• Non ci sono risultati.

Acid catalyzed alkylation of phenols with cyclohexene: Comparison between homogeneous and heterogeneous catalysis, influence of cyclohexyl phenyl ether equilibrium and of the substituent on reaction rate and selectivity

N/A
N/A
Protected

Academic year: 2021

Condividi "Acid catalyzed alkylation of phenols with cyclohexene: Comparison between homogeneous and heterogeneous catalysis, influence of cyclohexyl phenyl ether equilibrium and of the substituent on reaction rate and selectivity"

Copied!
8
0
0

Testo completo

(1)

ContentslistsavailableatSciVerseScienceDirect

Journal

of

Molecular

Catalysis

A:

Chemical

j o ur na l ho me p ag e :w w w . e l s e v i e r . c o m / l o c a t e / m o l c a t a

Acid

catalyzed

alkylation

of

phenols

with

cyclohexene:

Comparison

between

homogeneous

and

heterogeneous

catalysis,

influence

of

cyclohexyl

phenyl

ether

equilibrium

and

of

the

substituent

on

reaction

rate

and

selectivity

L.

Ronchin

,

A.

Vavasori,

L.

Toniolo

DepartmentofMolecularScienceandNanosystems,UniversityCa’FoscariofVenice,Dorsoduro2137,30123Venice,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received1August2011 Receivedinrevisedform 28November2011 Accepted7December2011 Available online 16 December 2011 Keywords: Acidcatalysis Sulfonatedresins Phenolsalkylation Alkylationselectivity

a

b

s

t

r

a

c

t

Thereactivityofseveralphenolstowardliquidphasealkylationwithcyclohexeneinthepresenceof heterogeneousandhomogeneousacidcatalystat358Kisstudied.ThecomparisonbetweenAmberlyst 15andCH3SO3H,asexamplesofheterogeneousandhomogeneoussystems,showsahigheractivityof

theformerwithdifferentbehaviorofselectivitybetweenthetwosystems,anyway,inbothsystems O-alkylationandringalkylationsoccur.Aremarkabledifferenceintheselectivityofthering alkyla-tionbetweenheterogeneousandhomogeneoussystemsisobserved:Amberlyst15showsaconstant ortho/pararatiocloseto2,whileinthepresenceofCH3SO3Hortho/paraisvariablefrom3to5,

sug-gestinganinvolvementofthecyclohexylphenyletherrearrangement.Thisisprovedalsobyadirect relationshipbetweentheortho/pararatioandtheconcentrationofthecyclohexylphenyletherwhen CH3SO3Hisusedasacatalyst.Theformationofcyclohexylarylethersisreversible;onthecontrary,ring

alkylationappearsirreversible.Thereactivityofthedimethylphenolsshowsastronginfluenceofthe sterichindranceofthesubstituentontheelectrophilicattackofthecyclohexylcation,whichispoorly influencedbytheinductiveeffectofthemethylgroup.

© 2011 Published by Elsevier B.V.

1. Introduction

Organicindustrial processesemploy acidcatalyzed reactions

such as alkylation, acylation, isomerization, cracking, nitration,

condensation,esterification,etc.Thegreentechnologiesinorder

to replacethe traditional polluting mineralacid catalysts with

solidonesarecontinuouslyimproved[1–6].Zeolites,acidtreated

clays,ionexchangeresinsandsupportedacidsareinvestigatedby

severalresearchersfortheirapplicationinpharmaceutical,

per-fumery, agro-chemicals, dye-stuffs, intermediates and specialty

chemicalindustries[5–12].Alkylationreactionsinparticularare

really importantin theindustrialsynthesis ofmany largescale

productioncompounds[11,12].

Alkylationof phenolwithcyclohexene hasattracted

consid-erableinterest becauseofitsindustrialand academicrelevance

[13–21]. This reaction leads to a variety of products such as

4-cyclohexylphenol, 2-cyclohexylphenol, and cyclohexyl phenyl

etherdependingonboththecatalystandthereactionconditions.

Theuseof solid acidcatalystsappearsa suitable alternativeto

theusualproceduresinhomogeneousphasewithcatalystssuch

asAlCl3,BF3,TiCl4,HF.Onconsideringthecurrentefforttoward

∗ Correspondingauthor.Fax:+390412348517. E-mailaddress:ronchin@unive.it(L.Ronchin).

processinnovationaimedtoavoidenvironmentalconcerns,

ion-exchangeresinsappeartobeidealcatalyststoconvertpolluting

processesintogreenerones[2–6].

