ContentslistsavailableatScienceDirect
Pharmacological
Research
jo u r n al ho me p a g e :ww w . e l s e v i e r . c o m / l o c a t e / y p h r s
Hydrogen
sulfide
inhalation
ameliorates
allergen
induced
airway
hypereactivity
by
modulating
mast
cell
activation
Fiorentina
Roviezzo
a,1,
Antonio
Bertolino
a,1,
Rosalinda
Sorrentino
b,
Michela
Terlizzi
b,
Maria
Matteis
d,
Vincenzo
Calderone
c,
Valentina
Mattera
a,
Alma
Martelli
c,
Giuseppe
Spaziano
d,
Aldo
Pinto
b,
Bruno
D’Agostino
d,
Giuseppe
Cirino
a,∗aUniversitàdiNapoliFedericoII,Italy
bDipartimentodiFarmacia,UniversitàdiSalerno,Italy
cDipartimentodiFarmaciaUniversitàdiPisa,Italy
dDipartimentodiMedicinaSperimentale,SezionediFarmacologiaL.Donatelli,SecondaUniversitàdegliStudidiNapoli,Italy
a
r
t
i
c
l
e
i
n
f
o
Articlehistory:
Received9June2015
Receivedinrevisedform30July2015
Accepted30July2015
Availableonline1August2015
Keywords: Hydrogensulfide Mastcell Fibroblast Pulmonaryinflammation Airwayhypereactivity
a
b
s
t
r
a
c
t
Compellingevidencesuggeststhathydrogensulfiderepresentsanimportantgaseoustransmitterinthe mammalianrespiratorysystem.Inthepresentstudy,wehaveevaluatedtheroleofmastcellsin hydro-gensulfide-inducedeffectsonairwaysinamousemodelofasthma.Miceweresensitizedtoovalbumin andreceivedaerosolofahydrogensulfidedonor(NaHS;100ppm)startingatday7afterovalbumin challenge.Exposuretohydrogensulfideabrogatedovalbumin-inducedbronchialhypereactivityaswell astheincreaseinlungresistance.Concomitantly,hydrogensulfidepreventedmastcellactivityaswell asFGF-2andIL-13upregulation.Conversely,pulmonaryinflammationandtheincreaseinplasmatic IgElevelswerenotaffectedbyhydrogensulfide.Alackofhydrogensulfideeffectsinmastcell defi-cientmiceoccurred.Primaryfibroblastsharvestedfromovalbumin-sensitizedmiceshowedanincreased proliferationratethatwasinhibitedbyhydrogensulfideaerosol.Furthermore,ovalbumin-induced trans-differentiationofpulmonaryfibroblastsintomyofibroblastswasreversed.Finally,hydrogensulfidedid abrogateinvitrothedegranulationofthemastcell-likeRBL-2H3cellline.Similarlytotheinvivo exper-imentstheinhibitoryeffectwaspresentonlywhenthecellswereactivatedbyantigenexposure.In conclusion,inhaledhydrogensulfideimproveslungfunctionandinhibitsbronchialhyper-reactivityby modulatingmastcellsandinturnfibroblastactivation.
©2015ElsevierLtd.Allrightsreserved.
1. Introduction
Compellingevidencesuggeststhathydrogensulfiderepresents animportantgaseoustransmitterinthemammalianrespiratory system[1].Hydrogensulfideisanendogenousgaseoustransmitter that isproduced in manytissues primarilybycystathionine -synthase(CBS)andcystathionine␥-lyase(CSE),twoPLPdependent enzymes.Athirdenzymeinvolvedinhydrogensulfideproduction is3-mercaptopyruvatesulfurtransferase(MST)thatalsoproduces hydrogensulfidebutdoesnotrequirePLP[2,3].Theseenzymesare widelyexpressedinpulmonaryandairwaytissues,theexpression patternsandtheextentoftheseenzymesarevariabledepending
∗ Correspondingauthor.
E-mailaddress:[email protected](G.Cirino).
1 Theseauthorshaveequallycontributed.
onthespeciesandcelltypes[4].Ithasbeendemonstratedthat administrationofthehydrogensulfide-donor,sodium hydrosul-fide(NaHS)directlyrelaxesairwaysmoothmuscle[5].Inaddition, intraperitonealadministrationofanhydrogensulfidedonororan inhibitorofhydrogensulfidebiosynthesisalleviatesoraggravates allergen-inducedairwayhypereactivity,respectively[6,7].Studies performedusingCSEKOmicehavefurtherconfirmedthatlower hydrogen sulfide levels worsen airway hyperesponsiveness [7]. Recently,Huangetal.[5]showedthattreatingmicewithan hydro-gensulfide donorbyaerosol, airway hyperesponsiveness(AHR) wassignificantlyrelieved.Thiseffectonairwayhypereactivityhas beenassociatedtoadirectrelaxanteffectofhydrogensulfideon airway smooth muscle.Moreover,Zhang etal. [7]demonstrate thatsystemicadministrationofhydrogensulfidedonor,in addi-tiontothedirectrelaxingeffect,modulateseosinophilinfiltration aswellasTh2cytokineproduction.Hydrogensulfidecanrelaxalso humanairwaysmoothmuscle[8]andapositivecorrelationamong http://dx.doi.org/10.1016/j.phrs.2015.07.032
thedeclineinlungfunction,thedecreasesinCSEexpressionand theendogenousplasmahydrogensulfideconcentrationshasbeen foundinasthmaticpatients[9].
