• Non ci sono risultati.

Study of B Meson Production in p plus Pb Collisions at root s(NN)=5.02 TeV Using Exclusive Hadronic Decays

N/A
N/A
Protected

Academic year: 2021

Condividi "Study of B Meson Production in p plus Pb Collisions at root s(NN)=5.02 TeV Using Exclusive Hadronic Decays"

Copied!
18
0
0

Testo completo

(1)

Study of

B Meson Production in p þ Pb Collisions at ffiffiffiffiffiffiffiffi

p

s

NN

¼ 5.02 TeV

Using Exclusive Hadronic Decays

V. Khachatryan et al.* (CMS Collaboration)

(Received 26 August 2015; published 22 January 2016)

The production cross sections of the Bþ, B0, and B0smesons, and of their charge conjugates, are measured

via exclusive hadronic decays in p þ Pb collisions at the center-of-mass energypffiffiffiffiffiffiffiffisNN¼ 5.02 TeV with the

CMS detector at the CERN LHC. The data set used for this analysis corresponds to an integrated luminosity of34.6 nb−1. The production cross sections are measured in the transverse momentum range between 10 and 60 GeV=c. No significant modification is observed compared to proton-proton perturbative QCD calculations scaled by the number of incoherent nucleon-nucleon collisions. These results provide a baseline for the study of in-medium b quark energy loss in Pb þ Pb collisions.

DOI:10.1103/PhysRevLett.116.032301

Relativistic heavy ion collisions allow the study of quantum chromodynamics (QCD) at very high temperature and density. Under such extreme conditions, a strongly interacting state consisting of deconfined quarks and gluons, the quark-gluon plasma (QGP) [1,2], is predicted by lattice QCD calculations[3]. Hard-scattered partons are expected to lose energy as they traverse the QGP via elastic collisions and medium-induced gluon radiation. The result-ing reduction of the measured yield of hadrons, compared to expectations based on proton-proton (pp) data, is often referred to as“jet quenching”[4,5]. The flavor dependence of jet quenching is one of the most important testing grounds for energy loss models [6–10]. However, other phenomena can affect the yield of heavy-flavor particles, independently of the presence of a deconfined partonic medium. For instance, modifications of the parton distri-bution functions (PDFs) in the nucleus with respect to nucleon PDFs [11–13]could change the production rate. Therefore, a complete understanding of the interactions of heavy quarks in the deconfined medium formed in heavy ion collisions requires a thorough knowledge of their production in proton- (or deuteron-) nucleus, pðdÞ þ A, collisions.

Currently, published data for heavy-flavor production in pðdÞ þ A exist for open charm both at RHIC, in d þ Au collisions atpffiffiffiffiffiffiffiffisNN ¼ 200 GeV, and at the LHC in p þ Pb

collisions at pffiffiffiffiffiffiffiffisNN¼ 5.02 TeV. At RHIC, the STAR

Collaboration measured the charm spectra in the rapidity intervaljyj < 1 from direct reconstruction of D0meson and from indirect electron and positron measurements of charm

semileptonic decays[14]. The measured yields were found to be consistent within the uncertainties with the hypothesis of binary scaling (no modification with respect to nucleon-nucleon (NN) cross section scaled by the number of incoherent NN binary collisions). However, the PHENIX Collaboration measured a significant enhancement of the production of heavy-flavor decay electrons injyj < 0.35 in high-multiplicity d þ Au events with respect to a combined data and theory pp Ref. [15]. Recently, PHENIX also measured a significant enhancement of heavy-flavor pro-duction via single-muon detection at backward rapidity (the Au-going direction), and a suppression at forward rapidities (the d-going direction) [16]. This measured difference in heavy-flavor production between forward and backward rapidities is significantly larger than pre-dicted by leading-order perturbative QCD calculations with nuclear PDFs[17]. In p þ Pb collisions at the LHC, the ALICE Collaboration measured the production of the D meson in the−0.96 < y < 0.04 interval and found it to be, within uncertainties, compatible with pp data scaled by the number of binary NN collisions, over a large transverse momentum (pT) range [18]. The LHC results are well

described by theoretical calculations that do not require a deconfined medium to be formed in the collision. This supports the idea that the D meson suppression at high pT observed in Pbþ Pb collisions by the ALICE

Collaboration [19] is due to parton interactions with the deconfined medium. While measurements, both at RHIC and LHC, support that most of the suppression observed in AA collisions is due to partonic energy loss, the details of the phenomena affecting open charm in p þ A and AA collisions are still to be understood.

The production of B mesons was studied at the LHC in proton-proton (pp) collisions atpffiffiffis¼ 7 TeV over wide pT

and rapidity intervals by CMS[20–22], ATLAS[23], and

LHCb[24]. In Pbþ Pb collisions, CMS measured the

non-prompt J=ψ from B hadron decays atpffiffiffiffiffiffiffiffisNN ¼ 2.76 TeV

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published article’s title, journal citation, and DOI.

(2)

[25]and observed a strong suppression with respect to the hypothesis of binary scaling. In this Letter, we extend the study of heavy-quark production in pðdÞ þ A collisions by performing the first measurement of exclusive B meson decays in p þ Pb collisions.

The B mesons are measured in a region jylabj < 2.4

via the full reconstruction of their decay channels: Bþ → J=ψKþ → μþμ−Kþ with branching fraction B ¼ ð6.12  0.19Þ × 10−5, B0→ J=ψKð892Þ → μþμKþπ

with B ¼ ð5.24  0.24Þ × 10−5, and B0s→ J=ψϕ →

μþμKþKwith B ¼ ð3.12  0.27Þ × 10−5 [26]. As this

analysis does not separate Bþfrom B−, B0from ¯B0, or B0s

from ¯B0s, mesons are referred to generically as Bþ, B0, and

B0s, respectively, for the purposes of reconstruction. For the

final cross section values, the combined results are divided by 2 to obtain an average.

The CMS detector has excellent capabilities to recon-struct B meson decays due to the highly efficient muon detection system and the high-resolution silicon tracker [27]. The data sample used in this analysis corresponds to an integrated luminosity of ð34.6  1.2Þ nb−1 [28]. The direction of the proton beam was initially opposite to the positive direction of the CMS longitudinal axis[27], and it was reversed after 60% of the data were taken. The beam energies were 4 TeV for protons and 1.58 TeV per nucleon for lead nuclei, resulting in a nucleon-nucleon center-of-mass energy ofpffiffiffiffiffiffiffiffisNN ¼ 5.02 TeV. Because of the energy

difference of the colliding beams, the nucleon-nucleon center-of-mass frame in p þ Pb collisions was not at rest with respect to the laboratory frame. The results presented here use the convention that the proton-going side corre-sponds to positive pseudorapidity. This implies that mass-less particles emitted at pseudorapidity ηCM in the NN

center-of-mass frame are detected atηlab¼ ηCMþ 0.465.

A detailed description of the CMS experiment and coordinate system can be found in Ref. [27]. Only the detector subsystems most relevant for this analysis are described here. Charged particles (tracks) are reconstructed within the range jηlabj < 2.5 by using the silicon tracker detector, located in the 3.8 T magnetic field of a super-conducting solenoid. Muons are identified in the interval jηlabj < 2.4 with gas-ionization detectors made of three

technologies: drift tubes, cathode strip chambers, and resistive plate chambers, embedded in the steel flux-return yoke of the magnet. The CMS apparatus also has extensive forward calorimetry, including two steel and quartz-fiber Cherenkov hadron forward (HF) calorimeters, which cover the range 2.9 < jηlabj < 5.2.

Events used in the measurement are collected with a trigger requiring the presence of a muon with pT > 3 GeV=c. To select inelastic hadronic interactions,

the off-line analysis requires a coincidence of at least one of the HF calorimeter towers (with more than 3 GeV of total energy) from each side of the interaction point. Events are further required to have at least one reconstructed primary

vertex, formed by at least two tracks, with a distance from the center of the nominal interaction region of less than 15 cm along the beam axis.

Several Monte Carlo (MC) simulated event samples are used to evaluate background components and signal efficiencies: specifically, (i) an inclusive (prompt and nonprompt) J=ψ sample; (ii) a sample containing all B mesons decaying into a J=ψ; (iii) a signal-only sample with the Bþ, B0, and B0sdecays included in the present analysis.

First, proton-proton collisions are simulated withPYTHIA

6.424[29]tune Z2[30]and propagated through the CMS detector using the GEANT4 package [31]. The B meson

decays are simulated with theEVTGEN package [32], and

final state photon radiation in the B decays is simulated by

PHOTOS[33]. Then, thePYTHIAevents are embedded into simulated p þ Pb events produced by theHIJINGgenerator version 1.383 [34], which is tuned to reproduce global event properties such as charged-hadron pT spectra and

particle multiplicity.

Muons are required to be within the following kinematic region: pμT > 3.3 GeV=c for jημlabj < 1.3, total momentum

pμ> 2.9 GeV=c for 1.3 < jημlabj < 2.2, or p μ

T> 1.5 GeV=c

for 2.2 < jημlabj < 2.4 [35]. This acceptance selection is chosen so as to guarantee a single-muon detection prob-ability exceeding about 10%. Two muons of opposite charge with an invariant mass within150 MeV=c2 of the world-average J=ψ mass[26]are selected to reconstruct a J=ψ candidate, with a mass resolution of typically 18 − 55 MeV=c2, degrading as a function of the dimuon

rapidity. The B meson candidates are formed by combining J=ψ candidates with charged tracks. Without using particle identification, assumptions need to be made about the masses of the charged tracks. In calculating the mass of the Bþ candidates, the single charged particle is always assumed to have the mass of a kaon. In the B0 case, two invariant-mass values are computed, corresponding to the two possible assignments of the kaon and pion masses to the two-track system. For B0scandidates, the two charged

tracks are always assumed to be kaons. Single track low pT

thresholds of 0.9, 0.7, and0.4 GeV=c are applied in the Bþ, B0, and B0s analyses, respectively, to reduce the

combina-torial background, which is further minimized by additional selection criteria. In particular, B candidates are selected according to the χ2 probability of the decay vertex (the probability for the J=ψ muon tracks and the other charged track to point to a common vertex), the 3D flight distance (normalized by its uncertainty) between the primary and decay vertices, and the pointing angle, which is defined as the angle between the line connecting the primary and decay vertices and the momentum vector of the B meson in the plane transverse to the beam direction. The selection is optimized for each meson species using a multivariate technique that uses the genetics algorithm[36], in order to maximize the statistical significance of the B meson signals. In the B0 and B0s analyses, the invariant masses

(3)

of the Kþπ− and the KþK− are required to be compatible with the masses of the K0ð892Þ, Kð892Þ and the ϕ resonances, respectively. If more than one candidate in a given event survives all of the aforementioned selection criteria, the candidate with the best vertexχ2probability is selected.

The raw yields of Bþ, B0, and B0s are extracted using a

binned maximum likelihood fit to the B meson invariant-mass distributions in the invariant-mass range5 < mB< 6 GeV=c2. The invariant-mass distributions of Bþ, B0, and B0s

candi-dates in the pT regions 10–15, 10–15, and 10–60 GeV=c,

respectively, are shown in Fig.1. In the case of Bþand B0, this choice corresponds to the lowest pTinterval used in the

analysis, while for B0s it is the only interval. The signal

shape is modeled by two Gaussians with the same mean values (a free parameter in the fit) and different widths determined in MC simulations. The background is domi-nated by random combinations of prompt and nonprompt J=ψ candidates with extra particles. This combinatorial background is modeled by a first-order polynomial in the Bþ and B0analyses, and by a second-order polynomial in the B0s analysis, as suggested by studies on the embedded

inclusive J=ψ sample. The background component shown as a crosshatched histogram and labeled as B → J=ψX in Fig. 1 is due to misreconstructed B meson decays that produce broad peaking structures in the invariant-mass region below 5.4 GeV=c2. As an example, in the Bþ analysis, a peaking background structure is created by B0→ J=ψKð892Þ decays in which one decay product is lost in the B candidate reconstruction. These background sources are studied with the embedded MC sample includ-ing all B meson decays into final states with a J=ψ, and found to be well described by a superposition of four and two Gaussian functions in the Bþ and B0 analyses, respectively. The resulting functional form, with the overall normalization left floating, is included in the global fit function. This background component is found to be

negligible in the B0s analysis as a consequence of the

selection on the mass of theϕ candidate.