Inalargenumberofindustrialprocessesthecation-exchange

resinsareusedasacatalystsuchasinMTBEorTAMEsynthesis,

themanufactureofalkylphenolsandbisphenolA,the

esterifica-tionofavarietyofcarboxylicacids,thehydrationofalkenes,the

dimerizationofisobutene,etc.[4–6,19,22,23].

Themechanismofacidcatalyzedalkylationiswellknownfor

alongtimeanditiswidelyacceptedthecarboniumionattackto

theelectronicrichcenterasthekeystepofthereaction[24,25].

Cyclohexeneinthepresence ofacidgivesthecyclohexylcation

asatransientspeciesthatreadilyreactswithanucleophilegiving

thecorrespondingcyclohexylderivative.Therearrangementtothe

morestablemethylcyclopentylcationoccursonlyinanegligible

extentsincetheskeletonrearrangementisslowerthanthe

nucle-ophilicattack,whichoccurs,formanynucleophiles,atencounter

[26].

ThestudyofRichardandcoworkersonthereactivityof

phe-nolasnucleophiletowardmethylphenylcarbocationshowedthat

therelativeratesforalkylationofphenolat OH,C-4andC-2are

230:20:1,respectively.Onthecontrary,thealkylationofthe

corre-spondingnucleophilicsitesofphenoxideion,whichisanencounter

reaction,showedtherelative rates of2:2:1 [27]. Otherauthors

pointedoutthattheselectivitytowardtheorthopositioninthe

1381-1169/$–seefrontmatter © 2011 Published by Elsevier B.V. doi:10.1016/j.molcata.2011.12.007

(2)

phenolalkylation is favored when theless hindered secondary

carboniumionsaretheelectrophiles,whiletertiarycarbocations

giveprevalentlyparaalkylation[28,29].ThestudiesofSharmaand

coworkers,carriedoutintheearlyninetyrelatingthereactivity

ofphenolinthepresenceofsulfonatedresins,pointed outthat

theortho–paraselectivityintheringalkylationofphenolisstrictly

relatedtothenatureoftheolefinemployed.Inparticular,propene

and1-butenegiveanortho–pararatiocloseto2,whileisobutene,

␣-methylstyreneand diisobutene give almost exclusivelypara

alkylation[29].Recently,BhattandPatelreportedthatsupported

12-tungstosilicicacidcatalyzesonlyringcyclohexylationofphenol

givinganortho–pararatiocloseto2[15].Morerecently,Hölderich

andcoworkersshowedthathighparaselectivityisobtainedinthe

alkylationofphenolwithisobuteneinthepresenceofcatalysts

withLewisorBrønstedacidsites,indifferently.Theselectivityisnot

sensibletothetypeofacidpresentinthecatalystbuttheactivity

isinfluencedbytheamountandthestrengthofthesites[30].

Thecomparisonofactivityandselectivitybetween

heteroge-neousandhomogeneousBF3/SiO2 and BF3·(H2O)2 catalystswas

studiedbyClarkandcoworkers[21].Theypointedoutthat

cyclo-hexylphenyl ether, and cyclohexyl phenols are formed in the

presenceofbothsystems,butonlybythehomogeneousBF3·(H2O)2

asacatalyst therearrangementoftheether toalkylphenols is

observed[21].YadavandKumarhaverecentlystudiedthekinetics

ofphenolcyclohexylationcatalyzedbydifferentsolidacids,which

catalyzetheformationofphenylcyclohexyletherandthe

prod-uctsof ringalkylationina ortho–pararatiocloseto2 [14].The

mechanisticaspectoftheelectrophilicattacktothephenolis

inves-tigatedfromatheoreticalpointofviewbyTangandcoworkers.

Theseauthorssuggestedthattheadditionofthesulfonicacidto

theolefinsoccursleadingtotheformationofasulfonicester

inter-mediate,which,inturns,reactswithphenoltoformtheproducts

ofalkylation[31].

