPBP.AsTable11shows,thebestPI

istheoneforthenaturalgassolution.

5. Conclusions

Theresultsofthisstudyshowthatnaturalgassolutionisthebest

oneineconomicterms,consideringthethreeindicatorsinTable11.

EveniftheNPV20ofwoodchipboilerssolutionisthehighest,the

PBPandPIareconsiderablybetterinnaturalgassolution(Table12).

Theotherstwosolutions,woodchipboilersandORC,exploit

thebiomassby-productsource,representingtwowaysto

imple-mentrenewableenergyproduction.Thistypeofsolutionshashigh

initialcosts.EveniftheItalianEconomicMinistryguarantees

(10)

Fig.14. −NPVtrendin20years-longinvestmentforeachproposedsolution.

Table10

−Detailsofinitialcostsforeachproposedsolution.

Woodchipsboilerswarehouse450m2 Naturalgasheaters+woodchipsale ORCcogeneration+woodchipboilers

Thermalunits D1,312,000 D208,780 D1,010,000

Heatpipesystem D580,000 D0 D580,000

Biomasstreatmentmachinery D60,400 D60,400 D60,400

Wood-chipwarehouse D112,500 D0 D343,750

Naturalgasdistributionplant D0 D60,000 D0

ORCPlant D0 D0 D2,500,000

Total D2,064,900 D329,180 D4,494,150

Table11

−Detailsofannualcashflowforeachproposedsolution.

Woodchipsboilerswarehouse450m2 Naturalgasheaters+woodchipsale ORCcogeneration+woodchipboilers

AnnualCosts Biomasstreatment -D71,400 -D63,345 -D63,345

Wood-chippurchase -D10,985 D0 D0

Naturalgaspurchase D0 -D123,160 D0

Plantmaintenance -D20,000 -D10,000 -D30,000

Totalcosts -D102,385 -D196,505 -D93,345

AnnualReturns Savingonwastedisposal D64,880 D64,880 D64,880

Savingonactualfuelpurchase D194,038 D181,940 D194,038

Wood-chipselling D61,619 D89,949 D0

Bonusincentives D218,400 D0 D168,000

Electricenergyselling D0 D0 D343,957

Totalreturns D538,937 D336,769 D770,875

Annualcashflow D436,552 D140,264 D677,530

Table12

−Economicindicatorusedforprofitabilityanalysisofinvestmentsforeachproposedscenario.

Woodchipsboilerswarehouse450m2 Naturalgasheaters+woodchipsale ORCcogeneration+woodchipboilers

NPV20 D1,131,932 D1,064,537 D1,085,558

PI20 0.55 3.23 0.24

PBP 7years 2years 13years

tomake thesesolutions competewithconventional fossilfuels alternatives.

Thisstudy highlights that sellingwood chipproduced with biomassby-productismorereasonablethanusingitinternallyin anurserycompany.

Accordingtotheresultsof this work,policiesonrenewable energies incentives should be strengthen in Italy. Not surpris-ingly,companieslikeVannucciPiantetreatbiomassby-productas awaste.

References

Baldi,E.A.,Corti,A.,Pecorini,I.,2016.BiochemicalMethanePotentialTestsof DifferentAutoclavedandMicrowavedLignocelluloiscOrganicFractionsof MunicipalSolidWaste,vol.56.,pp.143–150(October).

Boncinelli,P.,Sarri,D.,Rimediotti,M.,Vieri,M.,Cini,E.,Lisci,R.,Recchia,L.,2015. Recoveryofwastebiomassinnurseries.Appl.Eng.Agric.31(no.3),377–385. Canakci,M.,Akinci,I.,2006.Energyusepatternanalysesofgreenhousevegetable

production.Energy31,1243–1256.

Chilosi,G.,Muganu,M.,Vettraino,A.,Marinari,S.,Paolocci,M.,Luccioli,E.,Vannini, A.,Aleandri,M.P.,2015.Onfarmproductionofcompostfromnurserygreen residuesanditsusetoreducepeatfortheproductionofolivepotplants.Sci. Hort.193,301–307.

(11)

Clodoveo,M.L.,Distaso,E.,Ruggiero,F.,Tamburrano,P.,Amirante,R.,2016.A tri-generationplantfuelledwitholivetreepruningresiduesinApulia:an energeticandeconomicanalysis.Renew.Energy89,411–421.

Croce,S.,Assirelli,A.,DelGiudice,A.,Spinelli,R.,Suardi,A.,Pari,Luigi,Acampora,A., 2013.Productcontaminationandharvestinglossesfrommechanizedrecovery ofolivetreepruningresiduesforenergyuse.Renew.Energy53,350–353. Daou,M.,Rimediotti,M.,Cini,E.,Vieri,M.,Recchia,L.,2009.Newshredding

machineforrecyclingpruningresiduals.BiomassBioenergy33,149–154. Denticed’Accadia,M.,Abagnale,C.,CardoneIodice,M.P.,2016.Energy,economic

andenvironmentalperformanceappraisalofatrigenerationpowerplantfora newdistrict:advantagesofusingarenewablefuel.Appl.Therm.Eng.vol.95, 330–338.

Francescato,V.,2009,“LegnaCippatoePellet–Produzione,RequisitiQualitativi, Compravendita,MercatoePrezzi”,AIEL–AssociazioneItalianaEnergie Agroforestali-internalReport.

CarloFranceschi,(2015),http://www.limentre.it[Online].http://www.limentre.it/ Biomassa/presentazioni/Franceschi.pdf.

