• Non ci sono risultati.

Hydrogen sulfide inhalation ameliorates allergen induced airway hypereactivity by modulating mast cell activation

N/A
N/A
Protected

Academic year: 2021

Condividi "Hydrogen sulfide inhalation ameliorates allergen induced airway hypereactivity by modulating mast cell activation"

Copied!
8
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Pharmacological

Research

jo u r n al ho me p a g e :ww w . e l s e v i e r . c o m / l o c a t e / y p h r s

Hydrogen

sulfide

inhalation

ameliorates

allergen

induced

airway

hypereactivity

by

modulating

mast

cell

activation

Fiorentina

Roviezzo

a,1

,

Antonio

Bertolino

a,1

,

Rosalinda

Sorrentino

b

,

Michela

Terlizzi

b

,

Maria

Matteis

d

,

Vincenzo

Calderone

c

,

Valentina

Mattera

a

,

Alma

Martelli

c

,

Giuseppe

Spaziano

d

,

Aldo

Pinto

b

,

Bruno

D’Agostino

d

,

Giuseppe

Cirino

a,∗

aUniversitàdiNapoliFedericoII,Italy

bDipartimentodiFarmacia,UniversitàdiSalerno,Italy

cDipartimentodiFarmaciaUniversitàdiPisa,Italy

dDipartimentodiMedicinaSperimentale,SezionediFarmacologiaL.Donatelli,SecondaUniversitàdegliStudidiNapoli,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received9June2015

Receivedinrevisedform30July2015

Accepted30July2015

Availableonline1August2015

Keywords: Hydrogensulfide Mastcell Fibroblast Pulmonaryinflammation Airwayhypereactivity

a

b

s

t

r

a

c

t

Compellingevidencesuggeststhathydrogensulfiderepresentsanimportantgaseoustransmitterinthe mammalianrespiratorysystem.Inthepresentstudy,wehaveevaluatedtheroleofmastcellsin hydro-gensulfide-inducedeffectsonairwaysinamousemodelofasthma.Miceweresensitizedtoovalbumin andreceivedaerosolofahydrogensulfidedonor(NaHS;100ppm)startingatday7afterovalbumin challenge.Exposuretohydrogensulfideabrogatedovalbumin-inducedbronchialhypereactivityaswell astheincreaseinlungresistance.Concomitantly,hydrogensulfidepreventedmastcellactivityaswell asFGF-2andIL-13upregulation.Conversely,pulmonaryinflammationandtheincreaseinplasmatic IgElevelswerenotaffectedbyhydrogensulfide.Alackofhydrogensulfideeffectsinmastcell defi-cientmiceoccurred.Primaryfibroblastsharvestedfromovalbumin-sensitizedmiceshowedanincreased proliferationratethatwasinhibitedbyhydrogensulfideaerosol.Furthermore,ovalbumin-induced trans-differentiationofpulmonaryfibroblastsintomyofibroblastswasreversed.Finally,hydrogensulfidedid abrogateinvitrothedegranulationofthemastcell-likeRBL-2H3cellline.Similarlytotheinvivo exper-imentstheinhibitoryeffectwaspresentonlywhenthecellswereactivatedbyantigenexposure.In conclusion,inhaledhydrogensulfideimproveslungfunctionandinhibitsbronchialhyper-reactivityby modulatingmastcellsandinturnfibroblastactivation.

©2015ElsevierLtd.Allrightsreserved.

1. Introduction

Compellingevidencesuggeststhathydrogensulfiderepresents animportantgaseoustransmitterinthemammalianrespiratory system[1].Hydrogensulfideisanendogenousgaseoustransmitter that isproduced in manytissues primarilybycystathionine ␤-synthase(CBS)andcystathionine␥-lyase(CSE),twoPLPdependent enzymes.Athirdenzymeinvolvedinhydrogensulfideproduction is3-mercaptopyruvatesulfurtransferase(MST)thatalsoproduces hydrogensulfidebutdoesnotrequirePLP[2,3].Theseenzymesare widelyexpressedinpulmonaryandairwaytissues,theexpression patternsandtheextentoftheseenzymesarevariabledepending

∗ Correspondingauthor.

E-mailaddress:[email protected](G.Cirino).

1 Theseauthorshaveequallycontributed.

onthespeciesandcelltypes[4].Ithasbeendemonstratedthat administrationofthehydrogensulfide-donor,sodium hydrosul-fide(NaHS)directlyrelaxesairwaysmoothmuscle[5].Inaddition, intraperitonealadministrationofanhydrogensulfidedonororan inhibitorofhydrogensulfidebiosynthesisalleviatesoraggravates allergen-inducedairwayhypereactivity,respectively[6,7].Studies performedusingCSEKOmicehavefurtherconfirmedthatlower hydrogen sulfide levels worsen airway hyperesponsiveness [7]. Recently,Huangetal.[5]showedthattreatingmicewithan hydro-gensulfide donorbyaerosol, airway hyperesponsiveness(AHR) wassignificantlyrelieved.Thiseffectonairwayhypereactivityhas beenassociatedtoadirectrelaxanteffectofhydrogensulfideon airway smooth muscle.Moreover,Zhang etal. [7]demonstrate thatsystemicadministrationofhydrogensulfidedonor,in addi-tiontothedirectrelaxingeffect,modulateseosinophilinfiltration aswellasTh2cytokineproduction.Hydrogensulfidecanrelaxalso humanairwaysmoothmuscle[8]andapositivecorrelationamong http://dx.doi.org/10.1016/j.phrs.2015.07.032

(2)

thedeclineinlungfunction,thedecreasesinCSEexpressionand theendogenousplasmahydrogensulfideconcentrationshasbeen foundinasthmaticpatients[9].