AHRisthemainasthmafeature.Severalcausativefactorshave beenproposedsuchaschronicinflammation,airwayremodeling, smoothmusclegrowthandepithelialdamage,butthemechanisms arenotasyetclear[10].ThisisprobablybecauseAHRis multifacto-rialandthereforedifferentindistinctasthmaphenotypes[11].An essentialroleofmastcellsinthedevelopmentofmouseairway hyperesponsivenesshasbeenwidelyproposed.It is well estab-lishedthatcross-linkingofIgEAbsonmastcellsbyantigentriggers thereleaseofchemicalmediators,whichinturncausetheearly allergicreactions.Activationofmastcellsalsoleadstothe synthe-sisofcytokines,whichinturncontributetochronicinflammation. Severalstudieshavedemonstratedelevatednumberofmastcells indifferentsitesinthelungoftheasthmaticpatientsandtheir correlationwithinflammationandimpairmentofpulmonary func-tion[12–14].Recentlyithasbeenalsodemonstratedthathydrogen sulfidepreventsheartfailuredevelopmentviainhibitionofrenin releasefrommastcellsinisoproterenol-treatedrats[15].
Inlightofthesefindings,weinvestigatedifthehydrogensulfide effectonairwaysinvolvesmastcells.Thestudyhasbeenperformed byusingawellknownmurinemodelofasthmainducedby oval-bumin.ThecontributionofmastcellsinthedevelopmentofAHR hasbeenalsoassessedbyusingmastcell-deficientmice.Hydrogen sulfidehasbeenadministeredbyaerosolandbothairwayreactivity andpulmonaryinflammationhavebeenevaluated.
2. Materialandmethods
2.1. RBL-2H3cellcultureandˇ-hexosaminidasemeasurement RBL-2H3(RatBasophilicLeukemiaMastCellLine;JapanHealth SciencesFoundation)[16] weresensitized withthemonoclonal anti-dinitrophenylantibodyanti-DNPIgE(0,50g/ml).TheH2 S-donorNaHS(10,100Mand1mM;5min)or thevehiclewere addedafter24h. RBL-2H3celldegranulationwasinducedby(i) theantigen dinitrophenyl-seralbumin10ng/ml(DNP);(ii) iono-mycin1Mand(iii)thapsigargin1M.Ttriton-X-100wasadded tocauseexhaustivereleaseof-hexosaminidase.Allreagentswere purchasedfromSigma–Aldrich,MilanItaly.
2.2. Mice
BALB/c, mast cell-deficient KitW−sh/W−sh mice [17,18] and C57Bl6/Jmice(CharlesRiver)werehousedin acontrolled envi-ronmentandprovidedwithstandardrodentchowandwater.All mousestrains(20–25g)werehousedwitha12hlightdarkcycle andwereallowedfoodandwateradlibitum.Animalcarewasin compliancewithItalianregulationsonprotectionofanimalsused forexperimentalandotherscientificpurposes(D.M.116192)as wellaswiththeEECregulations(O.J.ofE.C.L358/112/18/1986).All studieswereperformedinaccordancewithEuropeanUnion reg-ulationsforthehandlinganduseoflaboratoryanimalsandwere approvedbythelocalcommittee.
2.2.1. Antigenexposureanddrugtreatmentofmice
Micereceivedsubcutaneousadministrationofovalbumin(OVA, 100g)adsorbedontoAl(OH)3 atday0and7.Inapreliminary screening,wedeterminedthat theoptimaldosetobegivenby aerosolofhydrogensulfidewas100ppmofNaHS.Rodentswere exposedtoaerosolizedNaHSorvehicleforupto5min,dailyfor2 weeks.NaHSwasadministeredtomiceusinganaerosolexposure device(InToxProducts,N.Mex.).Thesystemconsistedofacentral chamberhavingseparateaerosol supplyandexhaustpaths.The centralchamberhad24portsthatweredirectlyconnectedtothe
aerosolsupplysystem.Micewereplaced intoindividualaerosol exposuretubesandrestrainedwithanadjustablepushplateand end capassembly sotheycouldnot turnaroundor backaway fromtheendofthetube.Therestrainttubescontainingthemice wereloadedontoportsonthecentralchamberandtheairflow adjustedto1l/min.Theair(breathablequalityair)flowtothePARI LCStarnebulizerwasheldconstantat6.9l/min.NaHSnebulizedat 0.2ml/minanddeliveredtothemiceviatheaerosolsupplypath. Additionalair(hereafterreferredtoasdilutionair)wasdelivered tonebulizer(where)tobalancetheoverpressureoftheairused todeliveraerosolizeddrugstothemice.Twentyfourhoursafter thelastadministrationmicewereanesthetizedandsubjectedto euthanasia(Fig.2A).
2.3. Airwayreactivity 2.3.1. Bronchialreactivity
Miceweresacrificedand bronchiwererapidlydissectedand cleanedfromfatandconnectivetissue. Ringsof1–2mmlength werecutandplacedinorganbaths(2,5ml)filledwithoxygenated (95%O2–5%CO2)Krebssolutionat37◦Candmountedtoisometric forcetransducers(type7006,UgoBasile,Comerio,Italy)and con-nectedtoa Powerlab800(ADInstruments).Ringswereinitially stretcheduntilarestingtensionof0.5gwasreachedandallowedto equilibrateforatleast30minduringwhichtensionwasadjusted, whennecessary,toa0.5gandbathingsolutionwasperiodically changed.Inapreliminarystudy,arestingtensionof0.5gwasfound todevelop theoptimal tensiontostimulation withcontracting agents.Ineachexperiment,bronchialringswerepreviously chal-lengedwithacetylcholine(10−6mol/l)until theresponseswere reproducible.Subsequently,bronchiwerechallengedwith carba-chol.