González,Z.,Rosal,A.,Requejo,A.,Rodríguez,A.,2011.Productionofpulpand energyusingorangetreeprunings.Bioresour.Technol.102,9330–9334. Hamedani,S.R.,Keyhani,A.,Alimardani,R.,2011.Energyusepatternsand

econometricmodelsofgrapeproductioninHamadanprovinceofIran.Energy 36,6345–6351.

ISTAT,2013.(istitutoNazionaleDiStatistica),CaratteristicheTipologicheDelle AziendeAgricole,6.Censimentogeneraledell’Agricoltura.

Kuswardhani,N.,Soni,P.,Shivakoti,G.P.,2013.Comparativeenergyinputeoutput andfinancialanalysesofgreenhouseandopenfieldvegetablesproductionin WestJava,Indonesia.Energy53,83–92.

Lucchetti,S.,Nicese,F.P.,Lazzerini,G.,2016.GreenHouseGases(GHG)emissions fromtheornamentalplantnurseryindustry:aLifeCycleAssessment(LCA) approachinanurserydistrictincentralItaly.J.Clean.Prod.5(January), 4022–4030.

Mohammadi,A.,Omid,M.,2010.Economicalanalysisandrelationbetweenenergy inputsandyieldofgreenhousecucumberproductioninIran.AppliedEnergy 87,191–196.

Ozkan,B.,Kurklu,A.,Akcaoz,H.,2004.Aninput–outputenergyanalysisin greenhousevegetableproduction:acasestudyforAntalyaregionofTurkey. BiomassBioenergy26,89–95.

Ozkan,B.,Fert,C.,Karadeniz,C.F.,2007.Energyandcostanalysisforgreenhouse andopen-fieldgrapeproduction.Energy32,1500–1504.

Picchi,G.,Spinelli,R.,2010.Industrialharvestingofolivetreepruningresiduefor energybiomass.Bioresour.Technol.101,730–735.

Rafiee,S.,Keyhani,A.,Ebrahimi,A.,Tabatabaie,S.M.H.,2013.Energyandeconomic assessmentofpruneproductioninTehranprovinceofIran.J.Clean.Prod.39, 280–284.

Saha,K.P.,Gosh,P.L.,Hati,K.M.,Bandyopadhyay,K.K.,Mandal,K.G.,2002. Bioenergyandeconomicanalysesofsoybean-basedcropproductionsystems incentralIndia.BiomassBioenergy23,337–345.

Sarri,D.,Rimediotti,M.,Boncinelli,P.,Vieri,M.,Cini,E.,Recchia,L.,2013. Environmentalbenefitsfromtheuseoftheresidualbiomassinnurseries, Resources.Conserv.Recycl.81,31–39.

Satpathy,D.,Senapati,P.C.,Mohapatra,P.K.,1991.Energystudiesincropping systemsinlatericsoilofOrissa,India,AgriculturalMechanizationinAsia, AfricaandLatinAmerica,vol.19.,pp.49–52.

Simpson,W.T.,1998.EquilibriumMoistureContentofWoodinOutdoorLocations intheUnitedStatesandWorldwide.UnitedStatesDepartmentofAgricolture, ForestProductsLaboratory.

Singh,S.,Pannu,C.J.,Singh,J.,Singh,S.,1999.Energyinputandyieldrelationsfor wheatindifferentagro-climaticzonesofthePunjab.Appl.Energy63,287–298. Singh,S.,Pannu,C.J.S.,Singh,J.,Singh,S.,2000.Optimizationofenergyinputfor

raisingcottoncropinPunjab.EnergyConvers.Manage.41,1851–1861. Unmole,H.,Mariani,A.,Tomarchio,L.,Triolo,L.,1987.Energyanalysesof

agriculture:theItaliancasestudyandgeneralsituationindeveloping countries.In:InternationalSymposiumonMechanizationandEnergyin Agriculture,Izmir,Turkey,pp.172–184.

Yang,J.,Zhao,J.,Xu,F.,Shen,Z.,Zhang,L.,Chen,J.,2016.Energydemand forecastingofthegreenhousesusingnonlinearmodelsbasedonmodel optimizedpredictionmethod.Neurocomputing174,1087–1100. AgenziadelleEntrate,UfficioProvincialediFirenze–Territorio,“Prezzariodi

MassimaperlaDeterminazionedellaRenditaCatastaledelleUnita’ ImmobiliariaDestinazioneSpecialeeParticolare(Categorie“D”Ed“E”)conil ProcedimentoIndirettodelCostodiRiproduzioneDeprezzato”,Agenziadelle Entrate,2015.

Riferimenti

Documenti correlati

This result indicates that the observed enhanced retinal neurosphere generation is accompanied by increased cell proliferation when RSCs are grown in presence of

In PTES systems, the charge phase is usually performed by using a Heat Pump (HP), the energy conservation is entrusted to a Thermal Energy Storage (TES), which can be either

this issue, we analysed a national cohort of pregnant women with HIV, comparing in women with gestational exposure to atazanavir or darunavir some laboratory parameters, such as

Gli esiti emersi dai questionari somministrati, interpretati anche alla luce delle informazioni raccolte dai formatori-ricercatori mediante l’osservazione e la

pareggio di bilancio piuttosto che alla crescita tramite M&A. Egli risulta infatti disposto a cedere Permasteelisa per risanare i debiti legati all’incidente

the municipalities of the central Valley portion, from Avise to Saint-Vincent have an average high availability of biomass affordable for energy production, but, at the same time,

In fact, the former conversion efficiency (overall efficiency) accounts for the incomplete exploitation of flow rate and head observed in Figure 7, while the latter (PAT

Sessione pomeriggio, ore 14.30–17.30 Riduzione delle emissioni nei piccoli impianti a biomasse: linee guida Ore 14.30 – 16.30 Sala della Qualità?. padiglione 3 Qualità e