Inthispaperwestudythecyclohexylationofsomephenolsand

thereactivityofcyclohexylphenyletherinthepresenceofboth

CH3SO3Handsulfonicresins.Inparticular,weinvestigatetherole

ofthecyclohexylphenyletherontheortho–paraselectivityandthe

reactivityofthedimethylphenolsinordertoaccountforthesteric

hindranceofthemethylgroupsontheelectrophilicattackofthe

cyclohexylcation.

2. Experimental

2.1. Materials

Reagentsandsolventswereusedafterpurificationofthe

com-merciallyavailablesamplesandtheirpuritywascheckedbythe

usualmethods(meltingpoint,TLC,HPLC,GCandGC–MS).The

sol-ventsweretreatedinadoublebedcolumn,filledwithH2SO4/SiO2

andSiO2toadsorbwaterandimpurities.Theresidualwatercontent

wascheckedbyHPLCanalysis[32].Commercialcatalysts:

macro-reticularsulfonatedstyrenedivinylbenzeneresinsAmberlyst15TM

andAmberlyst36TM(atrademarkofRohmandHaas)were

pur-chasedfromAldrich.

2.2. Reactions

The reactions and the kinetic runs were performed in a

stirred glass reactor thermostatted by a circulation bath at

358K,containingweighedsamplesofsolvent,reagentsand

cat-alyst at autogenous solvent pressure (122 and 158kPa for 1,2

dichloroethaneandbenzene,respectively).Inatypicalexperiment

10mLofsolutioncontaining10mmolofphenol,10mmolof

cyclo-hexeneplus5mmolofmethylcyclohexaneasinternalstandardand

thedesiredamountofcatalyst(100–500mg)wereplacedinthe

reactor.Alltheoperationswerecarriedoutintoagloveboxinorder

tominimizecatalystdeactivationbyairmoisture.Smallamounts

ofthesolutionweredrawnatdifferenttimesandthesampleswere

analyzedbyGC,andGC–MSusingaHP5capillarycolumn(300␮m

i.d.30mlong,95%methyl,5%phenylsiliconephase).Thesamples

werecheckedalsobyHPLCusingaPerkinElmerapparatusanda

Lichrosphere100(RP-18,5␮m)column.Thefirstderivativeattime

0ofathirdorderpolynomialfunction,obtainedbyfitting

cyclohex-eneconcentrationvs.timeat10%ofconversion,gavetheinitialrate

ofreaction.

Forareliablecomparisonoftheperformancesofdifferent

cat-alystsitisessentialtoknownifreactionratedataareaffectedby

diffusionphenomena.Thisisverifiedbystudyingtheinfluenceof

thegranulometryandofthecatalystamountonthereactionrate

catalyzedbythemostactivecatalyst(Amberlyst36)at373K.The

experimentalevidencessuggestthatthekineticsisnotinfluenced

bydiffusionphenomena,sincetherearenodifferencesinthe

ini-tialrateusingresinswithdifferentgranulometryandtheinitial

reactionratesarestrictlyproportionaltothecatalystamount.In

addition,theinspectionofCarberryandWheeler-Weisznumbers

showsvalueslowerthan0.1and0.4,respectively[33].

3. Resultsanddiscussion

3.1. Influenceofsolventandcatalystonreactionrate,conversion

andselectivity

Table1reportstheactivityoftwosulfonatedresinsinthe

alkyla-tionofphenol.Maximumyield,asreportedinTable1,iscomprised

between20and26%at40–50%ofconversion.DespiteofAmberlyst

36promotesainitialrateofreactionhigherthanthatofAmberlyst

15,thelattergivesthehighestyieldintheether.Asamatteroffact,

Amberlyst36(5.5meq.H+g−1cat)showsahigheractivitythanthe

Amberlyst15(4.7meq.H+g−1cat),thisislikelyduetothehigher acidcontentoftheformer.Infact,theactivitiesofthetwocatalysts

arequitesimilarconsideringtheinitialturnoverfrequencyreferred

tothewholeH+sites(Table1).CH

3SO3H(inhomogeneousphase)is

theleastactivecatalystanditsTOFis20timeslowerthanthatofthe sulfonicresins,likelyduetothehigheracidityofthelatter[34].As