AHRisthemainasthmafeature.Severalcausativefactorshave beenproposedsuchaschronicinflammation,airwayremodeling, smoothmusclegrowthandepithelialdamage,butthemechanisms arenotasyetclear[10].ThisisprobablybecauseAHRis multifacto-rialandthereforedifferentindistinctasthmaphenotypes[11].An essentialroleofmastcellsinthedevelopmentofmouseairway hyperesponsivenesshasbeenwidelyproposed.It is well estab-lishedthatcross-linkingofIgEAbsonmastcellsbyantigentriggers thereleaseofchemicalmediators,whichinturncausetheearly allergicreactions.Activationofmastcellsalsoleadstothe synthe-sisofcytokines,whichinturncontributetochronicinflammation. Severalstudieshavedemonstratedelevatednumberofmastcells indifferentsitesinthelungoftheasthmaticpatientsandtheir correlationwithinflammationandimpairmentofpulmonary func-tion[12–14].Recentlyithasbeenalsodemonstratedthathydrogen sulfidepreventsheartfailuredevelopmentviainhibitionofrenin releasefrommastcellsinisoproterenol-treatedrats[15].

Inlightofthesefindings,weinvestigatedifthehydrogensulfide effectonairwaysinvolvesmastcells.Thestudyhasbeenperformed byusingawellknownmurinemodelofasthmainducedby oval-bumin.ThecontributionofmastcellsinthedevelopmentofAHR hasbeenalsoassessedbyusingmastcell-deficientmice.Hydrogen sulfidehasbeenadministeredbyaerosolandbothairwayreactivity andpulmonaryinflammationhavebeenevaluated.

2. Materialandmethods

2.1. RBL-2H3cellcultureandˇ-hexosaminidasemeasurement RBL-2H3(RatBasophilicLeukemiaMastCellLine;JapanHealth SciencesFoundation)[16] weresensitized withthemonoclonal anti-dinitrophenylantibodyanti-DNPIgE(0,50␮g/ml).TheH2 S-donorNaHS(10,100␮Mand1mM;5min)or thevehiclewere addedafter24h. RBL-2H3celldegranulationwasinducedby(i) theantigen dinitrophenyl-seralbumin10ng/ml(DNP);(ii) iono-mycin1␮Mand(iii)thapsigargin1␮M.Ttriton-X-100wasadded tocauseexhaustivereleaseof␤-hexosaminidase.Allreagentswere purchasedfromSigma–Aldrich,MilanItaly.

2.2. Mice

BALB/c, mast cell-deficient KitW−sh/W−sh mice [17,18] and C57Bl6/Jmice(CharlesRiver)werehousedin acontrolled envi-ronmentandprovidedwithstandardrodentchowandwater.All mousestrains(20–25g)werehousedwitha12hlightdarkcycle andwereallowedfoodandwateradlibitum.Animalcarewasin compliancewithItalianregulationsonprotectionofanimalsused forexperimentalandotherscientificpurposes(D.M.116192)as wellaswiththeEECregulations(O.J.ofE.C.L358/112/18/1986).All studieswereperformedinaccordancewithEuropeanUnion reg-ulationsforthehandlinganduseoflaboratoryanimalsandwere approvedbythelocalcommittee.

2.2.1. Antigenexposureanddrugtreatmentofmice

Micereceivedsubcutaneousadministrationofovalbumin(OVA, 100␮g)adsorbedontoAl(OH)3 atday0and7.Inapreliminary screening,wedeterminedthat theoptimaldosetobegivenby aerosolofhydrogensulfidewas100ppmofNaHS.Rodentswere exposedtoaerosolizedNaHSorvehicleforupto5min,dailyfor2 weeks.NaHSwasadministeredtomiceusinganaerosolexposure device(InToxProducts,N.Mex.).Thesystemconsistedofacentral chamberhavingseparateaerosol supplyandexhaustpaths.The centralchamberhad24portsthatweredirectlyconnectedtothe

aerosolsupplysystem.Micewereplaced intoindividualaerosol exposuretubesandrestrainedwithanadjustablepushplateand end capassembly sotheycouldnot turnaroundor backaway fromtheendofthetube.Therestrainttubescontainingthemice wereloadedontoportsonthecentralchamberandtheairflow adjustedto1l/min.Theair(breathablequalityair)flowtothePARI LCStarnebulizerwasheldconstantat6.9l/min.NaHSnebulizedat 0.2ml/minanddeliveredtothemiceviatheaerosolsupplypath. Additionalair(hereafterreferredtoasdilutionair)wasdelivered tonebulizer(where)tobalancetheoverpressureoftheairused todeliveraerosolizeddrugstothemice.Twentyfourhoursafter thelastadministrationmicewereanesthetizedandsubjectedto euthanasia(Fig.2A).

2.3. Airwayreactivity 2.3.1. Bronchialreactivity

Miceweresacrificedand bronchiwererapidlydissectedand cleanedfromfatandconnectivetissue. Ringsof1–2mmlength werecutandplacedinorganbaths(2,5ml)filledwithoxygenated (95%O2–5%CO2)Krebssolutionat37◦Candmountedtoisometric forcetransducers(type7006,UgoBasile,Comerio,Italy)and con-nectedtoa Powerlab800(ADInstruments).Ringswereinitially stretcheduntilarestingtensionof0.5gwasreachedandallowedto equilibrateforatleast30minduringwhichtensionwasadjusted, whennecessary,toa0.5gandbathingsolutionwasperiodically changed.Inapreliminarystudy,arestingtensionof0.5gwasfound todevelop theoptimal tensiontostimulation withcontracting agents.Ineachexperiment,bronchialringswerepreviously chal-lengedwithacetylcholine(10−6mol/l)until theresponseswere reproducible.Subsequently,bronchiwerechallengedwith carba-chol.