The pT-differential production cross section of the

various B meson species is computed in each pT interval:

dσ dpT  jy labj<2.4 ¼1 2 1 ΔpT NðpTÞjylabj<2.4 ðAcc ϵÞjylabj<2.4BL : ð1Þ

NðpTÞjylabj<2.4 is the raw signal yield extracted in each pT interval of width ΔpT, ðAcc ϵÞjy

labj<2.4 represents the corresponding acceptance times efficiency, L is the inte-grated luminosity, and B is the branching fraction of the decay chain. The factor1=2 accounts for the fact that the yields were measured for particles and antiparticles added together, but the cross section is given for particles only. An analogous expression holds for the rapidity-differential cross section. The (Accϵ) correction factors are evaluated using PYTHIA+HIJING simulations in each pT and jylabj

interval, to account for the loss of signal due to the detector coverage, and to the trigger, reconstruction, and off-line selection. They vary, over the measured pT and y intervals,

from 9% to 37% (3% to 15%) for Bþ(B0), and they equal 8% in the single bin used for the B0s.

The cross sections are affected by several sources of systematic uncertainties arising from the signal extraction, acceptance and efficiency corrections, branching fractions, and integrated luminosity determination. The uncertainty from the fitting procedure (varying from 10% to 15% across all analysis intervals, for all three mesons) is evaluated by varying the probability distribution functions used to model the signal and background distributions. As an alternative combinatorial background shape, a second-order polynomial is used for Bþ and B0, and a third-order polynomial for B0s. The uncertainty on the signal is

evaluated by considering three fit variations: (i) leaving free the width parameters, (ii) varying the width parameters by20% with respect to the MC value, and (iii) using only

) 2 (GeV/c B m 5 5.2 5.4 5.6 5.8 6 ) 2 Entries / (20 MeV/c 0 50 100 150 200 Data Fit Signal Combinatorial X ψ J/ → B (p+Pb 5.02 TeV) -1 34.6 nb CMS -+B + B < 15 GeV/c T 10 < p | < 2.4 lab |y ) 2 (GeV/c B m 5 5.2 5.4 5.6 5.8 6 ) 2 Entries / (30 MeV/c 0 10 20 30 40 50 60 70 Data Fit Signal Combinatorial X ψ J/ → B (p+Pb 5.02 TeV) -1 34.6 nb CMS 0 B + 0 B < 15 GeV/c T 10 < p | < 2.4 lab |y ) 2 (GeV/c B m 5 5.2 5.4 5.6 5.8 6 ) 2 Entries / (40 MeV/c 0 10 20 30 40 50 60 70 Data Fit Signal Combinatorial (p+Pb 5.02 TeV) -1 34.6 nb CMS 0 s B + 0 s B < 60 GeV/c T 10 < p | < 2.4 lab |y

FIG. 1. Invariant-mass distributions of Bþþ B− (left panel), B0þ ¯B0 (center panel), and B0sþ ¯B0s (right panel) candidates in the

transverse momentum regions 10–15, 10–15, and 10–60 GeV=c, respectively. See the text for details.

(4)

one Gaussian. The maximum of all variations is propagated as systematic uncertainty, and it is given in the case of Bþ by variation (i), and by variation (ii) for the other two mesons. The systematic uncertainties associated with the bin-by-bin acceptance correction (0.2% to 5.6%) are estimated by varying the shape of the generated B meson pT and y spectra within limits defined by differences

(including their statistical uncertainties) between data and MC calculations. For all three mesons, the Bþ and B0pT spectrum shapes are assumed, while only the Bþ is

used for the y shape. Using these shape variations, simplified (“toy”) MC simulations are used to recalculate the acceptance in each kinematic bin, the maximum variation between the nominal acceptance and the toys being propagated as the systematic uncertainty. The sys-tematic uncertainty due to the selection of the B meson candidates (4% to 11%) is equal to 1 minus the ratio of the selection efficiencies (the ratio of the extracted yield with and without applying the selection) estimated in data and simulation. In addition, an uncertainty associated with the accuracy of the best candidate selection (3%), which depends on the number of reconstructed B meson candi-dates, is assigned. This is evaluated by reweighting the population of the PYTHIA+HIJING events so that the

distribution of the number of B meson candidates per event matches the one from data. The uncertainties in the muon trigger, and muon track reconstruction and identification efficiencies (4.5% to 7.3%), are evaluated by using the “tag-and-probe” technique [40] on p þ Pb data and the embedded MC sample. The systematic uncertainty associated with the track reconstruction efficiency (3.9% per hadronic track [41]) is estimated from a comparison of two-body and four-body D0decays

in pp data and MC calculations, all samples being reconstructed with the same tracking algorithm as the p þ Pb sample. The systematic uncertainty in the cross section measurement is computed point by point as the sum in quadrature of the different contributions mentioned above. In addition, a global systematic uncertainty is calculated to account for the uncertainties in the integrated luminosity value (3.5%[28]), and in the B meson branching fractions (3.1%, 4.6%, and 8.7% for Bþ, B0, and B0s,

respec-tively[26]).

In Fig. 2, the pT-differential production cross sections

of all three B mesons measured in the interval jylabj < 2.4

are presented, with data points placed at the center of each bin. They are compared to the pp cross sections obtained from fixed-order plus next-to-leading-logarithm (FONLL) calculations[37], which reproduce the B meson pT-differential cross sections in pp collisions at 7 TeV

[20–24]. The individual cross sections are obtained by scaling the FONLL total beauty production[37–39]by the world-average production fractions of Bþ, B0, and B0s

(40.2%, 40.2%, and 10.5%, respectively [26]). The obtained BþFONLL reference is validated using published experimental cross sections measured in pp collisions atffiffiffi

s p

¼ 7 TeV [20,23]. The FONLL predictions are scaled by Að¼ 208Þ, the atomic mass of the Pb nucleus, to account for the number of binary NN collisions[42]. The FONLL uncertainties, which are larger than the experimental uncertainties, represent the quadratic sum of several var-iations made to the calculation: of the factorization and renormalization scales, of the b quark mass, and of the uncertainty associated with PDFs (providing the largest contribution) [37–39]. The nuclear modification factor RFONLLpþA , shown in Fig.3, is computed as

(GeV/c) T p 10 20 30 40 50 60 b/(GeV/c))μ ( T / dpσ d 1 10 2 10 3 10 p+Pb data Syst. p+Pb data Scaled FONLL pp ref. FONLL pp ref. uncert. CMS (p+Pb 5.02 TeV) -1 34.6 nb | < 2.4 lab |y Global uncert. 4.7% + B (GeV/c) T p 10 20 30 40 50 60 b/(GeV/c))μ ( T / dpσ d 1 10 2 10 3 10 p+Pb data Syst. p+Pb data Scaled FONLL pp ref. FONLL pp ref. uncert. CMS (p+Pb 5.02 TeV) -1 34.6 nb | < 2.4 lab |y Global uncert. 5.8% 0 B (GeV/c) T p 10 20 30 40 50 60 b/(GeV/c))μ ( T / dpσ d 1 10 2 10 3 10 p+Pb data Syst. p+Pb data Scaled FONLL pp ref. FONLL pp ref. uncert. CMS (p+Pb 5.02 TeV) -1 34.6 nb | < 2.4 lab |y Global uncert. 9.2% 0 s B

FIG. 2. The pT-differential production cross section of Bþ(left panel), B0(center panel), and B0s (right panel) measured in p þ Pb

collisions atpffiffiffiffiffiffiffiffisNN¼ 5.02 TeV. The vertical bars (boxes) correspond to statistical (systematic) uncertainties. The global systematic

uncertainty, listed in each panel and not included in the data points, comprises the uncertainties in the integrated luminosity measurement and the B meson branching fractions. Results are compared to FONLL calculations[37–39], scaled by the number of binary NN collisions, represented by a continuous histogram. The dashed histograms represent the theoretical uncertainties for the FONLL reference.

(5)

RFONLL pþA ¼  dσ dpT  pþPb A  dσ dpT FONLL pp ; ð2Þ

where the numerator is defined in Eq.(1)and the denom-inator is the corresponding theoretical calculation for B meson production in pp collisions at the same center-of-mass energy. The theoretical uncertainties represented by the open blue boxes in Fig.3are computed by recalculating RFONLL

pþA ðpTÞ with the upper and lower values of the FONLL

predictions represented by dashed histograms in Fig. 2.

The nuclear modification factors of the three B mesons do not show evidence for modification of p þ Pb data compared to the FONLL reference, in the considered pT

range within the quoted uncertainties. No significant differences are observed between the three B meson species. In the lowest pT interval measured, RFONLLpþA ðpTÞ

is1.11  0.08ðstatÞ  0.17ðsyst þ PbÞþ0.33−0.29ðsyst FONLLÞ, 0.990.15ðstatÞ0.18ðsystþPbÞþ0.30

−0.26ðsystFONLLÞ, and

0.930.18ðstatÞ0.20ðsystþPbÞþ0.27

−0.24ðsystFONLLÞ, for

Bþ, B0, and B0s, respectively.

The production cross section of Bþ is also studied as a function of its rapidity in the center-of-mass frame (yCM).

The yCM-differential cross section of Bþ in the interval (GeV/c) T p 10 20 30 40 50 60 p +A FONLL R 0 0.5 1 1.5 2 2.5 3 p+A FONLL R Syst. p+Pb data Syst. FONLL pp ref. Syst. int. lumi + CMS (p+Pb 5.02 TeV) -1 34.6 nb | < 2.4 lab |y + B (GeV/c) T p 10 20 30 40 50 60 p +A FONLL R 0 0.5 1 1.5 2 2.5 3 p+A FONLL R Syst. p+Pb data Syst. FONLL pp ref. Syst. int. lumi + CMS (p+Pb 5.02 TeV) -1 34.6 nb | < 2.4 lab |y 0 B (GeV/c) T p 10 20 30 40 50 60 p +A FONLL R 0 0.5 1 1.5 2 2.5 3 p+A FONLL R Syst. p+Pb data Syst. FONLL pp ref. Syst. int. lumi + CMS (p+Pb 5.02 TeV) -1 34.6 nb | < 2.4 lab |y 0 s B

FIG. 3. The nuclear modification factors RFONLL

pþA ðpTÞ of Bþ (left panel), B0 (center panel), B0s (right panel) measured in p þ Pb

collisions atpffiffiffiffiffiffiffiffisNN¼ 5.02 TeV. The statistical and systematic uncertainties on the p þ Pb data are shown as bars and yellow boxes

around the data points, respectively. The systematic uncertainties from the FONLL predictions are plotted separately as open blue boxes. The global systematic uncertainties are shown as full grey boxes at unity, and are not included in the data points.