amatteroffact,byconsideringp-toluensulfonicacidassimplified

modelforthesulfonicresins,thepKaofthep-toluensulfonicacidsis

2.7pKaunitslowerthanthatofmethanesulfonicacid(−4.7and−2,

respectively)[35].InthepresenceofAlCl3thereactionisfaster,but

thecomparisonoftheactivitiesofsulfonatedresins,

methanesul-fonicacid(proticacids)andAlCl3(Lewisacid)iscumbersomedueto

thedifferentnatureoftheacidsite.Itisnoticeablethatthe

reactiv-ityoftheorthoandparapositionsofphenolisnotinfluencedbythe

typeofsulfonicresinsemployed.Ortho-andpara-positionsofthe

phenolshowsimilarrelativereactivitygivingortho–pararatio ∼= 2

ineitherbenzeneor1,2-dichloroethane.Incontrast,anot

negligi-blesolventeffectseemstobeplayedbynitromethane,sincethe

initialreactionratesarealmostoneorderofmagnitudelowerthan

thosemeasuredinbenzeneand1,2-dichloroethane.Inaddition,the

ortho–pararatioclearlydiminishes(o/p ∼= 1.5),thussuggestingan

influenceofthesolventontheelectrophilicattack[36].

DespiteofthelargedifferenceofactivitybetweenCH3SO3Hand

AlCl3inhomogeneousphase,thereactionsshowasimilaro/pratio

(4.2and4.5),thussuggestingsimilarrelativereactionrateforeach

stageinthishomogeneousreactions.

Theconcentration–timeprofilesreportedinFigs.1–3,relativeto

thereactionsinthepresenceofAmberlyst15,CH3SO3HandAlCl3,

respectively,showdifferenttrends.Fig.1reportsthereaction

cat-alyzedbyAmberlyst15.Itappearsthatcyclohexylphenyletheris

atransientspecies,whichisalmostcompletelyconsumedatthe

(3)

Table1

Alkylationofphenol:selectivityafter240minofreactionat358K.Runconditions:phenol1.1molL−1,cyclohexene1.1molL−1,catalyst400mg,reactionvolume10mL.

Catalyst Conv.(%) r0a TOFb Ethermaximum

yield(%)

Selectivityc(%) o/p

2-Cyclohexylphenol 4-Cyclohexylphenol Dicyclohexylphenols Cyclohexylcyclohexene Ratio Benzene Amb.15 42 15 5.3 25 29 16 13 15 1.9 Amb.36 48 18 5.8 23 38 21 14 18 1.9 1,2-Dichloroethane Amb.15 51 18 6.8 26 29 14 15 12 2.0 Amb.36 64 22 6.9 23 31 16 18 15 1.9 CH3SO3Hd 21 3.5 0.34 17 10 2.4 2.3 2 4.2 AlCl3d,e 44 58 7.7 15 5 1.1 4.6 1 4.5 Nitromethane

Amb.15 16 3.8 0.81 10 24 16 Traces Traces 1.5

Amb.36 19 6.0 1.1 10 24 16 Traces Traces 1.5

a(105molL−1s−1gcat−1).

bInitialturnoverfrequency(104s−1)

c Productsintraceamount,astheisomersofalkylatedthecyclohexylether,hasbeenneglected. d Homogeneousreactions. eT288K,AlCl 31mmol. 1200 1000 800 600 400 200 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 cyclohexene phenol

cyclohexyl phenyl ether

2-cyclohexylphenol 4-cyclohexylphenol co nc en tr a tio n (M ol L -1 )

time (miinutes)

1200 1000 800 600 400 200 0 0.00 0.02 0.04 0.06

cyclohexycyclohexene

di-cyclohexylphenol

Fig.1.Reactionprofileofalkylationofphenolat358KcatalyzedbyAmberlyst 36.Runconditions:phenol1.1molL−1,cyclohexene1.2molL−1,catalyst400mg, solvent1,2-dichloroethane,reactionvolume10mL.