2.3.2. Isolatedperfusedmouselungpreparation

Themouse lungswere perfusedin a non-recirculating fash-ionthroughthepulmonaryarteryataconstantflowof1ml/min resultinginapulmonaryarterypressureof2–3cmH2O.The perfu-sionmediumusedwasRPMI1640lackingphenolred(37◦C).The lungswereventilatedbynegativepressure(−3and−9cmH2O) with90breathmin−1 and a tidalvolumeofabout200␮l.Every 5minahyperinflation(−20cmH2O)wasperformed.Artificial tho-raxchamberpressurewasmeasuredwithadifferentialpressure transducer(ValidyneDP45-24)andairflowvelocitywith pneumo-tachographtubeconnected toa differentialpressuretransducer (ValidyneDP45-15).Thelungsrespiredhumidifiedair.The arte-rialpressurewascontinuouslymonitoredbymeansofapressure transducer(IsotecHealthdyne)whichwasconnectedwiththe can-nulaendinginthepulmonaryartery.Alldataweretransmittedto acomputerandanalysedwiththePulmodynsoftware(HugoSachs Elektronik,MarchHugstetten,Germany).Thedatawereanalyzed throughthefollowingformula:P=V×C−1+RL×dV×dt−1,where Pischamberpressure,Cpulmonarycompliance,Vtidalvolume,RL airwayresistance.Theairwayresistancevalueregisteredwas cor-rectedfortheresistanceofthepneumotacometerandthetracheal cannulaof0.6cmH2Osml−1.Lungswereperfusedandventilated for45minwithoutanytreatmentinordertoobtainabaselinestate. Subsequently,lungs werechallengedwithcarbachol. Repetitive doseresponsecurveofcarbacholwasadministeredas50␮lbolus, followedbyintervalsof15min,inwhichlungswereperfusedwith bufferonly.

2.4. FlowCytometryAnalysis

Lungs weredigestedwithcollagenase (Sigma–Aldrich,Italy). Pulmonaryinflammatorycellsweredeterminedbyflowcytometry

(3)

(BD FacsCalibur, Italy) using CD11c-APC, CD11b-PeCy5.5, cKit-PeCy5.5or-PE,IgE-FITC(Bioscience,SanDiego,CA,USA).

2.5. Immunohistochemistry

Left lung lobes were paraffin-embedded and 7␮m sections wereobtained.Thedegreeofinflammationwasscoredbyblinded observers by using hematoxylin and eosin (H&E) and Periodic acid/Alcianblue/Schiffstaining(PAS).PASStaining(Sigma–Aldrich, Milan Italy) was performed according to the manufacturer’s instructionstodetectglycoprotein.PAS+cryosectionsweregraded withscores0–4todescribelowtoseverelunginflammationas follows:0:<5%;1:5–25%;2:25–50%; 3:50–75%;4:<75% pos-itivestaining/total lungarea. FGF2detectionwasperformedby usinganti-FGF-2orIgGisotypecontrol(SantaCruz,USA).Mastcell recruitmentwasevaluatedbymeansoftoluidinebluestaining(1% solution).

2.6. MeasurementofserumIgElevels

PlasmaticserumIgElevelsweremeasuredbyELISAaccordingly tothemanufacturer’sinstructions(BDPharmingen,USA). 2.7. Fibroblastactivity

2.7.1. Fibroblastculture

Miceweresacrificedandthethoraxwasopened, thenlungs wereremoved. Lungs were mincedand incubated withDMEM containing15%FCS.Cultureswerereplacedthreetimesweekly. Allcultures wereevaluatedbyimmunohistochemistrytoassess vimentinandallstainedpositivelywithvimentin.Selected cul-tureswereevaluated.Fibroblastswerepassagedwithtrypsin/EDTA (0.05% trypsin,0.53mM EDTA; GIBCO). Fibroblast betweenthe thirdandthesixthpassageswereusedforassays.

2.7.2. Fibroblastproliferationanddifferentiation

Pulmonaryfibroblastswereharvestedfrommicetreatedwith vehicle,OVAorOVAandexposedtohydrogensulfide.Fibroblast proliferationwasassessedbytheMTT, (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl)tetrazoliumbromide,colorimetricassay. Fibro-blastdifferentiationwastested by incubatingcells withmouse monoclonalantibodyagainst␣-SMA(Sigma–Aldrich,Italy)or rab-bit polyclonal antibody against vimentin (Santa Cruz, CA). For detectionfluoresceinlabeledanti-mouseIgG (ABNOVA,Italy)or Texas-Redlabeledanti-rabbitIgG(ABNOVA,Italy)wereused.The levelofmyofibroblasticdifferentiationwasmeasuredbycounting atleast200cells.