CM y -3 -2 -1 0 1 2 b)μ ( CM / dyσ d 0 100 200 300 400 500 600 p+Pb data Syst. p+Pb data Scaled FONLL pp ref. FONLL pp ref. uncert. CMS (p+Pb 5.02 TeV) -1 34.6 nb + B < 60 GeV/c T 10 < p Global uncert. 4.7% CM y -3 -2 -1 0 1 2 p +A FONLL R 0 0.5 1 1.5 2 2.5 3 3.5 4 p+A FONLL R Syst. p+Pb data Syst. FONLL pp ref.

Syst. int. lumi +

CMS (p+Pb 5.02 TeV) -1 34.6 nb + B < 60 GeV/c T 10 < p

FIG. 4. (Left panel) The yCM-differential production cross section of Bþmeasured in p þ Pb collisions atpffiffiffiffiffiffiffiffisNN¼ 5.02 TeV. Vertical

bars (the boxes) correspond to statistical (systematic) uncertainties. The listed global systematic uncertainty is not included in the data points. The result is compared to a FONLL calculation[37–39]represented by a continuous histogram. The dashed histograms represent the theoretical uncertainties for the FONLL reference. (Right panel) The nuclear modification factor RFONLL

pþA ðyCMÞ of Bþas a function of

yCM. The statistical and systematic uncertainties on the p þ Pb data are shown as bars and yellow boxes around the data points,

respectively. The systematic uncertainty from the FONLL reference is plotted separately as open blue boxes. The global systematic uncertainty is shown as a full grey box at unity, and it is not included in the data points.

(6)

10 < pT < 60 GeV=c is shown in Fig. 4 (left panel). In

Fig.4(right panel), the rapidity dependence of the nuclear modification factor of Bþis shown. No strong evidence of rapidity dependence of RFONLL

pþA is observed within the

uncertainties.

In summary, the first measurements of the Bþ, B0, and B0sffiffiffiffiffiffiffiffimeson production cross sections in p þ Pb collisions at

sNN

p ¼ 5.02 TeV are presented. The mesons are mea-sured in jylabj < 2.4 and 10 < pT < 60 GeV=c via the

reconstruction of one of their exclusive hadronic decay channels. Within the transverse momentum and rapidity ranges studied, no significant modifications are observed, considering the statistical and systematical uncertainties, when compared to pp FONLL calculations scaled by the number of incoherent nucleon-nucleon collisions. These results provide a baseline for the study of in-medium b quark energy loss in Pbþ Pb collisions.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowl-edge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT, and ERDF (Estonia); the Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST

(Taipei); ThEPCenter, IPST, STAR, and NSTDA

(Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); and DOE and NSF (U.S.).

[1] É. V. Shuryak, Theory of hadron plasma, Sov. Phys. JETP 47, 212 (1978).

[2] J. C. Collins and M. J. Perry, Superdense Matter: Neutrons or Asymptotically Free Quarks?,Phys. Rev. Lett. 34, 1353 (1975).

[3] F. Karsch and E. Laermann, in Quark-Gluon Plasma 3, edited by R. C. Hwa and X-N. Wang (World Scientific, Singapore, 2004), p. 1.

[4] J. D. Bjorken, Fermilab Report No. FERMILAB-PUB-82-059-THY, 1982.

[5] R. Baier, D. Schiff, and B. G. Zakharov, Energy loss in perturbative QCD, Annu. Rev. Nucl. Part. Sci. 50, 37 (2000).

[6] Yu. L. Dokshitzer and D. E. Kharzeev, Heavy quark color-imetry of QCD matter,Phys. Lett. B 519, 199 (2001). [7] N. Armesto, C. A. Salgado, and U. A. Wiedemann,

Medium-induced gluon radiation off massive quarks fills the dead cone,Phys. Rev. D 69, 114003 (2004).

[8] S. Wicks, W. Horowitz, M. Djordjevic, and M. Gyulassy, Heavy quark jet quenching with collisional plus radiative energy loss and path length fluctuations,Nucl. Phys. A783, 493 (2007).

[9] B.-W. Zhang, E. Wang, and X.-N. Wang, Heavy Quark Energy Loss in Nuclear Medium, Phys. Rev. Lett. 93, 072301 (2004).

[10] A. Adil and I. Vitev, Collisional dissociation of heavy mesons in dense QCD matter,Phys. Lett. B 649, 139 (2007). [11] K. J. Eskola, H. Paukkunen, and C. A. Salgado, EPS09—A new generation of NLO and LO nuclear parton distribution functions,J. High Energy Phys. 04 (2009) 065.

[12] D. de Florian and R. Sassot, Nuclear parton distributions at next to leading order,Phys. Rev. D 69, 074028 (2004). [13] L. Frankfurt, V. Guzey, and M. Strikman, Leading twist

nuclear shadowing phenomena in hard processes with nuclei,Phys. Rep. 512, 255 (2012).

[14] J. Adams et al. (STAR Collaboration), Open Charm Yields in d þ Au Collisions atpffiffiffiffiffiffiffiffisNN¼ 200 GeV,Phys. Rev. Lett.

94, 062301 (2005).

[15] A. Adare et al. (PHENIX Collaboration), Cold-Nuclear-Matter Effects on Heavy-Quark Production in d þ Au Collisions at pffiffiffiffiffiffiffiffisNN¼ 200 GeV, Phys. Rev. Lett. 109,

242301 (2012).

[16] A. Adare et al. (PHENIX Collaboration), Cold-Nuclear-Matter Effects on Heavy-Quark Production at Forward and Backward Rapidity in d þ Au Collisions at pffiffiffiffiffiffiffiffisNN¼

200 GeV,Phys. Rev. Lett. 112, 252301 (2014).

[17] I. Helenius, K. J. Eskola, H. Honkanen, and C. A. Salgado, Impact-parameter dependent nuclear parton distribution functions: EPS09s and EKS98s and their applications in nuclear hard processes,J. High Energy Phys. 07 (2012) 073. [18] ALICE Collaboration, Measurement of Prompt D-Meson Production in p þ Pb Collisions at pffiffiffiffiffiffiffiffisNN¼ 5.02 TeV,

Phys. Rev. Lett. 113, 232301 (2014).

[19] J. Adam et al. (ALICE Collaboration), Centrality depend-ence of high-pTD meson suppression in Pb − Pb collisions

atpffiffiffiffiffiffiffiffisNN¼ 2.76 TeV,J. High Energy Phys. 11 (2015) 205.

[20] CMS Collaboration, Measurement of the Bþ Production Cross Section in pp Collisions atpffiffiffis¼ 7 TeV,Phys. Rev. Lett. 106, 112001 (2011).

[21] CMS Collaboration, Measurement of the B0 Production Cross Section in pp Collisions atpffiffiffis¼ 7 TeV,Phys. Rev. Lett. 106, 252001 (2011).

[22] CMS Collaboration, Measurement of the B0s production

cross section with Bffiffiffi 0s→ J=ψϕ decays in pp collisions at

s p

(7)

[23] ATLAS Collaboration, Measurement of the differential cross-section of Bffiffiffi þ meson production in pp collisions at

s p

¼ 7 TeV at ATLAS,J. High Energy Phys. 10 (2013) 042.

[24] LHCb Collaboration, Measurement of B meson production cross-sections in proton-proton collisions atpffiffiffis¼ 7 TeV,J. High Energy Phys. 08 (2013) 117.

[25] CMS Collaboration, Suppression of non-prompt J=ψ, promptffiffiffiffiffiffiffiffi J=ψ, and ϒð1SÞ in PbPb collisions at

sNN

p ¼ 2.76 TeV, J. High Energy Phys. 05 (2012) 063. [26] K. A. Olive et al. (Particle Data Group), Review of particle

physics,Chin. Phys. C 38, 090001 (2014).

[27] CMS Collaboration, The CMS experiment at the CERN LHC, J. Instrum. 3, S08004 (2008).

[28] CMS Collaboration, Report No. CMS-PAS-LUM-13-002, 2014.

[29] T. Sjöstrand, S. Mrenna, and P. Skands,PYTHIA6.4 physics and manual,J. High Energy Phys. 05 (2006) 026. [30] R. Field, in Proceedings of the 22nd Conference on Hadron

Collider Physics (HCP 2010), Toronto, 2010, edited by W. Trischuk (University of Toronto Press, Toronto, 2010). [31] S. Agostinelli et al. (GEANT4 Collaboration),GEANT4—A

simulation toolkit,Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).

[32] D. J. Lange, TheEVTGENparticle decay simulation package, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).

[33] E. Barberio, B. van Eijk, and Z. Was, Photos—A universal Monte Carlo for QED radiative corrections in decays, Comput. Phys. Commun. 66, 115 (1991).

[34] X.-N. Wang and M. Gyulassy,HIJING: A Monte Carlo model for multiple jet production in pp, p þ A, and AA collisions, Phys. Rev. D 44, 3501 (1991).

[35] CMS Collaboration, Prompt and non-prompt J=ψ produc-tion in pp collisions atpffiffiffis¼ 7 TeV,Eur. Phys. J. C 71, 1575 (2011).

[36] H. Voss, A. Höcker, J. Stelzer, and F. Tegenfeldt, Proc. Sci., ACAT (2007) 040 [arXiv:physics/0703039].

[37] M. Cacciari, S. Frixione, N. Houdeau, M. L. Mangano, P Nason, and G. Ridolfi, Theoretical predictions for charm and bottom production at the LHC,J. High Energy Phys. 10 (2012) 137.

[38] M. Cacciari, M. Greco, and P. Nason, The pT spectrum in

heavy-flavour hadroproduction, J. High Energy Phys. 05 (1998) 007.

[39] M. Cacciari and P. Nason, Charm cross sections for the Tevatron Run II,J. High Energy Phys. 09 (2003) 006. [40] CMS Collaboration, Measurements of inclusive W and Z

cross sections in pp collisions at pffiffiffis¼ 7 TeV, J. High Energy Phys. 01 (2011) 080.

[41] CMS Collaboration, Description and performance of track and primary-vertex reconstruction with the CMS tracker,J. Instrum. 9, P10009 (2014).

[42] M. L. Miller, K. Reygers, S. J. Sanders, and P. Steinberg, Glauber modeling in high-energy nuclear collisions,Annu. Rev. Nucl. Part. Sci. 57, 205 (2007).