2.3.2. Isolatedperfusedmouselungpreparation
Themouse lungswere perfusedin a non-recirculating fash-ionthroughthepulmonaryarteryataconstantflowof1ml/min resultinginapulmonaryarterypressureof2–3cmH2O.The perfu-sionmediumusedwasRPMI1640lackingphenolred(37◦C).The lungswereventilatedbynegativepressure(−3and−9cmH2O) with90breathmin−1 and a tidalvolumeofabout200l.Every 5minahyperinflation(−20cmH2O)wasperformed.Artificial tho-raxchamberpressurewasmeasuredwithadifferentialpressure transducer(ValidyneDP45-24)andairflowvelocitywith pneumo-tachographtubeconnected toa differentialpressuretransducer (ValidyneDP45-15).Thelungsrespiredhumidifiedair.The arte-rialpressurewascontinuouslymonitoredbymeansofapressure transducer(IsotecHealthdyne)whichwasconnectedwiththe can-nulaendinginthepulmonaryartery.Alldataweretransmittedto acomputerandanalysedwiththePulmodynsoftware(HugoSachs Elektronik,MarchHugstetten,Germany).Thedatawereanalyzed throughthefollowingformula:P=V×C−1+RL×dV×dt−1,where Pischamberpressure,Cpulmonarycompliance,Vtidalvolume,RL airwayresistance.Theairwayresistancevalueregisteredwas cor-rectedfortheresistanceofthepneumotacometerandthetracheal cannulaof0.6cmH2Osml−1.Lungswereperfusedandventilated for45minwithoutanytreatmentinordertoobtainabaselinestate. Subsequently,lungs werechallengedwithcarbachol. Repetitive doseresponsecurveofcarbacholwasadministeredas50lbolus, followedbyintervalsof15min,inwhichlungswereperfusedwith bufferonly.
2.4. FlowCytometryAnalysis
Lungs weredigestedwithcollagenase (Sigma–Aldrich,Italy). Pulmonaryinflammatorycellsweredeterminedbyflowcytometry
(BD FacsCalibur, Italy) using CD11c-APC, CD11b-PeCy5.5, cKit-PeCy5.5or-PE,IgE-FITC(Bioscience,SanDiego,CA,USA).
2.5. Immunohistochemistry
Left lung lobes were paraffin-embedded and 7m sections wereobtained.Thedegreeofinflammationwasscoredbyblinded observers by using hematoxylin and eosin (H&E) and Periodic acid/Alcianblue/Schiffstaining(PAS).PASStaining(Sigma–Aldrich, Milan Italy) was performed according to the manufacturer’s instructionstodetectglycoprotein.PAS+cryosectionsweregraded withscores0–4todescribelowtoseverelunginflammationas follows:0:<5%;1:5–25%;2:25–50%; 3:50–75%;4:<75% pos-itivestaining/total lungarea. FGF2detectionwasperformedby usinganti-FGF-2orIgGisotypecontrol(SantaCruz,USA).Mastcell recruitmentwasevaluatedbymeansoftoluidinebluestaining(1% solution).
2.6. MeasurementofserumIgElevels
PlasmaticserumIgElevelsweremeasuredbyELISAaccordingly tothemanufacturer’sinstructions(BDPharmingen,USA). 2.7. Fibroblastactivity
2.7.1. Fibroblastculture
Miceweresacrificedandthethoraxwasopened, thenlungs wereremoved. Lungs were mincedand incubated withDMEM containing15%FCS.Cultureswerereplacedthreetimesweekly. Allcultures wereevaluatedbyimmunohistochemistrytoassess vimentinandallstainedpositivelywithvimentin.Selected cul-tureswereevaluated.Fibroblastswerepassagedwithtrypsin/EDTA (0.05% trypsin,0.53mM EDTA; GIBCO). Fibroblast betweenthe thirdandthesixthpassageswereusedforassays.
2.7.2. Fibroblastproliferationanddifferentiation
Pulmonaryfibroblastswereharvestedfrommicetreatedwith vehicle,OVAorOVAandexposedtohydrogensulfide.Fibroblast proliferationwasassessedbytheMTT, (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl)tetrazoliumbromide,colorimetricassay. Fibro-blastdifferentiationwastested by incubatingcells withmouse monoclonalantibodyagainst␣-SMA(Sigma–Aldrich,Italy)or rab-bit polyclonal antibody against vimentin (Santa Cruz, CA). For detectionfluoresceinlabeledanti-mouseIgG (ABNOVA,Italy)or Texas-Redlabeledanti-rabbitIgG(ABNOVA,Italy)wereused.The levelofmyofibroblasticdifferentiationwasmeasuredbycounting atleast200cells.