2.8. Statisticalanalysis

Dataaremeans±SEMfromatleast6miceineachgroup.The levelofstatisticalsignificancewasdeterminedbyone-wayor two-wayanalysisofvariance(ANOVA)followedbyBonferroni’stestfor multiplecomparisonsbyusingtheGraphPadPrismsoftware(USA). 3. Results

3.1. Hydrogensulfideinhibitsantigen-induceddegranulationin RBL-2H3cells

A direct effect of hydrogen sulfide on mast cell degranula-tion wasinvestigated in vitro by using mast cell-like RBL-2H3 cellline.TheadditionoftheantigenDNP-HSAtopre-sensitized RBL-2H3cellscausedasignificantdegranulationevaluatedas ␤-hexosaminidase release (Fig.1A).Analmostequivalentlevel of

Fig.1.HydrogensulfidereducesIgE-mediatedRBL-H3cellsdegranulation.(A)

RBL-2H3cell degranulationwaspharmacologically inducedby(i) theantigen

dinitrophenyl-seralbumin10ng/ml(DNP),(ii)ionomycin(ION)1␮Mor(iii)

thap-sigargin(TPS)1␮M.Inmatchedwells,triton-X-100wasadded,toelicitcelllysis

andexhaustivereleaseof␤-hexosaminidase.Theconcentrationofp-nitrophenate

releaseof␤-hexosaminidasewasmeasuredat405nm.(B)Cellsweresensitised

withDNPandafter24hincubatedfor5minwitheithertheH2S-donorNaHS(10,

100␮Mand1mM)orthevehicle.CelldegranulationwasinducedbyDNP.(C)Cells

wereincubatedeitherwithNaHS(1mM)orvehiclefor5minandcelldegranulation

inducedbyIONorTPS.(**p<0.01vsvehicle;p<0.001vsvehicle).

degranulationwasinducedbythenon-antigenicstimuli thapsigar-ginandionomycin(Fig.1A).Hydrogensulfidecausedaremarkable andconcentration-dependentinhibitionoftheRBL-2H3 degranu-lationinducedbyDNP-HAS(Fig.1B).Incontrast,hydrogensulfide didnotexhibitanysignificantinhibitoryactivityonthe degranu-lationinducedeitherbythapsigarginorionomycin(Fig.1C). 3.2. HydrogensulfideinhibitsOVA-inducedairwayhypereactivity

Sensitized micewereexposedtoNaHS inhalation(100ppm; 5min) daily from day7 to21 (Fig. 2A). This dosewas shown not to cause any effect “per se”. Bronchial reactivity (Fig. 2B) andlungresistance(Fig.2C)aftercarbacholchallengewere mea-sured. Bronchi harvested fromOVA-sensitized miceshowedan increasedreactivitytocarbacholincomparisontovehicletreated mice(Fig.2B).Similarly,increasedlungresistanceswaspresentas determinedbyusingtheisolatedandperfusedlungpreparation (Fig.2C).NaHSinhalationreversedbothbronchialhypereactivity (Fig.2B)andtheincreaseoflungresistance(Fig.2C)inOVA-treated mice.Conversely,hydrogensulfideinhalationdidnotalter OVA-inducedcellinfiltrationandinflammation(Fig.2D).PASpositive stainingwasstillvisibleinpulmonaryhistologyoflungsharvested frommicesensitizedandexposedtoNaHSinhalation(Fig.2E),as alsoobservedbytheH&Estaining(Fig.2D)showingastillaltered

(4)

Fig.2.HydrogensulfideinhalationabrogatesOVA-inducedairwayhyper-reactivity.(A)Schematicrepresentationoftheprotocolused.Micereceivedsubcutaneous

admin-istrationofOVAadsorbedontoalumatday0and7.Aerosoladministrationofvehicleorhydrogensulfide(NaHS,100ppm)wasperformeddailyfromday7today21.Twenty

fourhoursafterthelastadministrationmiceweresacrificed.(B)Measurementofbronchialreactivitytocarbachol.(C)Measurementoflungresistancebyusingisolated

perfusedlungpreparation.***p<0.001vsvehicle.(D)Histologicalanalysisofpulmonarysections(Hematoxylin&Eosin).(E)Gobletcellhyperplasiaevaluationbyperiodic

acid/Alcianblue/Schiffstaining(**p<0.01vsvehicle).Lungsectionshavebeenphotographedunderlightmicroscopyat10×magnification,PASpositivecriosectionswere

gradedwithscores0–4todescribelowtoseverelunginflammation(0:<5%;1:5–25%;2:25–50%;3:50–75%;4:<75%positivestaining/totallungarea).Dataaremeans±SEM

from6miceineachgroup.

bronchialepitheliuminOVA+NaHStreatedmicecomparedto vehi-clemice.

3.3. Hydrogensulfideaffectsmastcelldegranulationandinhibits fibrogeniccytokinesproduction

FlowcytometryanalysisoflungsharvestedfromOVA-sensitised micedemonstratedasignificantincreaseofmastcellrecruitment. ThemastcellswereidentifiedasCD11c+c−Kit+Ige+positivecells (Fig. 3A). Treatment of mice with NaHS neither affected mast cellcount(Fig.3B)norplasmaticIgElevels(Fig.1B).Conversely NaHSinhalationsignificantlyaffectedmastcelldegranulationas

evidentbytoluidinepositivestaining(Fig.3C).Hydrogensulfide reversedalsoOVA-inducedup-regulationoftwoimportant fibro-geniccytokinesIL-13(Fig.3D)andFGF-2(Fig.3E).