V. Khachatryan,1 A. M. Sirunyan,1 A. Tumasyan,1W. Adam,2 E. Asilar,2 T. Bergauer,2 J. Brandstetter,2 E. Brondolin,2 M. Dragicevic,2 J. Erö,2M. Flechl,2 M. Friedl,2R. Frühwirth,2,bV. M. Ghete,2 C. Hartl,2N. Hörmann,2 J. Hrubec,2 M. Jeitler,2,bV. Knünz,2 A. König,2M. Krammer,2,bI. Krätschmer,2D. Liko,2T. Matsushita,2I. Mikulec,2D. Rabady,2,c

B. Rahbaran,2 H. Rohringer,2 J. Schieck,2,b R. Schöfbeck,2 J. Strauss,2 W. Treberer-Treberspurg,2 W. Waltenberger,2 C.-E. Wulz,2,b V. Mossolov,3 N. Shumeiko,3 J. Suarez Gonzalez,3S. Alderweireldt,4T. Cornelis,4 E. A. De Wolf,4 X. Janssen,4A. Knutsson,4J. Lauwers,4S. Luyckx,4S. Ochesanu,4R. Rougny,4M. Van De Klundert,4H. Van Haevermaet,4 P. Van Mechelen,4N. Van Remortel,4A. Van Spilbeeck,4S. Abu Zeid,5F. Blekman,5J. D’Hondt,5N. Daci,5I. De Bruyn,5 K. Deroover,5N. Heracleous,5J. Keaveney,5S. Lowette,5L. Moreels,5A. Olbrechts,5Q. Python,5D. Strom,5S. Tavernier,5 W. Van Doninck,5 P. Van Mulders,5G. P. Van Onsem,5 I. Van Parijs,5 P. Barria,6 H. Brun,6 C. Caillol,6 B. Clerbaux,6 G. De Lentdecker,6 H. Delannoy,6 G. Fasanella,6 L. Favart,6 A. P. R. Gay,6 A. Grebenyuk,6G. Karapostoli,6 T. Lenzi,6 A. Léonard,6T. Maerschalk,6A. Marinov,6L. Perniè,6A. Randle-conde,6T. Reis,6T. Seva,6C. Vander Velde,6P. Vanlaer,6 R. Yonamine,6 F. Zenoni,6 F. Zhang,6,dK. Beernaert,7 L. Benucci,7 A. Cimmino,7S. Crucy,7 D. Dobur,7 A. Fagot,7 G. Garcia,7M. Gul,7J. Mccartin,7A. A. Ocampo Rios,7D. Poyraz,7D. Ryckbosch,7S. Salva,7M. Sigamani,7N. Strobbe,7 M. Tytgat,7W. Van Driessche,7E. Yazgan,7N. Zaganidis,7S. Basegmez,8C. Beluffi,8,eO. Bondu,8S. Brochet,8G. Bruno,8 R. Castello,8 A. Caudron,8L. Ceard,8G. G. Da Silveira,8 C. Delaere,8 D. Favart,8 L. Forthomme,8 A. Giammanco,8,f J. Hollar,8A. Jafari,8 P. Jez,8M. Komm,8V. Lemaitre,8A. Mertens,8C. Nuttens,8L. Perrini,8A. Pin,8K. Piotrzkowski,8

A. Popov,8,gL. Quertenmont,8 M. Selvaggi,8 M. Vidal Marono,8 N. Beliy,9 G. H. Hammad,9 W. L. Aldá Júnior,10 G. A. Alves,10L. Brito,10M. Correa Martins Junior,10 M. Hamer,10C. Hensel,10C. Mora Herrera,10A. Moraes,10 M. E. Pol,10P. Rebello Teles,10E. Belchior Batista Das Chagas,11W. Carvalho,11J. Chinellato,11,hA. Custódio,11 E. M. Da Costa,11D. De Jesus Damiao,11C. De Oliveira Martins,11S. Fonseca De Souza,11L. M. Huertas Guativa,11 H. Malbouisson,11D. Matos Figueiredo,11L. Mundim,11H. Nogima,11W. L. Prado Da Silva,11A. Santoro,11A. Sznajder,11

E. J. Tonelli Manganote,11,h A. Vilela Pereira,11S. Ahuja,12a C. A. Bernardes,12bA. De Souza Santos,12b S. Dogra,12a

(8)

T. R. Fernandez Perez Tomei,12a E. M. Gregores,12bP. G. Mercadante,12b C. S. Moon,12a,iS. F. Novaes,12a Sandra S. Padula,12a D. Romero Abad,12a J. C. Ruiz Vargas,12a A. Aleksandrov,13 R. Hadjiiska,13P. Iaydjiev,13 M. Rodozov,13S. Stoykova,13G. Sultanov,13M. Vutova,13A. Dimitrov,14I. Glushkov,14L. Litov,14B. Pavlov,14P. Petkov,14

M. Ahmad,15J. G. Bian,15G. M. Chen,15 H. S. Chen,15M. Chen,15T. Cheng,15 R. Du,15C. H. Jiang,15R. Plestina,15,j F. Romeo,15S. M. Shaheen,15J. Tao,15C. Wang,15Z. Wang,15H. Zhang,15C. Asawatangtrakuldee,16Y. Ban,16Q. Li,16 S. Liu,16Y. Mao,16S. J. Qian,16D. Wang,16Z. Xu,16W. Zou,16C. Avila,17A. Cabrera,17L. F. Chaparro Sierra,17C. Florez,17 J. P. Gomez,17 B. Gomez Moreno,17 J. C. Sanabria,17N. Godinovic,18D. Lelas,18I. Puljak,18P. M. Ribeiro Cipriano,18

Z. Antunovic,19M. Kovac,19V. Brigljevic,20K. Kadija,20 J. Luetic,20S. Micanovic,20L. Sudic,20A. Attikis,21 G. Mavromanolakis,21J. Mousa,21C. Nicolaou,21F. Ptochos,21P. A. Razis,21H. Rykaczewski,21M. Bodlak,22M. Finger,22,k

M. Finger Jr.,22,kA. A. Abdelalim,23,l,m A. Awad,23,n,oM. El Sawy,23,p,oA. Mahrous,23,lA. Mohamed,23,mA. Radi,23,o,n B. Calpas,24M. Kadastik,24M. Murumaa,24M. Raidal,24A. Tiko,24 C. Veelken,24P. Eerola,25J. Pekkanen,25 M. Voutilainen,25J. Härkönen,26V. Karimäki,26R. Kinnunen,26T. Lampén,26K. Lassila-Perini,26S. Lehti,26T. Lindén,26

P. Luukka,26T. Mäenpää,26T. Peltola,26E. Tuominen,26J. Tuominiemi,26E. Tuovinen,26L. Wendland,26J. Talvitie,27 T. Tuuva,27M. Besancon,28F. Couderc,28M. Dejardin,28D. Denegri,28B. Fabbro,28J. L. Faure,28C. Favaro,28F. Ferri,28 S. Ganjour,28A. Givernaud,28P. Gras,28G. Hamel de Monchenault,28 P. Jarry,28E. Locci,28M. Machet,28 J. Malcles,28

J. Rander,28A. Rosowsky,28M. Titov,28 A. Zghiche,28I. Antropov,29S. Baffioni,29F. Beaudette,29 P. Busson,29 L. Cadamuro,29E. Chapon,29C. Charlot,29 T. Dahms,29 O. Davignon,29N. Filipovic,29A. Florent,29

R. Granier de Cassagnac,29S. Lisniak,29L. Mastrolorenzo,29P. Miné,29I. N. Naranjo,29M. Nguyen,29C. Ochando,29 G. Ortona,29P. Paganini,29P. Pigard,29S. Regnard,29R. Salerno,29J. B. Sauvan,29Y. Sirois,29T. Strebler,29Y. Yilmaz,29 A. Zabi,29J.-L. Agram,30,qJ. Andrea,30A. Aubin,30D. Bloch,30J.-M. Brom,30M. Buttignol,30E. C. Chabert,30N. Chanon,30 C. Collard,30E. Conte,30,qX. Coubez,30J.-C. Fontaine,30,qD. Gelé,30U. Goerlach,30C. Goetzmann,30A.-C. Le Bihan,30 J. A. Merlin,30,c K. Skovpen,30P. Van Hove,30S. Gadrat,31 S. Beauceron,32C. Bernet,32G. Boudoul,32E. Bouvier,32 C. A. Carrillo Montoya,32R. Chierici,32D. Contardo,32B. Courbon,32P. Depasse,32H. El Mamouni,32J. Fan,32J. Fay,32 S. Gascon,32M. Gouzevitch,32B. Ille,32F. Lagarde,32I. B. Laktineh,32M. Lethuillier,32L. Mirabito,32A. L. Pequegnot,32 S. Perries,32J. D. Ruiz Alvarez,32D. Sabes,32L. Sgandurra,32V. Sordini,32M. Vander Donckt,32P. Verdier,32S. Viret,32

H. Xiao,32T. Toriashvili,33,r D. Lomidze,34C. Autermann,35S. Beranek,35M. Edelhoff,35L. Feld,35 A. Heister,35 M. K. Kiesel,35K. Klein,35M. Lipinski,35A. Ostapchuk,35M. Preuten,35F. Raupach,35S. Schael,35J. F. Schulte,35 T. Verlage,35 H. Weber,35B. Wittmer,35V. Zhukov,35,gM. Ata,36M. Brodski,36E. Dietz-Laursonn,36 D. Duchardt,36

M. Endres,36M. Erdmann,36 S. Erdweg,36T. Esch,36R. Fischer,36A. Güth,36 T. Hebbeker,36C. Heidemann,36 K. Hoepfner,36D. Klingebiel,36S. Knutzen,36P. Kreuzer,36M. Merschmeyer,36A. Meyer,36P. Millet,36M. Olschewski,36

K. Padeken,36P. Papacz,36T. Pook,36M. Radziej,36H. Reithler,36M. Rieger,36F. Scheuch,36 L. Sonnenschein,36 D. Teyssier,36S. Thüer,36V. Cherepanov,37Y. Erdogan,37G. Flügge,37H. Geenen,37M. Geisler,37F. Hoehle,37B. Kargoll,37

T. Kress,37Y. Kuessel,37A. Künsken,37J. Lingemann,37,cA. Nehrkorn,37A. Nowack,37I. M. Nugent,37C. Pistone,37 O. Pooth,37A. Stahl,37M. Aldaya Martin,38I. Asin,38N. Bartosik,38O. Behnke,38U. Behrens,38A. J. Bell,38K. Borras,38 A. Burgmeier,38A. Cakir,38L. Calligaris,38A. Campbell,38S. Choudhury,38F. Costanza,38C. Diez Pardos,38G. Dolinska,38 S. Dooling,38T. Dorland,38G. Eckerlin,38D. Eckstein,38T. Eichhorn,38G. Flucke,38 E. Gallo,38,sJ. Garay Garcia,38 A. Geiser,38A. Gizhko,38P. Gunnellini,38J. Hauk,38M. Hempel,38,tH. Jung,38A. Kalogeropoulos,38O. Karacheban,38,t M. Kasemann,38P. Katsas,38J. Kieseler,38C. Kleinwort,38I. Korol,38W. Lange,38J. Leonard,38K. Lipka,38A. Lobanov,38

W. Lohmann,38,tR. Mankel,38I. Marfin,38,tI.-A. Melzer-Pellmann,38A. B. Meyer,38G. Mittag,38 J. Mnich,38 A. Mussgiller,38S. Naumann-Emme,38A. Nayak,38E. Ntomari,38H. Perrey,38D. Pitzl,38R. Placakyte,38A. Raspereza,38

B. Roland,38M. Ö. Sahin,38P. Saxena,38T. Schoerner-Sadenius,38M. Schröder,38C. Seitz,38S. Spannagel,38 K. D. Trippkewitz,38R. Walsh,38C. Wissing,38V. Blobel,39M. Centis Vignali,39A. R. Draeger,39J. Erfle,39E. Garutti,39 K. Goebel,39D. Gonzalez,39M. Görner,39J. Haller,39M. Hoffmann,39R. S. Höing,39A. Junkes,39R. Klanner,39R. Kogler,39 T. Lapsien,39T. Lenz,39I. Marchesini,39D. Marconi,39M. Meyer,39D. Nowatschin,39J. Ott,39F. Pantaleo,39,cT. Peiffer,39 A. Perieanu,39N. Pietsch,39J. Poehlsen,39 D. Rathjens,39C. Sander,39H. Schettler,39P. Schleper,39E. Schlieckau,39 A. Schmidt,39J. Schwandt,39M. Seidel,39V. Sola,39H. Stadie,39G. Steinbrück,39H. Tholen,39D. Troendle,39E. Usai,39 L. Vanelderen,39A. Vanhoefer,39B. Vormwald,39M. Akbiyik,40C. Barth,40C. Baus,40J. Berger,40C. Böser,40E. Butz,40 T. Chwalek,40F. Colombo,40W. De Boer,40A. Descroix,40A. Dierlamm,40S. Fink,40F. Frensch,40M. Giffels,40A. Gilbert,40