1200 1100 200 100 0 0.0 0.1 0.2 0.4 0.6 0.8 1.0 co n centr ation (mol L -1 )

time (minutes)

cyclohexene

cyclohexyl phenyl ether

2-cyclohexylphenol

4-cyclohexylphenol

cyclohexylcyclohexene

Fig.2.Reactionprofileofalkylationofphenolat358Kcatalyzedby methanesul-fonicacid.Runconditions:phenol1molL−1,cyclohexene1molL−1,catalyst400mg, solvent1,2-dichloroethane,reactionvolume10mL.

di-cyclohexyl phenols increasesmonotonically duringthe

reac-tioncourse.Formationofdi-cyclohexylphenolsisobservedalso

atverylowconversion,becauseofalkylphenolsarehighly

acti-vatedtowardtheelectrophilicattack[37].Under theconditions

usedthemainsidereactioniscyclohexenedimerization,whose

product(cyclohexylcyclohexene) showsanalmostlinear

mono-tonicincreaseduringreactioncourse.Itisnoteworthythatdimer

formationisstronglyinhibitedusingnitromethaneasthesolvent,

suggestinganinhibitingeffectofthesolventontheformationof

theelectrophile[36].

Fig.2showsthereactionprofileinthepresenceofCH3SO3H:

thereactionisalmosttentimeslowerthanthatinthepresence

ofAmberlyst15asacatalyst(Table1)andafter20hofreaction

all theproductsare still increasing, while theformation of

di-cylohexylphenolsisnegligible.Theconcentration–timeprofileof

phenolcyclohexylationcatalyzedbyAlCl3(Fig.3)evidencesafast

reactionalsoat288K(almosttwiceofthatmeasuredinthe

pres-enceofAmberlyst15at358K)butthereactioncompletelystops

after55min,withamodestconversionandwithanoticeableloss

ofthemassbalance.Suchabehaviorsuggestsafastcatalyst

deac-tivationduetotheformationofheavypitch,whichisconfirmedby

HPLCanalysis. 1200 1000 250 200 150 100 50 0 0.00 0.05 0.10 0.15 0.6 0.8 1.0 1200 1000 200 150 100 50 0 0.000 0.005 0.010 0.015 0.020 co nc e n tr a tio n ( m o l L -1) time (minutes) cyclohexene

cyclohexyl phenyl ether

2-cyclohexyphenol 4-cyclohexylphenol cyclohexylcyclohexene di-alkykphenol

Fig.3. ReactionprofileofalkylationofphenolcatalyzedbyAlCl3at288K.Run conditions:phenol1molL−1,cyclohexene1molL−1,catalyst140mg,solvent 1,2-dichloroethane,reactionvolume10mL.

(4)

100 80 60 40 20 0 2 3 4 5 o/ p ra tio conversion (%) CH3SO3H Amberlyst 15 AlCl3

Fig.4.Comparisonofortho/pararatiovs.conversioninthecyclohexylationof phe-nolinthepresenceofliquidandsolidacidcatalysts.Runconditions:cyclohexene andphenol1molL−1,Amberlyst15andCH3SO3H1.8meqH+,AlCl310mmol,solvent 1,2-dichloroethane,reactionvolume10mLT358K.

InFig.4 thetrend oftheortho–pararatio vs. conversionfor

eachcatalyst isreported.EmployingAmberlyst15 asa catalyst

ortho–pararatioremainspracticallyconstant(1.9–2.1),whereas,

inthepresenceofCH3SO3H,monotonicallyincreasesfrom2.4to

4.2astheconversionincreases.AlsointhepresenceofAlCl3,the

ortho–pararatiovs.conversionincreasesfrom4.1to4.5.These

evi-dencessuggestadifferentnatureintheformationoftheorthoand

paraisomersasthecatalystnaturechange.Thisisconfirmedby

thetrendsoftheortho–pararatiovs.cyclohexylphenylether

con-centrationreportedinFig.5.Clearly,thereisalinearrelationship

betweentheetherconcentrationandtheformationoftheortho

iso-merinthepresenceofCH3SO3H,thussuggestingtheinvolvement

ofthecyclohexylphenyletherintheformationoftheorthoisomer,

likelyviarearrangement[37,38].Onthecontrary,inthepresenceof

Amberlyst15,thereisaverysmallinfluenceoftheconcentrationof

0.30 0.25 0.20 0.15 0.10 0.05 0.00 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 o/ p rat io

cylohexyl phenyl ether (mol L-1) o/p CH3SO3H

o/p Amberlyst 15 o/p AlCl3

Fig.5. Comparisonofortho/pararatiovs.cyclohexylphenyletherconcentration inthecyclohexylationofphenolinthepresenceofliquidandsolidacidcatalysts. Runconditions:cyclohexeneandphenol1molL−1,Amberlyst15,400mg,CH3SO3H 1.8meqH+andAlCl