3.4. Mastcell-deficientKitW−sh/W−shmicefailtodevelopairway hyperesponsiveness

Mast cell-deficient KitW−sh/W−sh mice exposed to OVA sen-sitizationdidnot developbronchial hypereactivitytocarbachol (Fig.4A).ExposureofmicetoNaHSduringsensitizationdidnot furtheraffectbronchialtone(Fig.4A).Ontheotherhand,a sig-nificantairwayhypereactivitywasobservedinthewildtypemice

(5)

Fig.3.Hydrogensulfideinhibitsmastcelldegranulationandcytokinesexpressioninthelung.(A)Quantificationoflungmastcellsbyflowcytometryidentifiedas

CD11c+c−Kit+Ige+positivecells(**p<0.01vsvehicle).(B)IgEseralevelsweredeterminedbyusingspecificELISA(*p<0.05vsvehicle).(C)Toluidinebluestainingof

paraffin-embeddedlungsections.(D)PulmonaryIL-13expressionhasbeendeterminedbyELISA.(E)ImmunohistochemistryofFGF-2expressioninlungs,(*p<0.05vs

vehicle,#p<0.05vsOVA,##p<0.01vsOVA).Dataaremeans±SEMfrom6miceineachgroup.

(C57Bl6/J,datanotshown).SimilarlytowhatobservedinBALB/c mice,NaHStreatmentofsensitizedC57Bl6/Jmicereversed OVA-inducedairwayhypereactivity(datanotshown).Sensitizationof mastcell-deficientKitW−sh/W−shmicefailedtoinduceasignificant increaseofbothIL-13(Fig.4B)andFGF-2(Fig.4B)expressionin lung.Treatmentofmastcell-deficientKitW−sh/W−shmicewithNaHS didnotaffectallparametersevaluated(Fig.4A–D).Thesedataimply thatmastcellistheprimarytargetofhydrogensulfide.

Inordertofurtheraddresstheroleofmastcellswetreatedmice withOVAwithoutalumusingtheprotocolreportedin supplemen-talFig.1A.Thisisachronicallergicasthmamodelmainlymastcell dependent[19].Similarly,towhatwefoundintheothermodel theincreaseinmastcellrecruitmentdrivenbythesensitization procedurewasnotaffectedbyNaHS(SupplementalFig.1B),while mastcelldegranulationwasblunted(SupplementalFig.1C).Also inthisexperimentalsettingbronchialhypereactivitytocarbachol wasabrogatedbyhydrogensulfideaerosol(SupplementalFig.1D). PASstainingevidencedaweakincreaseofgobletcellssuggesting amarginalroleofmastcellsintheregulationofmucusproduction (SupplementalFig.1E).Finallyhydrogensulfidetreatmentdidnot alterpulmonarymorphology.

3.5. FibroblastsharvestedfrommiceexposedtoNaHSdiplayeda reducedactivation

Primary pulmonary fibroblasts were harvested from mice exposed toOVA and theirproliferation rate and differentiation evaluatedin vitro. Our datashowthat primary fibroblasts har-vestedfromsensitizedmicedisplayedanincreasedproliferation rate(Fig.5A)aswellasincreasedexpressionof␣-SMA(Fig.5B and C) as compared to vehicle treated mice When fibroblasts wereharvestedfrommicetreatedwithhydrogensulphideaerosol in vivoboth theincreasedproliferation rateand differentiation were reverted(Fig. 5).Thus, miceexposed to hydrogensulfide inhalationdisplayedasignificantreductionoffibroblastactivation beyondreduction ofairwayhyper-reactivity.Inordertofurther demonstratethatthefibroblastscontributetomast-cell-dependent airwayhyper-reactivity,weevaluatedfibroblastactivationalsoin themodelofmastcell-dependenthyper-reactivityusingthe proto-coldescribedinSupplementalFig.1A.Ourdatashowthatprimary fibroblastsharvestedfromthesemicedisplayedanincreasedrate of proliferation (Supplemental Fig. 2A) aswell as an increased expressionof ␣-SMA(SupplementalFig.2Band C).Whenmice

(6)

Fig.4. Lackofeffectofhydrogensulfideinmastcell-deficientKitW−sh/W−shmice.Mastcell-deficientKitW−sh/W−shmicereceivedsubcutaneousadministrationofOVAadsorbed

ontoalumatday0and7.Miceweretreatedwitheithervehicleorhydrogensulfideaerosoldailyfromday7to21.Twentyfourhoursafterthelastadministrationmice

weresacrificed.(A)Bronchialreactivitytocarbacholwasassessed.(B)Gobletcellhyperplasiaevaluationbyperiodicacid/Alcianblue/Schiffstaining.Lungsectionshave

beenphotographedunderlightmicroscopyat10×magnification,PASpositivecriosectionsweregradedwithscores0–4todescribelowtoseverelunginflammation(0:

<5%;1:5–25%;2:25–50%;3:50–75%;4:<75%positivestaining/totallungarea,**p<0.01vsvehicle).(C)PulmonaryIL-13expressionhasbeendeterminedbyELISA.(D)

ImmunohistochemistryofFGF-2pulmonaryexpression.Dataaremeans±SEMfrom6miceineachgroup.

weretreatedwithaerosolofhydrogensulfide,boththeincreased fibroblastproliferationanddifferentiationmeasuredexvivowere prevented (Supplemental Fig. 2) as well as the airway hyper-reactivity.

4. Discussion

Thereisa growingbody of evidence suggestingthat hydro-gensulfidemightbeofclinicalbenefitinpulmonarydiseases.In particular,aroleforhydrogensulfideinmodulatingairway hypere-activityandremodelinghasbeensuggested.Airwayhypereactivity isanimportantpathophysiologicalcharacteristicofasthmaandit islinkedtobothairwayinflammationandremodeling.Although thepathogenicmechanisms arenot completely understood,an essentialroleisattributedtomastcells.Here wehaveassessed whetherthebeneficialeffectsofhydrogensulfideonlungfunction arerelatedtomastcellactivation.