(9)

H. Mildner,40M. U. Mozer,40T. Müller,40Th. Müller,40M. Plagge,40G. Quast,40K. Rabbertz,40S. Röcker,40F. Roscher,40 H. J. Simonis,40F. M. Stober,40R. Ulrich,40J. Wagner-Kuhr,40S. Wayand,40M. Weber,40T. Weiler,40C. Wöhrmann,40

R. Wolf,40G. Anagnostou,41G. Daskalakis,41T. Geralis,41V. A. Giakoumopoulou,41A. Kyriakis,41D. Loukas,41 A. Psallidas,41I. Topsis-Giotis,41A. Agapitos,42S. Kesisoglou,42A. Panagiotou,42N. Saoulidou,42E. Tziaferi,42 I. Evangelou,43 G. Flouris,43 C. Foudas,43 P. Kokkas,43N. Loukas,43N. Manthos,43I. Papadopoulos,43E. Paradas,43

J. Strologas,43G. Bencze,44C. Hajdu,44A. Hazi,44P. Hidas,44D. Horvath,44,u F. Sikler,44V. Veszpremi,44 G. Vesztergombi,44,v A. J. Zsigmond,44N. Beni,45S. Czellar,45J. Karancsi,45,w J. Molnar,45Z. Szillasi,45M. Bartók,46,x A. Makovec,46P. Raics,46Z. L. Trocsanyi,46B. Ujvari,46P. Mal,47K. Mandal,47N. Sahoo,47S. K. Swain,47S. Bansal,48 S. B. Beri,48V. Bhatnagar,48R. Chawla,48R. Gupta,48U. Bhawandeep,48A. K. Kalsi,48A. Kaur,48M. Kaur,48R. Kumar,48 A. Mehta,48M. Mittal,48J. B. Singh,48G. Walia,48Ashok Kumar,49A. Bhardwaj,49B. C. Choudhary,49R. B. Garg,49

A. Kumar,49S. Malhotra,49M. Naimuddin,49N. Nishu,49K. Ranjan,49R. Sharma,49V. Sharma,49S. Banerjee,50 S. Bhattacharya,50K. Chatterjee,50S. Dey,50S. Dutta,50Sa. Jain,50N. Majumdar,50A. Modak,50 K. Mondal,50 S. Mukherjee,50S. Mukhopadhyay,50A. Roy,50D. Roy,50S. Roy Chowdhury,50S. Sarkar,50M. Sharan,50A. Abdulsalam,51 R. Chudasama,51D. Dutta,51V. Jha,51V. Kumar,51A. K. Mohanty,51,c L. M. Pant,51P. Shukla,51A. Topkar,51T. Aziz,52 S. Banerjee,52S. Bhowmik,52,yR. M. Chatterjee,52R. K. Dewanjee,52S. Dugad,52S. Ganguly,52S. Ghosh,52M. Guchait,52

A. Gurtu,52,z G. Kole,52S. Kumar,52 B. Mahakud,52M. Maity,52,yG. Majumder,52K. Mazumdar,52S. Mitra,52 G. B. Mohanty,52 B. Parida,52T. Sarkar,52,y K. Sudhakar,52N. Sur,52B. Sutar,52N. Wickramage,52,aaS. Chauhan,53

S. Dube,53S. Sharma,53 H. Bakhshiansohi,54H. Behnamian,54S. M. Etesami,54,bb A. Fahim,54,cc R. Goldouzian,54 M. Khakzad,54M. Mohammadi Najafabadi,54M. Naseri,54S. Paktinat Mehdiabadi,54 F. Rezaei Hosseinabadi,54 B. Safarzadeh,54,dd M. Zeinali,54M. Felcini,55 M. Grunewald,55M. Abbrescia,56a,56b C. Calabria,56a,56b C. Caputo,56a,56b A. Colaleo,56a D. Creanza,56a,56c L. Cristella,56a,56b N. De Filippis,56a,56cM. De Palma,56a,56bL. Fiore,56a G. Iaselli,56a,56c

G. Maggi,56a,56c M. Maggi,56a G. Miniello,56a,56bS. My,56a,56c S. Nuzzo,56a,56bA. Pompili,56a,56b G. Pugliese,56a,56c R. Radogna,56a,56bA. Ranieri,56a G. Selvaggi,56a,56b L. Silvestris,56a,c R. Venditti,56a,56b P. Verwilligen,56a G. Abbiendi,57a

C. Battilana,57a,c A. C. Benvenuti,57a D. Bonacorsi,57a,57bS. Braibant-Giacomelli,57a,57bL. Brigliadori,57a,57b R. Campanini,57a,57b P. Capiluppi,57a,57bA. Castro,57a,57bF. R. Cavallo,57a S. S. Chhibra,57a,57b G. Codispoti,57a,57b M. Cuffiani,57a,57b G. M. Dallavalle,57a F. Fabbri,57a A. Fanfani,57a,57bD. Fasanella,57a,57b P. Giacomelli,57a C. Grandi,57a L. Guiducci,57a,57bS. Marcellini,57aG. Masetti,57aA. Montanari,57aF. L. Navarria,57a,57bA. Perrotta,57aA. M. Rossi,57a,57b

T. Rovelli,57a,57bG. P. Siroli,57a,57bN. Tosi,57a,57b R. Travaglini,57a,57b G. Cappello,58aM. Chiorboli,58a,58b S. Costa,58a,58b F. Giordano,58a,58bR. Potenza,58a,58b A. Tricomi,58a,58bC. Tuve,58a,58b G. Barbagli,59a V. Ciulli,59a,59bC. Civinini,59a R. D’Alessandro,59a,59bE. Focardi,59a,59b S. Gonzi,59a,59bV. Gori,59a,59bP. Lenzi,59a,59bM. Meschini,59a S. Paoletti,59a G. Sguazzoni,59a A. Tropiano,59a,59bL. Viliani,59a,59bL. Benussi,60S. Bianco,60F. Fabbri,60D. Piccolo,60F. Primavera,60

V. Calvelli,61a,61b F. Ferro,61a M. Lo Vetere,61a,61bM. R. Monge,61a,61b E. Robutti,61a S. Tosi,61a,61bL. Brianza,62a M. E. Dinardo,62a,62b S. Fiorendi,62a,62bS. Gennai,62a R. Gerosa,62a,62bA. Ghezzi,62a,62bP. Govoni,62a,62b S. Malvezzi,62a R. A. Manzoni,62a,62bB. Marzocchi,62a,62b,cD. Menasce,62aL. Moroni,62aM. Paganoni,62a,62bD. Pedrini,62aS. Ragazzi,62a,62b

N. Redaelli,62a T. Tabarelli de Fatis,62a,62bS. Buontempo,63a N. Cavallo,63a,63c S. Di Guida,63a,63d,c M. Esposito,63a,63b F. Fabozzi,63a,63c A. O. M. Iorio,63a,63bG. Lanza,63a L. Lista,63a S. Meola,63a,63d,c M. Merola,63a P. Paolucci,63a,c

C. Sciacca,63a,63bF. Thyssen,63a P. Azzi,64a,c N. Bacchetta,64aM. Bellato,64aL. Benato,64a,64b D. Bisello,64a,64b A. Boletti,64a,64bR. Carlin,64a,64bP. Checchia,64aM. Dall’Osso,64a,64b,cT. Dorigo,64aF. Gasparini,64a,64bU. Gasparini,64a,64b

A. Gozzelino,64a K. Kanishchev,64a,64c S. Lacaprara,64aM. Margoni,64a,64b A. T. Meneguzzo,64a,64b J. Pazzini,64a,64b N. Pozzobon,64a,64bP. Ronchese,64a,64bF. Simonetto,64a,64bE. Torassa,64a M. Tosi,64a,64bS. Vanini,64a,64b S. Ventura,64a M. Zanetti,64a P. Zotto,64a,64b A. Zucchetta,64a,64b,cG. Zumerle,64a,64bA. Braghieri,65a A. Magnani,65a P. Montagna,65a,65b S. P. Ratti,65a,65bV. Re,65aC. Riccardi,65a,65bP. Salvini,65aI. Vai,65aP. Vitulo,65a,65bL. Alunni Solestizi,66a,66bM. Biasini,66a,66b G. M. Bilei,66a D. Ciangottini,66a,66b,c L. Fanò,66a,66bP. Lariccia,66a,66b G. Mantovani,66a,66b M. Menichelli,66a A. Saha,66a

A. Santocchia,66a,66bA. Spiezia,66a,66bK. Androsov,67a,eeP. Azzurri,67a G. Bagliesi,67a J. Bernardini,67a T. Boccali,67a G. Broccolo,67a,67c R. Castaldi,67a M. A. Ciocci,67a,eeR. Dell’Orso,67a S. Donato,67a,67c,c G. Fedi,67a L. Foà,67a,67c,a A. Giassi,67a M. T. Grippo,67a,ee F. Ligabue,67a,67c T. Lomtadze,67a L. Martini,67a,67b A. Messineo,67a,67bF. Palla,67a A. Rizzi,67a,67bA. Savoy-Navarro,67a,ffA. T. Serban,67aP. Spagnolo,67aP. Squillacioti,67a,eeR. Tenchini,67aG. Tonelli,67a,67b

A. Venturi,67a P. G. Verdini,67a L. Barone,68a,68bF. Cavallari,68aG. D’imperio,68a,68b,c D. Del Re,68a,68b M. Diemoz,68a S. Gelli,68a,68bC. Jorda,68a E. Longo,68a,68b F. Margaroli,68a,68bP. Meridiani,68aG. Organtini,68a,68bR. Paramatti,68a

(10)

F. Preiato,68a,68b S. Rahatlou,68a,68b C. Rovelli,68a F. Santanastasio,68a,68b P. Traczyk,68a,68b,c N. Amapane,69a,69b R. Arcidiacono,69a,69c,c S. Argiro,69a,69b M. Arneodo,69a,69cR. Bellan,69a,69bC. Biino,69a N. Cartiglia,69a M. Costa,69a,69b

R. Covarelli,69a,69b A. Degano,69a,69bN. Demaria,69a L. Finco,69a,69b,c B. Kiani,69a,69b C. Mariotti,69aS. Maselli,69a E. Migliore,69a,69bV. Monaco,69a,69bE. Monteil,69a,69bM. Musich,69aM. M. Obertino,69a,69bL. Pacher,69a,69bN. Pastrone,69a

M. Pelliccioni,69aG. L. Pinna Angioni,69a,69bF. Ravera,69a,69bA. Romero,69a,69b M. Ruspa,69a,69c R. Sacchi,69a,69b A. Solano,69a,69bA. Staiano,69aU. Tamponi,69a S. Belforte,70a V. Candelise,70a,70b,c M. Casarsa,70a F. Cossutti,70a G. Della Ricca,70a,70bB. Gobbo,70aC. La Licata,70a,70bM. Marone,70a,70bA. Schizzi,70a,70bA. Zanetti,70aA. Kropivnitskaya,71

S. K. Nam,71D. H. Kim,72G. N. Kim,72M. S. Kim,72D. J. Kong,72S. Lee,72Y. D. Oh,72A. Sakharov,72D. C. Son,72 J. A. Brochero Cifuentes,73H. Kim,73T. J. Kim,73M. S. Ryu,73S. Song,74S. Choi,75Y. Go,75D. Gyun,75B. Hong,75M. Jo,75 H. Kim,75Y. Kim,75B. Lee,75K. Lee,75K. S. Lee,75S. Lee,75S. K. Park,75Y. Roh,75H. D. Yoo,76M. Choi,77H. Kim,77 J. H. Kim,77J. S. H. Lee,77I. C. Park,77G. Ryu,77Y. Choi,78Y. K. Choi,78J. Goh,78D. Kim,78E. Kwon,78J. Lee,78I. Yu,78 A. Juodagalvis,79J. Vaitkus,79I. Ahmed,80Z. A. Ibrahim,80J. R. Komaragiri,80M. A. B. Md Ali,80,ggF. Mohamad Idris,80,hh