2.8. Statisticalanalysis
Dataaremeans±SEMfromatleast6miceineachgroup.The levelofstatisticalsignificancewasdeterminedbyone-wayor two-wayanalysisofvariance(ANOVA)followedbyBonferroni’stestfor multiplecomparisonsbyusingtheGraphPadPrismsoftware(USA). 3. Results
3.1. Hydrogensulfideinhibitsantigen-induceddegranulationin RBL-2H3cells
A direct effect of hydrogen sulfide on mast cell degranula-tion wasinvestigated in vitro by using mast cell-like RBL-2H3 cellline.TheadditionoftheantigenDNP-HSAtopre-sensitized RBL-2H3cellscausedasignificantdegranulationevaluatedas -hexosaminidase release (Fig.1A).Analmostequivalentlevel of
Fig.1.HydrogensulfidereducesIgE-mediatedRBL-H3cellsdegranulation.(A)
RBL-2H3cell degranulationwaspharmacologically inducedby(i) theantigen
dinitrophenyl-seralbumin10ng/ml(DNP),(ii)ionomycin(ION)1Mor(iii)
thap-sigargin(TPS)1M.Inmatchedwells,triton-X-100wasadded,toelicitcelllysis
andexhaustivereleaseof-hexosaminidase.Theconcentrationofp-nitrophenate
releaseof-hexosaminidasewasmeasuredat405nm.(B)Cellsweresensitised
withDNPandafter24hincubatedfor5minwitheithertheH2S-donorNaHS(10,
100Mand1mM)orthevehicle.CelldegranulationwasinducedbyDNP.(C)Cells
wereincubatedeitherwithNaHS(1mM)orvehiclefor5minandcelldegranulation
inducedbyIONorTPS.(**p<0.01vsvehicle;p<0.001vsvehicle).
degranulationwasinducedbythenon-antigenicstimuli thapsigar-ginandionomycin(Fig.1A).Hydrogensulfidecausedaremarkable andconcentration-dependentinhibitionoftheRBL-2H3 degranu-lationinducedbyDNP-HAS(Fig.1B).Incontrast,hydrogensulfide didnotexhibitanysignificantinhibitoryactivityonthe degranu-lationinducedeitherbythapsigarginorionomycin(Fig.1C). 3.2. HydrogensulfideinhibitsOVA-inducedairwayhypereactivity
Sensitized micewereexposedtoNaHS inhalation(100ppm; 5min) daily from day7 to21 (Fig. 2A). This dosewas shown not to cause any effect “per se”. Bronchial reactivity (Fig. 2B) andlungresistance(Fig.2C)aftercarbacholchallengewere mea-sured. Bronchi harvested fromOVA-sensitized miceshowedan increasedreactivitytocarbacholincomparisontovehicletreated mice(Fig.2B).Similarly,increasedlungresistanceswaspresentas determinedbyusingtheisolatedandperfusedlungpreparation (Fig.2C).NaHSinhalationreversedbothbronchialhypereactivity (Fig.2B)andtheincreaseoflungresistance(Fig.2C)inOVA-treated mice.Conversely,hydrogensulfideinhalationdidnotalter OVA-inducedcellinfiltrationandinflammation(Fig.2D).PASpositive stainingwasstillvisibleinpulmonaryhistologyoflungsharvested frommicesensitizedandexposedtoNaHSinhalation(Fig.2E),as alsoobservedbytheH&Estaining(Fig.2D)showingastillaltered
Fig.2.HydrogensulfideinhalationabrogatesOVA-inducedairwayhyper-reactivity.(A)Schematicrepresentationoftheprotocolused.Micereceivedsubcutaneous
admin-istrationofOVAadsorbedontoalumatday0and7.Aerosoladministrationofvehicleorhydrogensulfide(NaHS,100ppm)wasperformeddailyfromday7today21.Twenty
fourhoursafterthelastadministrationmiceweresacrificed.(B)Measurementofbronchialreactivitytocarbachol.(C)Measurementoflungresistancebyusingisolated
perfusedlungpreparation.***p<0.001vsvehicle.(D)Histologicalanalysisofpulmonarysections(Hematoxylin&Eosin).(E)Gobletcellhyperplasiaevaluationbyperiodic
acid/Alcianblue/Schiffstaining(**p<0.01vsvehicle).Lungsectionshavebeenphotographedunderlightmicroscopyat10×magnification,PASpositivecriosectionswere
gradedwithscores0–4todescribelowtoseverelunginflammation(0:<5%;1:5–25%;2:25–50%;3:50–75%;4:<75%positivestaining/totallungarea).Dataaremeans±SEM
from6miceineachgroup.
bronchialepitheliuminOVA+NaHStreatedmicecomparedto vehi-clemice.
3.3. Hydrogensulfideaffectsmastcelldegranulationandinhibits fibrogeniccytokinesproduction
FlowcytometryanalysisoflungsharvestedfromOVA-sensitised micedemonstratedasignificantincreaseofmastcellrecruitment. ThemastcellswereidentifiedasCD11c+c−Kit+Ige+positivecells (Fig. 3A). Treatment of mice with NaHS neither affected mast cellcount(Fig.3B)norplasmaticIgElevels(Fig.1B).Conversely NaHSinhalationsignificantlyaffectedmastcelldegranulationas
evidentbytoluidinepositivestaining(Fig.3C).Hydrogensulfide reversedalsoOVA-inducedup-regulationoftwoimportant fibro-geniccytokinesIL-13(Fig.3D)andFGF-2(Fig.3E).