Preliminarily,wehavedeterminedtheeffectofNaHSonmast cellsbyusingthemastcell-likeRBL-2H3cellline.Incubationof RBL-2H3withNaHSdidnothaveanyeffectbyitselfuptoadose of1mM.Conversely,hydrogensulfide causedaremarkableand concentrationdependentinhibitionoftheRBL-2H3degranulation whencellsweresensitizedandchallengedwithantigen. Hydro-gensulfidedidnotaffecteitherthapsigarginorionomycin-induced RBL-2H3degranulation.Theseresultsclearlysuggestthathydrogen sulfidecanexplicateitsactiononlyonsensitizedcells.

Inordertobetterunderstandthisphenomenonwetestedthe effectofhydrogensulfide invivobyusingOVA-sensitizedmice. Exposureofallergen-sensitizedmicetohydrogensulfideaerosol

reversedbronchialhyperactivityasalreadydemonstratedby oth-ers [6]. In addition, we also show that the aerosol treatment abrogatedtheincreaseinlungresistance.Allergen-inducedAHR wascoupledto anincreased presenceof mast cells withinthe pulmonarytissue,asdeterminedbyFACSanalysis.Aerosol admin-istrationofhydrogensulfide neitherinfluenced therecruitment oflungmastcellsorplasmalevelsofIgEinducedbyOVA sensiti-zation.However,inanalogywithRBL-2H3cells,hydrogensulfide abrogatedinvivomastcelldegranulation.Thiseffectwascoupled toinhibitionofthepulmonaryexpressionofFGF-2aswellasIL-13. Ontheotherhand,hydrogensulfidedidnotaffectallergen-induced gobletcellmetaplasia,mucushypersecretionandpulmonarycell infiltration,allparametersindicativeoflunginflammation[20,21]. Therefore,thehydrogensulfidebeneficialeffectsonairway hyper-eactivitywellcorrelateswiththereversionofmastcellactivation. Indeed, the data obtained with the experiments in vitro with RBL cells, taken together with the in vivo functional data and the modulationof IL-13 and FGF2pulmonary expression were allindicativeforacentralroleformastcellinhydrogen sulfide-mediatedactions.Tofurtherunderstandthelinkamonghydrogen sulfide, mast cells and bronchial hypereactivity, we tested hydrogen sulfide effect in mast cell-deficient KitW−sh/W−sh mice.Bronchi,harvestedfromOVA-sensitizedmastcell-deficient KitW−sh/W−shmice,didnotdevelopbronchialhypereactivity.The upregulation of IL-13 and FGF2 was absent, too. Conversely, theinflammatory features i.e. allergen-induced cellinfiltration, gobletcellmetaplasiaandmucushypersecretionwereallstill evi-dent.ExposureofOVA-sensitizedmastcell-deficientKitW−sh/W−sh micetohydrogensulfideaerosoldidnotaffecttheinflammatory

(7)

Fig.5.Hydrogensulfideinhibitsfibroblastactivationinthelung.(A)LungprimaryfibroblastswereharvestedfromOVA-sensitizedmiceexposedtovehicleorNaHSaerosol.

FortheinvivoprotocolseeFig.2A.TheMTTcolorimetricassaywasusedtoassessfibroblastproliferationinvitro(**p<0.01vsvehicle).(B)Percentageofmyofibroblasts

(*p<0.05vsvehicle).(C)Fibroblastswerelabelledwithanti-vimentinantibody(red).NucleiwerestainedwithDAPI(blue).Myofibroblastdifferentiationwasdeterminedby

detectionofexpressionofalphaSMA(green).Lowestpanelsrepresentthemergeofupperandcentralpanels.Theimageswereacquiredwithconfocalmicroscope(Leica).

Thepercentageofmyofibroblastsareeasilydistinguishablesincetheydisplaywell-developed,thickandalphaSMA-positivestressfibers.(Forinterpretationofthereferences

tocolorinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

reaction.ThereforethelackofmastcellsinKitW−sh/W−shmice mim-icsthehydrogensulfideeffectsinOVA-sensitizedmice.Inaddition thesedataimplythattheupregulationofOVA-inducedIL-13and FGF-2expressioninthelungismastcelldependentandtherefore hydrogensulfideeffectisstrictlydependentfromantigen-activated mast cells. However,we still had to definehow this hydrogen sulfideeffectonmastcells translatesintoa beneficial effecton airwayhypereactivity.Mastcells synthesizeandsecretea large

number ofpro-inflammatorycytokineswhich regulateboth IgE synthesisandthedevelopmentofinflammationandseveral pro-fibrogeniccytokines.Someofthesemastcellproductse.g.,IL-13 areknowntoinducebronchialhypereactivityinthemouse inde-pendentoftheinflammatoryresponseandenhancedtheresponses in cultured humanairway smooth muscle[12,13].Accordingly, aerosolofhydrogensulfidepreventedFGF2andIL-13 upregula-tion,thatareknowntoactivatelungfibroblastsinhumansandin