W. A. T. Wan Abdullah,80M. N. Yusli,80E. Casimiro Linares,81H. Castilla-Valdez,81E. De La Cruz-Burelo,81 I. Heredia-de La Cruz,81,iiA. Hernandez-Almada,81R. Lopez-Fernandez,81A. Sanchez-Hernandez,81S. Carrillo Moreno,82

F. Vazquez Valencia,82 I. Pedraza,83H. A. Salazar Ibarguen,83A. Morelos Pineda,84D. Krofcheck,85P. H. Butler,86 A. Ahmad,87M. Ahmad,87Q. Hassan,87H. R. Hoorani,87W. A. Khan,87 T. Khurshid,87 M. Shoaib,87H. Bialkowska,88

M. Bluj,88B. Boimska,88T. Frueboes,88M. Górski,88M. Kazana,88K. Nawrocki,88K. Romanowska-Rybinska,88 M. Szleper,88P. Zalewski,88G. Brona,89K. Bunkowski,89K. Doroba,89A. Kalinowski,89M. Konecki,89J. Krolikowski,89 M. Misiura,89M. Olszewski,89M. Walczak,89P. Bargassa,90C. Beirão Da Cruz E Silva,90A. Di Francesco,90P. Faccioli,90

P. G. Ferreira Parracho,90M. Gallinaro,90N. Leonardo,90L. Lloret Iglesias,90F. Nguyen,90J. Rodrigues Antunes,90 J. Seixas,90O. Toldaiev,90D. Vadruccio,90J. Varela,90P. Vischia,90S. Afanasiev,91P. Bunin,91M. Gavrilenko,91 I. Golutvin,91I. Gorbunov,91A. Kamenev,91V. Karjavin,91V. Konoplyanikov,91A. Lanev,91A. Malakhov,91V. Matveev,91,jj

P. Moisenz,91V. Palichik,91V. Perelygin,91S. Shmatov,91S. Shulha,91N. Skatchkov,91V. Smirnov,91A. Zarubin,91 V. Golovtsov,92Y. Ivanov,92V. Kim,92,kk E. Kuznetsova,92P. Levchenko,92V. Murzin,92V. Oreshkin,92I. Smirnov,92 V. Sulimov,92 L. Uvarov,92S. Vavilov,92A. Vorobyev,92 Yu. Andreev,93A. Dermenev,93S. Gninenko,93N. Golubev,93 A. Karneyeu,93M. Kirsanov,93N. Krasnikov,93A. Pashenkov,93D. Tlisov,93A. Toropin,93V. Epshteyn,94V. Gavrilov,94 N. Lychkovskaya,94V. Popov,94I. Pozdnyakov,94G. Safronov,94A. Spiridonov,94E. Vlasov,94A. Zhokin,94A. Bylinkin,95

V. Andreev,96M. Azarkin,96,ll I. Dremin,96,ll M. Kirakosyan,96A. Leonidov,96,ll G. Mesyats,96 S. V. Rusakov,96 A. Vinogradov,96A. Baskakov,97A. Belyaev,97E. Boos,97A. Demiyanov,97A. Ershov,97A. Gribushin,97O. Kodolova,97 V. Korotkikh,97I. Lokhtin,97I. Myagkov,97 S. Obraztsov,97S. Petrushanko,97V. Savrin,97A. Snigirev,97I. Vardanyan,97 I. Azhgirey,98I. Bayshev,98S. Bitioukov,98V. Kachanov,98A. Kalinin,98D. Konstantinov,98V. Krychkine,98V. Petrov,98

R. Ryutin,98A. Sobol,98L. Tourtchanovitch,98S. Troshin,98 N. Tyurin,98 A. Uzunian,98A. Volkov,98P. Adzic,99,mm M. Ekmedzic,99J. Milosevic,99V. Rekovic,99 J. Alcaraz Maestre,100E. Calvo,100 M. Cerrada,100M. Chamizo Llatas,100

N. Colino,100 B. De La Cruz,100A. Delgado Peris,100D. Domínguez Vázquez,100A. Escalante Del Valle,100 C. Fernandez Bedoya,100 J. P. Fernández Ramos,100J. Flix,100M. C. Fouz,100 P. Garcia-Abia,100O. Gonzalez Lopez,100

S. Goy Lopez,100 J. M. Hernandez,100 M. I. Josa,100 E. Navarro De Martino,100 A. Pérez-Calero Yzquierdo,100 J. Puerta Pelayo,100 A. Quintario Olmeda,100I. Redondo,100 L. Romero,100M. S. Soares,100C. Albajar,101 J. F. de Trocóniz,101 M. Missiroli,101D. Moran,101J. Cuevas,102J. Fernandez Menendez,102 S. Folgueras,102

I. Gonzalez Caballero,102E. Palencia Cortezon,102 J. M. Vizan Garcia,102 I. J. Cabrillo,103 A. Calderon,103 J. R. Castiñeiras De Saa,103 P. De Castro Manzano,103 J. Duarte Campderros,103M. Fernandez,103J. Garcia-Ferrero,103 G. Gomez,103A. Lopez Virto,103J. Marco,103R. Marco,103C. Martinez Rivero,103F. Matorras,103F. J. Munoz Sanchez,103

J. Piedra Gomez,103T. Rodrigo,103 A. Y. Rodríguez-Marrero,103A. Ruiz-Jimeno,103 L. Scodellaro,103 I. Vila,103 R. Vilar Cortabitarte,103 D. Abbaneo,104E. Auffray,104G. Auzinger,104M. Bachtis,104 P. Baillon,104A. H. Ball,104 D. Barney,104A. Benaglia,104J. Bendavid,104L. Benhabib,104J. F. Benitez,104G. M. Berruti,104P. Bloch,104A. Bocci,104

A. Bonato,104C. Botta,104H. Breuker,104T. Camporesi,104 G. Cerminara,104S. Colafranceschi,104,nn M. D’Alfonso,104 D. d’Enterria,104 A. Dabrowski,104V. Daponte,104A. David,104M. De Gruttola,104F. De Guio,104 A. De Roeck,104 S. De Visscher,104E. Di Marco,104M. Dobson,104M. Dordevic,104B. Dorney,104T. du Pree,104M. Dünser,104N. Dupont,104

A. Elliott-Peisert,104 G. Franzoni,104W. Funk,104 D. Gigi,104K. Gill,104 D. Giordano,104 M. Girone,104 F. Glege,104 R. Guida,104 S. Gundacker,104M. Guthoff,104J. Hammer,104 P. Harris,104J. Hegeman,104 V. Innocente,104P. Janot,104

(11)

H. Kirschenmann,104M. J. Kortelainen,104K. Kousouris,104K. Krajczar,104P. Lecoq,104C. Lourenço,104M. T. Lucchini,104 N. Magini,104L. Malgeri,104 M. Mannelli,104A. Martelli,104L. Masetti,104F. Meijers,104 S. Mersi,104 E. Meschi,104 F. Moortgat,104 S. Morovic,104M. Mulders,104 M. V. Nemallapudi,104H. Neugebauer,104S. Orfanelli,104,oo L. Orsini,104

L. Pape,104 E. Perez,104 M. Peruzzi,104 A. Petrilli,104 G. Petrucciani,104 A. Pfeiffer,104D. Piparo,104 A. Racz,104 G. Rolandi,104,pp M. Rovere,104M. Ruan,104 H. Sakulin,104 C. Schäfer,104 C. Schwick,104 A. Sharma,104P. Silva,104 M. Simon,104 P. Sphicas,104,qq D. Spiga,104 J. Steggemann,104 B. Stieger,104M. Stoye,104 Y. Takahashi,104 D. Treille,104

A. Triossi,104 A. Tsirou,104G. I. Veres,104,vN. Wardle,104 H. K. Wöhri,104A. Zagozdzinska,104,rrW. D. Zeuner,104 W. Bertl,105 K. Deiters,105 W. Erdmann,105R. Horisberger,105 Q. Ingram,105 H. C. Kaestli,105D. Kotlinski,105 U. Langenegger,105D. Renker,105T. Rohe,105F. Bachmair,106L. Bäni,106L. Bianchini,106M. A. Buchmann,106B. Casal,106

G. Dissertori,106 M. Dittmar,106M. Donegà,106 P. Eller,106 C. Grab,106C. Heidegger,106 D. Hits,106 J. Hoss,106 G. Kasieczka,106 W. Lustermann,106B. Mangano,106 M. Marionneau,106 P. Martinez Ruiz del Arbol,106

M. Masciovecchio,106D. Meister,106F. Micheli,106P. Musella,106F. Nessi-Tedaldi,106F. Pandolfi,106J. Pata,106F. Pauss,106 L. Perrozzi,106 M. Quittnat,106M. Rossini,106A. Starodumov,106,ssM. Takahashi,106 V. R. Tavolaro,106 K. Theofilatos,106

R. Wallny,106T. K. Aarrestad,107C. Amsler,107,tt L. Caminada,107M. F. Canelli,107 V. Chiochia,107A. De Cosa,107 C. Galloni,107A. Hinzmann,107T. Hreus,107 B. Kilminster,107 C. Lange,107J. Ngadiuba,107 D. Pinna,107P. Robmann,107

F. J. Ronga,107D. Salerno,107 Y. Yang,107M. Cardaci,108K. H. Chen,108 T. H. Doan,108Sh. Jain,108 R. Khurana,108 M. Konyushikhin,108C. M. Kuo,108 W. Lin,108Y. J. Lu,108S. S. Yu,108 Arun Kumar,109R. Bartek,109P. Chang,109 Y. H. Chang,109Y. W. Chang,109 Y. Chao,109 K. F. Chen,109 P. H. Chen,109 C. Dietz,109 F. Fiori,109U. Grundler,109 W.-S. Hou,109 Y. Hsiung,109Y. F. Liu,109R.-S. Lu,109 M. Miñano Moya,109 E. Petrakou,109J. F. Tsai,109 Y. M. Tzeng,109 B. Asavapibhop,110K. Kovitanggoon,110G. Singh,110N. Srimanobhas,110N. Suwonjandee,110A. Adiguzel,111S. Cerci,111,uu Z. S. Demiroglu,111 C. Dozen,111I. Dumanoglu,111 S. Girgis,111 G. Gokbulut,111Y. Guler,111E. Gurpinar,111I. Hos,111 E. E. Kangal,111,vvA. Kayis Topaksu,111G. Onengut,111,wwK. Ozdemir,111,xxS. Ozturk,111,yyB. Tali,111,uuH. Topakli,111,yy

M. Vergili,111C. Zorbilmez,111I. V. Akin,112 B. Bilin,112S. Bilmis,112B. Isildak,112,zz G. Karapinar,112,aaaM. Yalvac,112 M. Zeyrek,112E. A. Albayrak,113,bbbE. Gülmez,113 M. Kaya,113,cccO. Kaya,113,dddT. Yetkin,113,eee K. Cankocak,114

S. Sen,114,fff F. I. Vardarlı,114 B. Grynyov,115 L. Levchuk,116P. Sorokin,116 R. Aggleton,117F. Ball,117L. Beck,117 J. J. Brooke,117E. Clement,117D. Cussans,117H. Flacher,117J. Goldstein,117M. Grimes,117G. P. Heath,117H. F. Heath,117 J. Jacob,117L. Kreczko,117C. Lucas,117Z. Meng,117D. M. Newbold,117,gggS. Paramesvaran,117A. Poll,117T. Sakuma,117 S. Seif El Nasr-storey,117S. Senkin,117D. Smith,117V. J. Smith,117A. Belyaev,118,hhhC. Brew,118R. M. Brown,118D. Cieri,118