3.4. Mastcell-deficientKitW−sh/W−shmicefailtodevelopairway hyperesponsiveness
Mast cell-deficient KitW−sh/W−sh mice exposed to OVA sen-sitizationdidnot developbronchial hypereactivitytocarbachol (Fig.4A).ExposureofmicetoNaHSduringsensitizationdidnot furtheraffectbronchialtone(Fig.4A).Ontheotherhand,a sig-nificantairwayhypereactivitywasobservedinthewildtypemice
Fig.3.Hydrogensulfideinhibitsmastcelldegranulationandcytokinesexpressioninthelung.(A)Quantificationoflungmastcellsbyflowcytometryidentifiedas
CD11c+c−Kit+Ige+positivecells(**p<0.01vsvehicle).(B)IgEseralevelsweredeterminedbyusingspecificELISA(*p<0.05vsvehicle).(C)Toluidinebluestainingof
paraffin-embeddedlungsections.(D)PulmonaryIL-13expressionhasbeendeterminedbyELISA.(E)ImmunohistochemistryofFGF-2expressioninlungs,(*p<0.05vs
vehicle,#p<0.05vsOVA,##p<0.01vsOVA).Dataaremeans±SEMfrom6miceineachgroup.
(C57Bl6/J,datanotshown).SimilarlytowhatobservedinBALB/c mice,NaHStreatmentofsensitizedC57Bl6/Jmicereversed OVA-inducedairwayhypereactivity(datanotshown).Sensitizationof mastcell-deficientKitW−sh/W−shmicefailedtoinduceasignificant increaseofbothIL-13(Fig.4B)andFGF-2(Fig.4B)expressionin lung.Treatmentofmastcell-deficientKitW−sh/W−shmicewithNaHS didnotaffectallparametersevaluated(Fig.4A–D).Thesedataimply thatmastcellistheprimarytargetofhydrogensulfide.
Inordertofurtheraddresstheroleofmastcellswetreatedmice withOVAwithoutalumusingtheprotocolreportedin supplemen-talFig.1A.Thisisachronicallergicasthmamodelmainlymastcell dependent[19].Similarly,towhatwefoundintheothermodel theincreaseinmastcellrecruitmentdrivenbythesensitization procedurewasnotaffectedbyNaHS(SupplementalFig.1B),while mastcelldegranulationwasblunted(SupplementalFig.1C).Also inthisexperimentalsettingbronchialhypereactivitytocarbachol wasabrogatedbyhydrogensulfideaerosol(SupplementalFig.1D). PASstainingevidencedaweakincreaseofgobletcellssuggesting amarginalroleofmastcellsintheregulationofmucusproduction (SupplementalFig.1E).Finallyhydrogensulfidetreatmentdidnot alterpulmonarymorphology.
3.5. FibroblastsharvestedfrommiceexposedtoNaHSdiplayeda reducedactivation
Primary pulmonary fibroblasts were harvested from mice exposed toOVA and theirproliferation rate and differentiation evaluatedin vitro. Our datashowthat primary fibroblasts har-vestedfromsensitizedmicedisplayedanincreasedproliferation rate(Fig.5A)aswellasincreasedexpressionof␣-SMA(Fig.5B and C) as compared to vehicle treated mice When fibroblasts wereharvestedfrommicetreatedwithhydrogensulphideaerosol in vivoboth theincreasedproliferation rateand differentiation were reverted(Fig. 5).Thus, miceexposed to hydrogensulfide inhalationdisplayedasignificantreductionoffibroblastactivation beyondreduction ofairwayhyper-reactivity.Inordertofurther demonstratethatthefibroblastscontributetomast-cell-dependent airwayhyper-reactivity,weevaluatedfibroblastactivationalsoin themodelofmastcell-dependenthyper-reactivityusingthe proto-coldescribedinSupplementalFig.1A.Ourdatashowthatprimary fibroblastsharvestedfromthesemicedisplayedanincreasedrate of proliferation (Supplemental Fig. 2A) aswell as an increased expressionof ␣-SMA(SupplementalFig.2Band C).Whenmice
Fig.4. Lackofeffectofhydrogensulfideinmastcell-deficientKitW−sh/W−shmice.Mastcell-deficientKitW−sh/W−shmicereceivedsubcutaneousadministrationofOVAadsorbed
ontoalumatday0and7.Miceweretreatedwitheithervehicleorhydrogensulfideaerosoldailyfromday7to21.Twentyfourhoursafterthelastadministrationmice
weresacrificed.(A)Bronchialreactivitytocarbacholwasassessed.(B)Gobletcellhyperplasiaevaluationbyperiodicacid/Alcianblue/Schiffstaining.Lungsectionshave
beenphotographedunderlightmicroscopyat10×magnification,PASpositivecriosectionsweregradedwithscores0–4todescribelowtoseverelunginflammation(0:
<5%;1:5–25%;2:25–50%;3:50–75%;4:<75%positivestaining/totallungarea,**p<0.01vsvehicle).(C)PulmonaryIL-13expressionhasbeendeterminedbyELISA.(D)
ImmunohistochemistryofFGF-2pulmonaryexpression.Dataaremeans±SEMfrom6miceineachgroup.
weretreatedwithaerosolofhydrogensulfide,boththeincreased fibroblastproliferationanddifferentiationmeasuredexvivowere prevented (Supplemental Fig. 2) as well as the airway hyper-reactivity.