(8)

experimentalanimals[22,23].Inadditionthereisincreasing evi-denceinhumansforastrongcorrelationbetweensub-epithelial fibrosisand airwayhyper-reactivity[24,25]assuggestedbythe increasednumbersoffibroblasts/myofibroblastsfoundinthe air-waysofasthmaticpatients[26,27].Inordertoaddressthisissue weharvestedfibroblastsfromOVA-sensitizedmice.These fibrob-lastsdisplayedanincreasedproliferationrateinvitroaswellasa significantincreaseinthepercentoffibroblastsconvertedin myofi-broblasts. When fibroblasts were harvested from mice treated invivowithhydrogensulfideaerosol,theincreasedfibroblast pro-liferationrateaswellastheirdifferentiationintomyofibroblasts weresignificantlyinhibited.Thesedatasuggestthatthehydrogen sulfide beneficial effects involvesalsomodulationof mast cell-mediatedfibroblastactivation.Thishypothesisissupportedbythe findingthatinmastcelldeficientmiceFGF-2aswellasIL-13 up-regulationarenotinducedbyOVA-sensitization.Thisisalsointune withthefindingthatIL-13+cells,presentwithintheairwaysmooth muscleofasthmaticpatients,arepredominantlymastcells[27]. IL-13hasbeenalsoshowntoelicitmanyofthefeaturesofhuman asthmaaswellastoregulateproductionofseveralpro-fibrogenic cytokinesincludingFGF-2[23,28].

Inconclusion,herewedemonstratethatexposureofsensitized micetohydrogensulfideinhalationreversesairwayhypereactivity. Thehydrogensulfideeffectstemsfromthemodulationoperatedby hydrogensulfideonmastcellasdemonstratedbythelackofeffect ofNaHSinKitW−sh/W−shmice.Thebeneficialeffectonbronchial hypereactivityinvolvesthemastcell-inducedfibroblastactivation andinturninhibitionofIL-13andFGF-2expression.Thisis par-ticularinterestingontheclinicalside sincerecentlyit hasbeen demonstratedthatFGF-2levelsininduced sputumsignificantly correlatewithpulmonaryfunctionandhavebeenproposedtobe apossiblebiomarkerofasthmaticairwayremodeling[28].These dataalsosuggestthataerosol treatmentwithH2Sdonorscould beexploitedastherapeuticcomplementarytherapeuticapproach inlungdiseasessuchasthmaaswellasotherrespiratory fibrotic-relateddiseasessuchasidiopathicpulmonaryfibrosisandchronic obstructivepulmonarydisease.

Conflictofinterest

Iwishtoconfirmthattherearenoknownconflictsofinterest associatedwiththispublicationandtherehasbeennosignificant financialsupportforthisworkthatcouldhaveinfluencedits out-come.

Iconfirmthatthemanuscripthasbeenreadandapprovedbyall namedauthorsandthattherearenootherpersonswhosatisfied thecriteriaforauthorshipbutarenotlisted.Wefurtherconfirm thattheorderofauthorslistedinthemanuscripthasbeenapproved byallofus.

Acknowledgments

ThisworkhasbeenfinanciallysupportedbytheprojectPRIN 2012andCREME

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.phrs.2015.07.032 References

[1]Y.Chen,R.Wang,Themessageintheair:hydrogensulfidemetabolismin chronicrespiratorydiseases,Respir.Physiol.Neurobiol.184(2012)130–138.

[2]N.Nagahara,M.Nagano,T.Ito,K.Shimamura,T.Akimoto,H.Suzuki, Antioxidantenzyme,3-mercaptopyruvatesulfurtransferase-knockoutmice

exhibitincreasedanxiety-likebehaviors:amodelforhuman mercaptolactate-cysteinedisulfiduria,Sci.Rep.3(2013)1986.

[3]J.E.Dominy,M.H.Stipanuk,Newrolesforcysteineandtranssulfuration enzymes:productionofH2S,aneuromodulatorandsmoothmusclerelaxant,

Nutr.Rev.62(2004)348–353.

[4]P.Wang,G.Zhang,T.Wondimu,B.Ross,R.Wang,Hydrogensulfideand asthma,Exp.Physiol.96(2011)847–852.

[5]J.Huang,Y.L.Luo,Y.Hao,Y.L.Zhang,P.X.Chen,J.W.Xu,M.H.Chen,Y.F.Luo, N.S.Zhong,J.Xu,W.L.Zhou,Cellularmechanismunderlyinghydrogensulfide inducedmousetrachealsmoothmusclerelaxation:roleofBKCa,Eur.J. Pharmacol.741(2014)55–63.

[6]Y.H.Chen,R.Wu,B.Geng,Y.F.Qi,P.P.Wang,W.Z.Yao,C.S.Tang,Endogenous hydrogensulfidereducesairwayinflammationandremodelinginaratmodel ofasthma,Cytokine45(2009)117–123.

[7]G.Zhang,P.Wang,G.Yang,Q.Cao,R.Wang,Theinhibitoryroleofhydrogen sulfideinairwayhyperresponsivenessandinflammationinamousemodelof asthma,Am.J.Pathol.182(2013)1188–1195.

[8]R.Fitzgerald,B.DeSantiago,D.Y.Lee,G.Yang,J.Y.Kim,D.B.Foster,Y.Chan-Li, M.R.Horton,R.A.Panettieri,R.Wang,S.S.An,H2Srelaxesisolatedhuman airwaysmoothmusclecellsviathesarcolemmalK(ATP)channel,Biochem. Biophys.Res.Commun.446(2014)393–398.

[9]M.Tian,Y.Wang,Y.Q.Lu,M.Yan,Y.H.Jiang,D.Y.Zhao,Correlationbetween serumH2Sandpulmonaryfunctioninchildrenwithbronchialasthma,Mol.

Med.Rep.6(2012)335–338.

[10]W.W.Busse,Therelationshipofairwayhyperresponsivenessandairway inflammation:airwayhyperresponsivenessinasthma:itsmeasurementand clinicalsignificance,Chest(2010)4S–10S.