31mmol,solvent1,2-dichloroethane,reactionvolume10mLT 358K. 1300 1200 1100 1000 200 100 0 0.00 0.05 0.10 0.15 0.20 1200 1000 200 0 0.00 0.02 0.04 0.06 0.08 0.10 co nc ent rat ion (mol L -1)

time (minutes)

cyclohexene

phenol

cyclohexyl phenyl ether

cyclohexylcyclohexene

2-cyclohexylphenol

4-cyclohexylphenol

di-alkylphenols

Fig.6.Reactivityofcyclohexylphenylether.Runconditions:T358KAmberlyst15, 400mg,solvent1,2-dichloroethane,reactionvolume10mL.

thecyclohexylphenylethertowardorthoandparaselectivity.Such

abehaviorsuggeststhat,inthepresenceofAmberlyst15,theortho

andparaselectivityismainlyinfluencedbythemesomericeffect

ofthehydroxylgroup[37–39].Besidesthereactioncatalyzedby

AlCl3showsasmallincreaseoftheortho/pararatiovs.cyclohexyl

phenyletherconcentration,butwithaneatprevalenceoftheortho

isomer.Thereasonsofsuchabehaviorarenotclearandatleast

twoeffectsmayconcurtogivethisresult:theetherrearrangement

andaspecificinteractionbetweenphenolandAlCl3,assuggested

bySartoriandcoworkers[40].

3.2. Reactivityofcyclohexylphenylether

Thereactivityofcyclohexylphenylether,inpresenceofacid

catalysts,isreportedinFigs.6–8andinTable2.Fig.6showsthe

concentration–timeprofileofthereactioncatalyzedbyAmberlyst

15:cyclohexenereachesamaximumafter2hofreaction,andthen

itdecreasestocompleteconsumption.Atthesametime,phenol

concentrationreaches toa maximum and subsequently

dimin-ishessmoothly(almosttoaplateau).Asamatteroffact,phenol

islessconvertedthancyclohexenebecauseallreactions,suchas

alkylation,dialkylationandcyclohexenedimerization,concurto

consumecyclohexene.Theinitialreactionrateof ether

decom-positioniscomparabletothatofthephenolcyclohexylationand

250 200 150 100 50 0 0.00 0.05 0.10 0.15 0.20 co nce n tr at io n ( m ol L -1 ) time (minutes)

cyclohexene

phenol

cyclohexyl phenyl ether

2-cyclohexyl phenol

4-cyclohexyl phenol

Fig.7.Reactivityofcyclohexylphenylether.Runconditions:cyclohexylphenyl ether0.21molL−1,T358K,CH3SO3H180mg,solvent1,2-dichloroethane,reaction volume10mL.

(5)

Table2

Reactivityofcyclohexylphenylether:selectivityafter240minofreactionat358K.Runconditions:cyclohexylphenylether0.2molL−1,solvent1,2-dichloroethane,reaction volume10mL.

Catalyst Conv.(%) r0a Selectivity(%) o/p

2-Cyclohexylphenol 4-CyclohexylPhenol Dicyclohexylphenols Ratio

Amberlyst15b 92 10 10 33 18 3.3 CH3SO3Hc 85 40 4 0.9 Traces 4.2 AlCl3d 74 75 19 3.4 22 5.6 a(105molL−1s−1g−1cat). bAmberlyst15,400mg. c CH 3SO3H180mg. d T288K,AlCl 30.2mmol.

consideringthewholereactionsteps,ringalkylationsarelikelythe

slowerstage,thusallowingaccumulationofphenoland

cyclohex-ene.InthepresenceofCH3SO3H(Fig.7)thereverseetherification

occurs with an initial reaction rate 4 times higher than when

Amberlyst15 isusedasa catalyst,and after50minofreaction

75%ofcyclohexylphenylether isconverted tocyclohexeneand

phenolin95%ofoverallselectivity.Infact,CH3SO3Hasacatalyst

doesnotgiveringalkylationproductsinhighyields,butallowsfast

decompositionoftheether.Fig.8showstheconcentration–time

profileofthereactivityofthecyclohexylphenyletherat288K,in

thepresenceofAlCl3,theinitialreactionrateismuchhigherthan

inthepresenceofAmberlyst15(7times)butitdoesnotreach

com-pletenessprobablybecauseofcatalystpoisoning,inagreementto

whatfoundinphenolalkylation.Inthiscase,theconcentrationof

cyclohexeneisnegligiblewithrespecttothatofphenol,duetoa

fastformationofcyclohexeneoligomerizationproducts,whichare

probablyoneofthereasonsofcatalystdeactivation.