4. Discussion
Thereisa growingbody of evidence suggestingthat hydro-gensulfidemightbeofclinicalbenefitinpulmonarydiseases.In particular,aroleforhydrogensulfideinmodulatingairway hypere-activityandremodelinghasbeensuggested.Airwayhypereactivity isanimportantpathophysiologicalcharacteristicofasthmaandit islinkedtobothairwayinflammationandremodeling.Although thepathogenicmechanisms arenot completely understood,an essentialroleisattributedtomastcells.Here wehaveassessed whetherthebeneficialeffectsofhydrogensulfideonlungfunction arerelatedtomastcellactivation.
Preliminarily,wehavedeterminedtheeffectofNaHSonmast cellsbyusingthemastcell-likeRBL-2H3cellline.Incubationof RBL-2H3withNaHSdidnothaveanyeffectbyitselfuptoadose of1mM.Conversely,hydrogensulfide causedaremarkableand concentrationdependentinhibitionoftheRBL-2H3degranulation whencellsweresensitizedandchallengedwithantigen. Hydro-gensulfidedidnotaffecteitherthapsigarginorionomycin-induced RBL-2H3degranulation.Theseresultsclearlysuggestthathydrogen sulfidecanexplicateitsactiononlyonsensitizedcells.
Inordertobetterunderstandthisphenomenonwetestedthe effectofhydrogensulfide invivobyusingOVA-sensitizedmice. Exposureofallergen-sensitizedmicetohydrogensulfideaerosol
reversedbronchialhyperactivityasalreadydemonstratedby oth-ers [6]. In addition, we also show that the aerosol treatment abrogatedtheincreaseinlungresistance.Allergen-inducedAHR wascoupledto anincreased presenceof mast cells withinthe pulmonarytissue,asdeterminedbyFACSanalysis.Aerosol admin-istrationofhydrogensulfide neitherinfluenced therecruitment oflungmastcellsorplasmalevelsofIgEinducedbyOVA sensiti-zation.However,inanalogywithRBL-2H3cells,hydrogensulfide abrogatedinvivomastcelldegranulation.Thiseffectwascoupled toinhibitionofthepulmonaryexpressionofFGF-2aswellasIL-13. Ontheotherhand,hydrogensulfidedidnotaffectallergen-induced gobletcellmetaplasia,mucushypersecretionandpulmonarycell infiltration,allparametersindicativeoflunginflammation[20,21]. Therefore,thehydrogensulfidebeneficialeffectsonairway hyper-eactivitywellcorrelateswiththereversionofmastcellactivation. Indeed, the data obtained with the experiments in vitro with RBL cells, taken together with the in vivo functional data and the modulationof IL-13 and FGF2pulmonary expression were allindicativeforacentralroleformastcellinhydrogen sulfide-mediatedactions.Tofurtherunderstandthelinkamonghydrogen sulfide, mast cells and bronchial hypereactivity, we tested hydrogen sulfide effect in mast cell-deficient KitW−sh/W−sh mice.Bronchi,harvestedfromOVA-sensitizedmastcell-deficient KitW−sh/W−shmice,didnotdevelopbronchialhypereactivity.The upregulation of IL-13 and FGF2 was absent, too. Conversely, theinflammatory features i.e. allergen-induced cellinfiltration, gobletcellmetaplasiaandmucushypersecretionwereallstill evi-dent.ExposureofOVA-sensitizedmastcell-deficientKitW−sh/W−sh micetohydrogensulfideaerosoldidnotaffecttheinflammatory
Fig.5.Hydrogensulfideinhibitsfibroblastactivationinthelung.(A)LungprimaryfibroblastswereharvestedfromOVA-sensitizedmiceexposedtovehicleorNaHSaerosol.
FortheinvivoprotocolseeFig.2A.TheMTTcolorimetricassaywasusedtoassessfibroblastproliferationinvitro(**p<0.01vsvehicle).(B)Percentageofmyofibroblasts
(*p<0.05vsvehicle).(C)Fibroblastswerelabelledwithanti-vimentinantibody(red).NucleiwerestainedwithDAPI(blue).Myofibroblastdifferentiationwasdeterminedby
detectionofexpressionofalphaSMA(green).Lowestpanelsrepresentthemergeofupperandcentralpanels.Theimageswereacquiredwithconfocalmicroscope(Leica).