[11]S.E.Wenzel,Asthmaphenotypes:theevolutionfromclinicaltomolecular approaches,Nat.Med.18(2012)716–725.

[12]P.Bradding,S.T.Holgate,Immunopathologyandhumanmastcellcytokines, Crit.Rev.Oncol.Hematol.31(1999)119–133.

[13]P.Bradding,A.F.Walls,S.T.Holgate,Theroleofthemastcellinthe pathophysiologyofasthma,J.AllergyClin.Immunol.117(2006)1277–1284.

[14]C.E.Brightling,F.A.Symon,S.T.Holgate,A.J.Wardlaw,I.D.Pavord,P.Bradding, Interleukin-4and-13expressionisco-localizedtomastcellswithinthe airwaysmoothmuscleinasthma,Clin.Exp.Allergy33(2003)1711–1716.

[15]Y.H.Liu,M.Lu,Z.Z.Xie,F.Hua,L.Xie,J.H.Gao,Y.H.Koh,J.S.Bian,Hydrogen sulfidepreventsheartfailuredevelopmentviainhibitionofreninrelease frommastcellsinisoproterenol-treatedrats,Antioxid.RedoxSignal.20 (2014)759–769.

[16]A.Rashid,E.Sadroddiny,H.T.Ye,A.Vratimos,S.Sabban,E.Carey,B.Helm, Diagnosticandtherapeuticapplicationsofratbasophilicleukemiacells,Mol. Immunol.52(2012)224–228.

[17]T.Tono,T.Tsujimura,U.Koshimizu,T.Kasugai,K.Isozaki,S.Nishikawa,c-kit Genewasnottranscribedinculturedmastcellsofmastcell-deficient Wsh/Wshmicethathaveanormalnumberoferythrocytesandanormalc-kit codingregion,Blood80(1992)1448–1453.

[18]G.Berrozpe,I.Timokhina,S.Yukl,Y.Tajima,M.Ono,TheW(sh),W(57),and PhKitexpressionmutationsdefinetissue-specificcontrolelementslocated between−23and−154kbupstreamofKit,Blood94(1999)2658–2666.

[19]C.M.Williams,S.J.Galli,Mastcellscanamplifyairwayreactivityandfeatures ofchronicinflammationinanasthmamodelinmice,J.Exp.Med.192(2000) 455–462.

[20]O.Boucherat,J.Boczkowski,L.Jeannotte,C.Delacourt,Cellularandmolecular mechanismsofgobletcellmetaplasiaintherespiratoryairways,Exp.Lung Res.39(2013)207–216.

[21]D.R.Curran,L.Cohn,Advancesinmucouscellmetaplasia:aplugformucusas atherapeuticfocusinchronicairwaydisease,Am.J.Respir.Cell.Mol.Biol.42 (2010)268–275.

[22]M.S.Wilson,T.A.Wynn,Pulmonaryfibrosis:pathogenesis,etiologyand regulation,MucosalImmunol.2(2009)103–121.

[23]H.Kanazawa,J.Yoshikawa,Effectofbeclomethasonedipropionateonbasic fibroblastgrowthfactorlevelsininducedsputumsamplesfromasthmatic patients,Ann.AllergyAsthmaImmunol.95(2005)546–550.

[24]L.P.Boulet,M.Laviolette,H.Turcotte,A.Cartier,M.Dugas,J.L.Malo,M.Boutet, Bronchialsubepithelialfibrosiscorrelateswithairwayresponsivenessto methacholine,Chest112(1997)45–52.

[25]K.Shiba,K.Kasahara,H.Nakajima,M.Adachi,Structuralchangesofthe airwaywallimpairrespiratoryfunction,eveninmildasthma,Chest122 (2002)1622–1626.

[26]W.R.Roche,R.Beasley,J.H.Williams,S.T.Holgate,Subepithelialfibrosisinthe bronchiofasthmatics,Lancet1(1989)520–524.

[27]M.Hoshino,Y.Nakamura,J.J.Sim,Expressionofgrowthfactorsand remodellingoftheairwaywallinbronchialasthma,Thorax53(1998)21–27.

[28]E.Y.Bissonnette,A.M.Madore,J.Chakir,M.Laviolette,L.P.Boulet,Q.Hamid,C. Bergeron,K.Maghni,C.Laprise,Fibroblastgrowthfactor-2isasputum remodelingbiomarkerofsevereasthma,J.Asthma51(2013)119–126.

Riferimenti

Documenti correlati

Cultured rat aortic vascular smooth muscle cells (VSMCs, A10 cell line) were incubated with methylglyoxal (MG, 30 mM) or high glucose (25 mM) alone or co-incubated with either

Let B be obtained from A by replacing one of its rows or one of its columns by

In ogni caso, però, un trasduttore possiede caratteristiche ben definite solo se la variazione del segnale d'ingresso, rispetto ad una determinata

This ‘plural’ approach to ownership exhibits the complexities hidden in the ‘black box’ of domestic policy dynamics described by ‘ownership.’ It also highlights the

Tratto da Vivantes cendres, innommées di Michel Leiris.. Tratto da Vivantes cendres, innommées di Michel

A recent model, used in literature to evaluate the protective effect of some compounds (drugs, natural substances) on type 2 diabetes mellitus and hepatic

Using a representative embedded heterogeneous system, namely, the TI Keystone II EVMK2H board [14], we demonstrate the great potential of the PREM execution model for achiev-

I veicoli per il carico e scarico merce avranno la possibilità di usufruire degli stalli di sosta apposita- mente creati in via Marzia e via L.Da Verona.. Diminuzione transiti