D. J. A. Cockerill,118J. A. Coughlan,118K. Harder,118 S. Harper,118E. Olaiya,118 D. Petyt,118

C. H. Shepherd-Themistocleous,118A. Thea,118 L. Thomas,118I. R. Tomalin,118T. Williams,118 W. J. Womersley,118 S. D. Worm,118M. Baber,119R. Bainbridge,119O. Buchmuller,119A. Bundock,119D. Burton,119S. Casasso,119M. Citron,119

D. Colling,119 L. Corpe,119N. Cripps,119 P. Dauncey,119G. Davies,119A. De Wit,119 M. Della Negra,119P. Dunne,119 A. Elwood,119W. Ferguson,119J. Fulcher,119D. Futyan,119G. Hall,119G. Iles,119M. Kenzie,119R. Lane,119R. Lucas,119,ggg

L. Lyons,119A.-M. Magnan,119S. Malik,119J. Nash,119A. Nikitenko,119,ss J. Pela,119M. Pesaresi,119 K. Petridis,119 D. M. Raymond,119A. Richards,119 A. Rose,119C. Seez,119 A. Tapper,119K. Uchida,119 M. Vazquez Acosta,119,iii T. Virdee,119S. C. Zenz,119J. E. Cole,120P. R. Hobson,120A. Khan,120P. Kyberd,120D. Leggat,120D. Leslie,120I. D. Reid,120 P. Symonds,120L. Teodorescu,120M. Turner,120A. Borzou,121K. Call,121J. Dittmann,121K. Hatakeyama,121A. Kasmi,121

H. Liu,121 N. Pastika,121O. Charaf,122 S. I. Cooper,122 C. Henderson,122 P. Rumerio,122A. Avetisyan,123T. Bose,123 C. Fantasia,123D. Gastler,123P. Lawson,123D. Rankin,123C. Richardson,123J. Rohlf,123J. St. John,123L. Sulak,123D. Zou,123 J. Alimena,124E. Berry,124S. Bhattacharya,124D. Cutts,124N. Dhingra,124A. Ferapontov,124A. Garabedian,124J. Hakala,124

U. Heintz,124E. Laird,124G. Landsberg,124Z. Mao,124M. Narain,124S. Piperov,124 S. Sagir,124 T. Sinthuprasith,124 R. Syarif,124R. Breedon,125G. Breto,125M. Calderon De La Barca Sanchez,125S. Chauhan,125M. Chertok,125J. Conway,125 R. Conway,125P. T. Cox,125R. Erbacher,125M. Gardner,125W. Ko,125R. Lander,125M. Mulhearn,125D. Pellett,125J. Pilot,125

F. Ricci-Tam,125S. Shalhout,125J. Smith,125M. Squires,125 D. Stolp,125 M. Tripathi,125S. Wilbur,125R. Yohay,125 R. Cousins,126 P. Everaerts,126 C. Farrell,126 J. Hauser,126M. Ignatenko,126 D. Saltzberg,126E. Takasugi,126V. Valuev,126

M. Weber,126 K. Burt,127R. Clare,127J. Ellison,127J. W. Gary,127 G. Hanson,127 J. Heilman,127M. Ivova Paneva,127 P. Jandir,127E. Kennedy,127 F. Lacroix,127 O. R. Long,127A. Luthra,127 M. Malberti,127M. Olmedo Negrete,127

A. Shrinivas,127 H. Wei,127S. Wimpenny,127 B. R. Yates,127J. G. Branson,128 G. B. Cerati,128S. Cittolin,128 R. T. D’Agnolo,128A. Holzner,128R. Kelley,128D. Klein,128J. Letts,128I. Macneill,128D. Olivito,128S. Padhi,128M. Pieri,128

(12)

M. Sani,128 V. Sharma,128S. Simon,128 M. Tadel,128 A. Vartak,128S. Wasserbaech,128,jjj C. Welke,128 F. Würthwein,128 A. Yagil,128G. Zevi Della Porta,128 D. Barge,129J. Bradmiller-Feld,129 C. Campagnari,129A. Dishaw,129 V. Dutta,129 K. Flowers,129M. Franco Sevilla,129 P. Geffert,129 C. George,129 F. Golf,129 L. Gouskos,129 J. Gran,129 J. Incandela,129

C. Justus,129 N. Mccoll,129 S. D. Mullin,129J. Richman,129D. Stuart,129I. Suarez,129 W. To,129C. West,129J. Yoo,129 D. Anderson,130A. Apresyan,130A. Bornheim,130 J. Bunn,130 Y. Chen,130 J. Duarte,130A. Mott,130H. B. Newman,130 C. Pena,130M. Pierini,130M. Spiropulu,130 J. R. Vlimant,130S. Xie,130R. Y. Zhu,130 M. B. Andrews,131V. Azzolini,131

A. Calamba,131 B. Carlson,131T. Ferguson,131M. Paulini,131J. Russ,131M. Sun,131 H. Vogel,131 I. Vorobiev,131 J. P. Cumalat,132W. T. Ford,132A. Gaz,132F. Jensen,132A. Johnson,132M. Krohn,132T. Mulholland,132 U. Nauenberg,132

K. Stenson,132 S. R. Wagner,132J. Alexander,133A. Chatterjee,133J. Chaves,133 J. Chu,133 S. Dittmer,133N. Eggert,133 N. Mirman,133G. Nicolas Kaufman,133J. R. Patterson,133A. Rinkevicius,133 A. Ryd,133 L. Skinnari,133 L. Soffi,133 W. Sun,133S. M. Tan,133W. D. Teo,133J. Thom,133J. Thompson,133J. Tucker,133Y. Weng,133P. Wittich,133S. Abdullin,134

M. Albrow,134 J. Anderson,134G. Apollinari,134L. A. T. Bauerdick,134A. Beretvas,134J. Berryhill,134P. C. Bhat,134 G. Bolla,134 K. Burkett,134J. N. Butler,134H. W. K. Cheung,134 F. Chlebana,134 S. Cihangir,134V. D. Elvira,134I. Fisk,134

J. Freeman,134E. Gottschalk,134L. Gray,134 D. Green,134 S. Grünendahl,134O. Gutsche,134J. Hanlon,134D. Hare,134 R. M. Harris,134J. Hirschauer,134B. Hooberman,134Z. Hu,134S. Jindariani,134M. Johnson,134U. Joshi,134A. W. Jung,134 B. Klima,134B. Kreis,134S. Kwan,134,aS. Lammel,134J. Linacre,134D. Lincoln,134R. Lipton,134T. Liu,134R. Lopes De Sá,134

J. Lykken,134K. Maeshima,134J. M. Marraffino,134 V. I. Martinez Outschoorn,134S. Maruyama,134D. Mason,134 P. McBride,134P. Merkel,134 K. Mishra,134S. Mrenna,134 S. Nahn,134C. Newman-Holmes,134V. O’Dell,134K. Pedro,134

O. Prokofyev,134G. Rakness,134E. Sexton-Kennedy,134A. Soha,134 W. J. Spalding,134L. Spiegel,134L. Taylor,134 S. Tkaczyk,134N. V. Tran,134 L. Uplegger,134E. W. Vaandering,134C. Vernieri,134M. Verzocchi,134R. Vidal,134 H. A. Weber,134 A. Whitbeck,134F. Yang,134D. Acosta,135 P. Avery,135P. Bortignon,135D. Bourilkov,135 A. Carnes,135 M. Carver,135D. Curry,135 S. Das,135 G. P. Di Giovanni,135R. D. Field,135I. K. Furic,135J. Hugon,135 J. Konigsberg,135 A. Korytov,135J. F. Low,135P. Ma,135 K. Matchev,135H. Mei,135P. Milenovic,135,kkkG. Mitselmakher,135 D. Rank,135

R. Rossin,135L. Shchutska,135 M. Snowball,135D. Sperka,135 N. Terentyev,135J. Wang,135 S. Wang,135J. Yelton,135 S. Hewamanage,136 S. Linn,136 P. Markowitz,136G. Martinez,136 J. L. Rodriguez,136A. Ackert,137J. R. Adams,137 T. Adams,137A. Askew,137J. Bochenek,137B. Diamond,137J. Haas,137S. Hagopian,137V. Hagopian,137K. F. Johnson,137

A. Khatiwada,137H. Prosper,137V. Veeraraghavan,137 M. Weinberg,137M. M. Baarmand,138V. Bhopatkar,138 M. Hohlmann,138H. Kalakhety,138D. Noonan,138 T. Roy,138F. Yumiceva,138M. R. Adams,139 L. Apanasevich,139 D. Berry,139R. R. Betts,139 I. Bucinskaite,139R. Cavanaugh,139O. Evdokimov,139L. Gauthier,139 C. E. Gerber,139 D. J. Hofman,139P. Kurt,139C. O’Brien,139I. D. Sandoval Gonzalez,139C. Silkworth,139P. Turner,139N. Varelas,139Z. Wu,139

M. Zakaria,139 B. Bilki,140,lllW. Clarida,140K. Dilsiz,140 S. Durgut,140R. P. Gandrajula,140 M. Haytmyradov,140 V. Khristenko,140J.-P. Merlo,140H. Mermerkaya,140,mmmA. Mestvirishvili,140A. Moeller,140J. Nachtman,140H. Ogul,140

Y. Onel,140F. Ozok,140,bbbA. Penzo,140C. Snyder,140P. Tan,140E. Tiras,140 J. Wetzel,140K. Yi,140I. Anderson,141 B. A. Barnett,141 B. Blumenfeld,141 D. Fehling,141L. Feng,141 A. V. Gritsan,141P. Maksimovic,141 C. Martin,141 M. Osherson,141M. Swartz,141M. Xiao,141 Y. Xin,141C. You,141P. Baringer,142A. Bean,142G. Benelli,142 C. Bruner,142 R. P. Kenny III,142D. Majumder,142M. Malek,142M. Murray,142S. Sanders,142R. Stringer,142Q. Wang,142A. Ivanov,143 K. Kaadze,143S. Khalil,143M. Makouski,143Y. Maravin,143A. Mohammadi,143L. K. Saini,143N. Skhirtladze,143S. Toda,143 D. Lange,144F. Rebassoo,144D. Wright,144C. Anelli,145A. Baden,145O. Baron,145A. Belloni,145B. Calvert,145S. C. Eno,145 C. Ferraioli,145 J. A. Gomez,145 N. J. Hadley,145S. Jabeen,145R. G. Kellogg,145 T. Kolberg,145J. Kunkle,145 Y. Lu,145 A. C. Mignerey,145Y. H. Shin,145 A. Skuja,145M. B. Tonjes,145S. C. Tonwar,145 A. Apyan,146R. Barbieri,146A. Baty,146

K. Bierwagen,146S. Brandt,146W. Busza,146 I. A. Cali,146 Z. Demiragli,146L. Di Matteo,146 G. Gomez Ceballos,146 M. Goncharov,146D. Gulhan,146Y. Iiyama,146G. M. Innocenti,146M. Klute,146D. Kovalskyi,146Y. S. Lai,146Y.-J. Lee,146 A. Levin,146P. D. Luckey,146A. C. Marini,146C. Mcginn,146C. Mironov,146X. Niu,146C. Paus,146D. Ralph,146C. Roland,146 G. Roland,146J. Salfeld-Nebgen,146 G. S. F. Stephans,146 K. Sumorok,146M. Varma,146D. Velicanu,146J. Veverka,146