Thepercentageofmyofibroblastsareeasilydistinguishablesincetheydisplaywell-developed,thickandalphaSMA-positivestressfibers.(Forinterpretationofthereferences
tocolorinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)
reaction.ThereforethelackofmastcellsinKitW−sh/W−shmice mim-icsthehydrogensulfideeffectsinOVA-sensitizedmice.Inaddition thesedataimplythattheupregulationofOVA-inducedIL-13and FGF-2expressioninthelungismastcelldependentandtherefore hydrogensulfideeffectisstrictlydependentfromantigen-activated mast cells. However,we still had to definehow this hydrogen sulfideeffectonmastcells translatesintoa beneficial effecton airwayhypereactivity.Mastcells synthesizeandsecretea large
number ofpro-inflammatorycytokineswhich regulateboth IgE synthesisandthedevelopmentofinflammationandseveral pro-fibrogeniccytokines.Someofthesemastcellproductse.g.,IL-13 areknowntoinducebronchialhypereactivityinthemouse inde-pendentoftheinflammatoryresponseandenhancedtheresponses in cultured humanairway smooth muscle[12,13].Accordingly, aerosolofhydrogensulfidepreventedFGF2andIL-13 upregula-tion,thatareknowntoactivatelungfibroblastsinhumansandin
experimentalanimals[22,23].Inadditionthereisincreasing evi-denceinhumansforastrongcorrelationbetweensub-epithelial fibrosisand airwayhyper-reactivity[24,25]assuggestedbythe increasednumbersoffibroblasts/myofibroblastsfoundinthe air-waysofasthmaticpatients[26,27].Inordertoaddressthisissue weharvestedfibroblastsfromOVA-sensitizedmice.These fibrob-lastsdisplayedanincreasedproliferationrateinvitroaswellasa significantincreaseinthepercentoffibroblastsconvertedin myofi-broblasts. When fibroblasts were harvested from mice treated invivowithhydrogensulfideaerosol,theincreasedfibroblast pro-liferationrateaswellastheirdifferentiationintomyofibroblasts weresignificantlyinhibited.Thesedatasuggestthatthehydrogen sulfide beneficial effects involvesalsomodulationof mast cell-mediatedfibroblastactivation.Thishypothesisissupportedbythe findingthatinmastcelldeficientmiceFGF-2aswellasIL-13 up-regulationarenotinducedbyOVA-sensitization.Thisisalsointune withthefindingthatIL-13+cells,presentwithintheairwaysmooth muscleofasthmaticpatients,arepredominantlymastcells[27]. IL-13hasbeenalsoshowntoelicitmanyofthefeaturesofhuman asthmaaswellastoregulateproductionofseveralpro-fibrogenic cytokinesincludingFGF-2[23,28].
Inconclusion,herewedemonstratethatexposureofsensitized micetohydrogensulfideinhalationreversesairwayhypereactivity. Thehydrogensulfideeffectstemsfromthemodulationoperatedby hydrogensulfideonmastcellasdemonstratedbythelackofeffect ofNaHSinKitW−sh/W−shmice.Thebeneficialeffectonbronchial hypereactivityinvolvesthemastcell-inducedfibroblastactivation andinturninhibitionofIL-13andFGF-2expression.Thisis par-ticularinterestingontheclinicalside sincerecentlyit hasbeen demonstratedthatFGF-2levelsininduced sputumsignificantly correlatewithpulmonaryfunctionandhavebeenproposedtobe apossiblebiomarkerofasthmaticairwayremodeling[28].These dataalsosuggestthataerosol treatmentwithH2Sdonorscould beexploitedastherapeuticcomplementarytherapeuticapproach inlungdiseasessuchasthmaaswellasotherrespiratory fibrotic-relateddiseasessuchasidiopathicpulmonaryfibrosisandchronic obstructivepulmonarydisease.
Conflictofinterest
Iwishtoconfirmthattherearenoknownconflictsofinterest associatedwiththispublicationandtherehasbeennosignificant financialsupportforthisworkthatcouldhaveinfluencedits out-come.
Iconfirmthatthemanuscripthasbeenreadandapprovedbyall namedauthorsandthattherearenootherpersonswhosatisfied thecriteriaforauthorshipbutarenotlisted.Wefurtherconfirm thattheorderofauthorslistedinthemanuscripthasbeenapproved byallofus.
Acknowledgments
ThisworkhasbeenfinanciallysupportedbytheprojectPRIN 2012andCREME
AppendixA. Supplementarydata
Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.phrs.2015.07.032 References
[1]Y.Chen,R.Wang,Themessageintheair:hydrogensulfidemetabolismin chronicrespiratorydiseases,Respir.Physiol.Neurobiol.184(2012)130–138.
[2]N.Nagahara,M.Nagano,T.Ito,K.Shimamura,T.Akimoto,H.Suzuki, Antioxidantenzyme,3-mercaptopyruvatesulfurtransferase-knockoutmice
exhibitincreasedanxiety-likebehaviors:amodelforhuman mercaptolactate-cysteinedisulfiduria,Sci.Rep.3(2013)1986.
[3]J.E.Dominy,M.H.Stipanuk,Newrolesforcysteineandtranssulfuration enzymes:productionofH2S,aneuromodulatorandsmoothmusclerelaxant,
Nutr.Rev.62(2004)348–353.
[4]P.Wang,G.Zhang,T.Wondimu,B.Ross,R.Wang,Hydrogensulfideand asthma,Exp.Physiol.96(2011)847–852.
[5]J.Huang,Y.L.Luo,Y.Hao,Y.L.Zhang,P.X.Chen,J.W.Xu,M.H.Chen,Y.F.Luo, N.S.Zhong,J.Xu,W.L.Zhou,Cellularmechanismunderlyinghydrogensulfide inducedmousetrachealsmoothmusclerelaxation:roleofBKCa,Eur.J. Pharmacol.741(2014)55–63.
[6]Y.H.Chen,R.Wu,B.Geng,Y.F.Qi,P.P.Wang,W.Z.Yao,C.S.Tang,Endogenous hydrogensulfidereducesairwayinflammationandremodelinginaratmodel ofasthma,Cytokine45(2009)117–123.
[7]G.Zhang,P.Wang,G.Yang,Q.Cao,R.Wang,Theinhibitoryroleofhydrogen sulfideinairwayhyperresponsivenessandinflammationinamousemodelof asthma,Am.J.Pathol.182(2013)1188–1195.