J. Wang,146T. W. Wang,146B. Wyslouch,146 M. Yang,146 V. Zhukova,146B. Dahmes,147A. Finkel,147A. Gude,147 P. Hansen,147S. Kalafut,147S. C. Kao,147 K. Klapoetke,147 Y. Kubota,147 Z. Lesko,147J. Mans,147 S. Nourbakhsh,147 N. Ruckstuhl,147R. Rusack,147N. Tambe,147J. Turkewitz,147J. G. Acosta,148S. Oliveros,148E. Avdeeva,149K. Bloom,149

S. Bose,149 D. R. Claes,149A. Dominguez,149C. Fangmeier,149R. Gonzalez Suarez,149R. Kamalieddin,149 J. Keller,149 D. Knowlton,149I. Kravchenko,149J. Lazo-Flores,149F. Meier,149J. Monroy,149F. Ratnikov,149J. E. Siado,149G. R. Snow,149

(13)

M. Alyari,150J. Dolen,150J. George,150 A. Godshalk,150 C. Harrington,150 I. Iashvili,150 J. Kaisen,150A. Kharchilava,150 A. Kumar,150S. Rappoccio,150G. Alverson,151E. Barberis,151D. Baumgartel,151 M. Chasco,151 A. Hortiangtham,151

A. Massironi,151 D. M. Morse,151 D. Nash,151 T. Orimoto,151 R. Teixeira De Lima,151 D. Trocino,151R.-J. Wang,151 D. Wood,151 J. Zhang,151 K. A. Hahn,152A. Kubik,152N. Mucia,152N. Odell,152 B. Pollack,152 A. Pozdnyakov,152 M. Schmitt,152S. Stoynev,152K. Sung,152 M. Trovato,152 M. Velasco,152A. Brinkerhoff,153N. Dev,153M. Hildreth,153 C. Jessop,153D. J. Karmgard,153 N. Kellams,153K. Lannon,153S. Lynch,153 N. Marinelli,153F. Meng,153C. Mueller,153

Y. Musienko,153,jj T. Pearson,153M. Planer,153A. Reinsvold,153 R. Ruchti,153G. Smith,153 S. Taroni,153 N. Valls,153 M. Wayne,153M. Wolf,153 A. Woodard,153L. Antonelli,154J. Brinson,154 B. Bylsma,154L. S. Durkin,154 S. Flowers,154 A. Hart,154C. Hill,154R. Hughes,154W. Ji,154K. Kotov,154T. Y. Ling,154B. Liu,154W. Luo,154D. Puigh,154M. Rodenburg,154

B. L. Winer,154 H. W. Wulsin,154 O. Driga,155P. Elmer,155J. Hardenbrook,155P. Hebda,155S. A. Koay,155P. Lujan,155 D. Marlow,155 T. Medvedeva,155M. Mooney,155J. Olsen,155C. Palmer,155 P. Piroué,155X. Quan,155H. Saka,155 D. Stickland,155C. Tully,155J. S. Werner,155A. Zuranski,155S. Malik,156V. E. Barnes,157D. Benedetti,157D. Bortoletto,157 L. Gutay,157M. K. Jha,157M. Jones,157K. Jung,157M. Kress,157D. H. Miller,157N. Neumeister,157B. C. Radburn-Smith,157 X. Shi,157I. Shipsey,157D. Silvers,157J. Sun,157 A. Svyatkovskiy,157 F. Wang,157W. Xie,157L. Xu,157 N. Parashar,158

J. Stupak,158 A. Adair,159 B. Akgun,159 Z. Chen,159K. M. Ecklund,159F. J. M. Geurts,159M. Guilbaud,159W. Li,159 B. Michlin,159M. Northup,159B. P. Padley,159R. Redjimi,159J. Roberts,159J. Rorie,159Z. Tu,159J. Zabel,159B. Betchart,160

A. Bodek,160P. de Barbaro,160 R. Demina,160Y. Eshaq,160 T. Ferbel,160M. Galanti,160 A. Garcia-Bellido,160J. Han,160 A. Harel,160O. Hindrichs,160A. Khukhunaishvili,160G. Petrillo,160M. Verzetti,160L. Demortier,161S. Arora,162A. Barker,162

J. P. Chou,162C. Contreras-Campana,162E. Contreras-Campana,162 D. Duggan,162 D. Ferencek,162 Y. Gershtein,162 R. Gray,162E. Halkiadakis,162D. Hidas,162 E. Hughes,162 S. Kaplan,162R. Kunnawalkam Elayavalli,162A. Lath,162 K. Nash,162S. Panwalkar,162 M. Park,162S. Salur,162 S. Schnetzer,162D. Sheffield,162 S. Somalwar,162 R. Stone,162 S. Thomas,162 P. Thomassen,162 M. Walker,162 M. Foerster,163G. Riley,163K. Rose,163S. Spanier,163A. York,163 O. Bouhali,164,nnnA. Castaneda Hernandez,164,nnn M. Dalchenko,164 M. De Mattia,164 A. Delgado,164 S. Dildick,164

R. Eusebi,164 W. Flanagan,164J. Gilmore,164 T. Kamon,164,ooo V. Krutelyov,164 R. Montalvo,164 R. Mueller,164 I. Osipenkov,164Y. Pakhotin,164R. Patel,164A. Perloff,164 J. Roe,164 A. Rose,164A. Safonov,164A. Tatarinov,164 K. A. Ulmer,164,cN. Akchurin,165C. Cowden,165J. Damgov,165C. Dragoiu,165P. R. Dudero,165J. Faulkner,165S. Kunori,165 K. Lamichhane,165S. W. Lee,165T. Libeiro,165S. Undleeb,165I. Volobouev,165E. Appelt,166A. G. Delannoy,166S. Greene,166 A. Gurrola,166R. Janjam,166 W. Johns,166 C. Maguire,166 Y. Mao,166A. Melo,166H. Ni,166P. Sheldon,166B. Snook,166 S. Tuo,166J. Velkovska,166Q. Xu,166M. W. Arenton,167S. Boutle,167B. Cox,167B. Francis,167J. Goodell,167R. Hirosky,167 A. Ledovskoy,167H. Li,167C. Lin,167C. Neu,167E. Wolfe,167J. Wood,167F. Xia,167C. Clarke,168R. Harr,168P. E. Karchin,168 C. Kottachchi Kankanamge Don,168 P. Lamichhane,168J. Sturdy,168 D. A. Belknap,169D. Carlsmith,169 M. Cepeda,169

A. Christian,169 S. Dasu,169L. Dodd,169S. Duric,169E. Friis,169 B. Gomber,169 R. Hall-Wilton,169 M. Herndon,169 A. Hervé,169 P. Klabbers,169 A. Lanaro,169 A. Levine,169 K. Long,169R. Loveless,169A. Mohapatra,169 I. Ojalvo,169 T. Perry,169G. A. Pierro,169G. Polese,169I. Ross,169T. Ruggles,169T. Sarangi,169A. Savin,169A. Sharma,169N. Smith,169

W. H. Smith,169 D. Taylor,169 and N. Woods169 (CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia 2

Institut für Hochenergiephysik der OeAW, Wien, Austria

3National Centre for Particle and High Energy Physics, Minsk, Belarus 4

Universiteit Antwerpen, Antwerpen, Belgium

5Vrije Universiteit Brussel, Brussel, Belgium 6

Université Libre de Bruxelles, Bruxelles, Belgium

7Ghent University, Ghent, Belgium 8

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

9Université de Mons, Mons, Belgium 10

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil 12a

Universidade Estadual Paulista, São Paulo, Brazil

12b

Universidade Federal do ABC, São Paulo, Brazil

13

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

(14)

14University of Sofia, Sofia, Bulgaria 15

Institute of High Energy Physics, Beijing, China

16State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China 17

Universidad de Los Andes, Bogota, Colombia

18University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia 19

University of Split, Faculty of Science, Split, Croatia

20Institute Rudjer Boskovic, Zagreb, Croatia 21

University of Cyprus, Nicosia, Cyprus

22Charles University, Prague, Czech Republic 23

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

24

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

25Department of Physics, University of Helsinki, Helsinki, Finland 26

Helsinki Institute of Physics, Helsinki, Finland

27Lappeenranta University of Technology, Lappeenranta, Finland 28

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

29Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France 30

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

31

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France

32Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France 33

Georgian Technical University, Tbilisi, Georgia

34Tbilisi State University, Tbilisi, Georgia 35

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

36RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 37

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

38Deutsches Elektronen-Synchrotron, Hamburg, Germany 39

University of Hamburg, Hamburg, Germany

40Institut für Experimentelle Kernphysik, Karlsruhe, Germany 41

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

42University of Athens, Athens, Greece 43

University of Ioánnina, Ioánnina, Greece

44Wigner Research Centre for Physics, Budapest, Hungary 45

Institute of Nuclear Research ATOMKI, Debrecen, Hungary

46University of Debrecen, Debrecen, Hungary 47

National Institute of Science Education and Research, Bhubaneswar, India

48Panjab University, Chandigarh, India 49

University of Delhi, Delhi, India

50Saha Institute of Nuclear Physics, Kolkata, India 51

Bhabha Atomic Research Centre, Mumbai, India

52Tata Institute of Fundamental Research, Mumbai, India 53

Indian Institute of Science Education and Research (IISER), Pune, India

54Institute for Research in Fundamental Sciences (IPM), Tehran, Iran 55

University College Dublin, Dublin, Ireland

56aINFN Sezione di Bari, Bari, Italy 56b

Università di Bari, Bari, Italy

56cPolitecnico di Bari, Bari, Italy 57a

INFN Sezione di Bologna, Bologna, Italy

57bUniversità di Bologna, Bologna, Italy 58a

INFN Sezione di Catania, Catania, Italy

58bUniversità di Catania, Catania, Italy 58c

CSFNSM, Catania, Italy

59aINFN Sezione di Firenze, Firenze, Italy 59b

Università di Firenze, Firenze, Italy

60INFN Laboratori Nazionali di Frascati, Frascati, Italy 61a

INFN Sezione di Genova, Genova, Italy

61bUniversità di Genova, Genova, Italy 62a

INFN Sezione di Milano-Bicocca, Milano, Italy

62bUniversità di Milano-Bicocca, Milano, Italy 63a

Riferimenti

Documenti correlati

Through a case study analysis we would describe the emergence of a new logic in the Italian cultural heritage field and we attempt to analyse how participants in the

As a first quality check of the maps, and as one of the tests of the whole data processing pipeline up to the maps, we verify both numerically and visually that the values obtained

Les discussions dans la communauté ont aidé Rada à arracher un accord à son père mais l’obligèrent également : dès lors que son flirt était connu de tous, elle ne pouvait

Non-Symmetrical Correspondence Analysis: testing and confidence circles The measure of the departure from independence of the (i, j)th cell of the two-way contingency table, N,

Public green areas on the one hand represent ornamental green-space (historic gardens, urban parks, wooded strips along highways, neighborhood green-spaces, conservation forests

[ 9 ] recently reported increased platelet factor 4 (CXCL4) levels in both the plasma and skin of patients with systemic sclerosis (SSc) in whom they resulted to be associated

Symptomatic neonatal and post-natal hypoglycemia Symptomatic neonatal and post-natal hypoglycemia Respiratory distress Micropenis Severe short stature Severe short stature Severe

Considering the expression of key players involved in the ABA signal transduction pathway, HAB1 and ABI1 genes were upregulated in the abc1k7, abc1k8, and abc1k7/abc1k8 double