[8]R.Fitzgerald,B.DeSantiago,D.Y.Lee,G.Yang,J.Y.Kim,D.B.Foster,Y.Chan-Li, M.R.Horton,R.A.Panettieri,R.Wang,S.S.An,H2Srelaxesisolatedhuman airwaysmoothmusclecellsviathesarcolemmalK(ATP)channel,Biochem. Biophys.Res.Commun.446(2014)393–398.
[9]M.Tian,Y.Wang,Y.Q.Lu,M.Yan,Y.H.Jiang,D.Y.Zhao,Correlationbetween serumH2Sandpulmonaryfunctioninchildrenwithbronchialasthma,Mol.
Med.Rep.6(2012)335–338.
[10]W.W.Busse,Therelationshipofairwayhyperresponsivenessandairway inflammation:airwayhyperresponsivenessinasthma:itsmeasurementand clinicalsignificance,Chest(2010)4S–10S.
[11]S.E.Wenzel,Asthmaphenotypes:theevolutionfromclinicaltomolecular approaches,Nat.Med.18(2012)716–725.
[12]P.Bradding,S.T.Holgate,Immunopathologyandhumanmastcellcytokines, Crit.Rev.Oncol.Hematol.31(1999)119–133.
[13]P.Bradding,A.F.Walls,S.T.Holgate,Theroleofthemastcellinthe pathophysiologyofasthma,J.AllergyClin.Immunol.117(2006)1277–1284.
[14]C.E.Brightling,F.A.Symon,S.T.Holgate,A.J.Wardlaw,I.D.Pavord,P.Bradding, Interleukin-4and-13expressionisco-localizedtomastcellswithinthe airwaysmoothmuscleinasthma,Clin.Exp.Allergy33(2003)1711–1716.
[15]Y.H.Liu,M.Lu,Z.Z.Xie,F.Hua,L.Xie,J.H.Gao,Y.H.Koh,J.S.Bian,Hydrogen sulfidepreventsheartfailuredevelopmentviainhibitionofreninrelease frommastcellsinisoproterenol-treatedrats,Antioxid.RedoxSignal.20 (2014)759–769.
[16]A.Rashid,E.Sadroddiny,H.T.Ye,A.Vratimos,S.Sabban,E.Carey,B.Helm, Diagnosticandtherapeuticapplicationsofratbasophilicleukemiacells,Mol. Immunol.52(2012)224–228.
[17]T.Tono,T.Tsujimura,U.Koshimizu,T.Kasugai,K.Isozaki,S.Nishikawa,c-kit Genewasnottranscribedinculturedmastcellsofmastcell-deficient Wsh/Wshmicethathaveanormalnumberoferythrocytesandanormalc-kit codingregion,Blood80(1992)1448–1453.
[18]G.Berrozpe,I.Timokhina,S.Yukl,Y.Tajima,M.Ono,TheW(sh),W(57),and PhKitexpressionmutationsdefinetissue-specificcontrolelementslocated between−23and−154kbupstreamofKit,Blood94(1999)2658–2666.
[19]C.M.Williams,S.J.Galli,Mastcellscanamplifyairwayreactivityandfeatures ofchronicinflammationinanasthmamodelinmice,J.Exp.Med.192(2000) 455–462.
[20]O.Boucherat,J.Boczkowski,L.Jeannotte,C.Delacourt,Cellularandmolecular mechanismsofgobletcellmetaplasiaintherespiratoryairways,Exp.Lung Res.39(2013)207–216.
[21]D.R.Curran,L.Cohn,Advancesinmucouscellmetaplasia:aplugformucusas atherapeuticfocusinchronicairwaydisease,Am.J.Respir.Cell.Mol.Biol.42 (2010)268–275.
[22]M.S.Wilson,T.A.Wynn,Pulmonaryfibrosis:pathogenesis,etiologyand regulation,MucosalImmunol.2(2009)103–121.
[23]H.Kanazawa,J.Yoshikawa,Effectofbeclomethasonedipropionateonbasic fibroblastgrowthfactorlevelsininducedsputumsamplesfromasthmatic patients,Ann.AllergyAsthmaImmunol.95(2005)546–550.
[24]L.P.Boulet,M.Laviolette,H.Turcotte,A.Cartier,M.Dugas,J.L.Malo,M.Boutet, Bronchialsubepithelialfibrosiscorrelateswithairwayresponsivenessto methacholine,Chest112(1997)45–52.
[25]K.Shiba,K.Kasahara,H.Nakajima,M.Adachi,Structuralchangesofthe airwaywallimpairrespiratoryfunction,eveninmildasthma,Chest122 (2002)1622–1626.
[26]W.R.Roche,R.Beasley,J.H.Williams,S.T.Holgate,Subepithelialfibrosisinthe bronchiofasthmatics,Lancet1(1989)520–524.
[27]M.Hoshino,Y.Nakamura,J.J.Sim,Expressionofgrowthfactorsand remodellingoftheairwaywallinbronchialasthma,Thorax53(1998)21–27.
[28]E.Y.Bissonnette,A.M.Madore,J.Chakir,M.Laviolette,L.P.Boulet,Q.Hamid,C. Bergeron,K.Maghni,C.Laprise,Fibroblastgrowthfactor-2isasputum remodelingbiomarkerofsevereasthma,J.Asthma51(2013)119–126.