Theortho/paraselectivity(seeTable2)withdifferentcatalysts

after4hofreactionisintherange3.3–5.6,and,asexpected,the

etherfavorstheortho-selectivity.Apparently,thetrendsoftheo/p

ratiovs.etherconversion,showedinFig.9,arenotinagreement

withthosefoundinthephenolcyclohexylation(Fig.5),because

bothAlCl3andCH3SO3Hshowaconstanto/pratio(5.3,4.3,

respec-tively),whileinthepresenceofAmberlyst15theo/pratiodecreases

from4.2to2.7.Despiteofthecomplexityofthereactionitisclear

thatcyclohexylphenyletherisinvolvedintheselectivityofthe

orthoandparaisomersofthealkylatedphenols,butfurther

inves-tigationsneedstohighlightsuchabehavior.

250 200 150 100 50 0 0.00 0.05 0.10 0.15 0.20 concent rat ion (mol L -1 )

time (minutes)

cyclohexyl phenyl ether

cyclohexene

phenol

2-cyclohexyl phenol

4-cyclohexyl phenol

Fig.8.Reactivityofcyclohexylphenylether.Runconditions:cyclohexylphenyl ether0.21molL−1,T358K,AlCl31mmol,solvent1,2-dichloroethane,reaction vol-ume10mL.

3.3. Reactivityofdimethylphenolsand2,4,6-trimethylphenol

Furtherinsightonthereactivityofthecyclohexylcationas

elec-trophiletowardphenolsmaybegainedbystudyingthereactivity

ofdimethylphenolsandofthe2,4,6-trimethylphenol,inorderto

test theinfluence ofthemethyl substituentboth for its

induc-tiveeffectaswellasforthesterichindrance.InFigs.10and11,

theconcentration–timeprofileofthecyclohexylationofthe

2,3-dimethylphenolcatalyzedbybothAmberlyst15andCH3SO3Hare

shown.Thegeneraltrendobservedinthis caseissimilarfor all

phenols,thussuggestingtheinvolvementofasamereactionpath.

Inagreementwiththatobservedforthephenoltheactivityofthe

Amberlyst15is,inanycase,higherthanthatofCH3SO3H(Table3),

whichislikelyduetothesuperiorprotonationabilityofthesolid

acidwithrespecttotheliquid one [34,35]. Theactivityof

3,5-dimethylphenoland2,6-dimethylphenolarelowerthanthatof

neatphenol(Table1),thephenomenonmaybeascribedtothe

sterichindranceofthesubstituents, whichslowdownthe

elec-trophilicattack[37,38].Suchaneffectismorepronouncedonthe

initialreactionrateofthe2,6-isomerthanthe3,5-one.Thesmall

increase of the reaction rateof the 2,3-dimethyl-phenol

cyclo-hexylationwithrespecttothatofneatphenolmaybeduetothe

inductiveeffectofmethylgroups,eventhoughthesterichindrance

mayplaya non-negligibleeffect.Infact,theinitialreactionrate

of2,4-dimethyl-phenol isequivalenttothatof phenol,the

rea-sonofthisbehaviorisnotclear,butitmightbeascribedtothe

100 80 60 40 20 2 3 4 5 6 o/p r a tio conversion (%) o/p Amberlyst 15 o/p CH3SO3H o/p AlCl3

Fig.9.Comparisonofortho/pararatiovs.conversioninthecyclohexylationof phenolandintherearrangementofcyclohexylphenylether.Runconditions: cyclo-hexeneandphenol1molL−1,Amberlyst15,CH3SO3H1.8meqH+andAlCl31mmol ascatalysts,solvent1,2-dichloroethane,reactionvolume10mLT358K.Cyclohexyl phenyletherrearrangementarecarriedoutwiththesamerunconditionsexcept theinitialconcentrationof0.2molL−1.

(6)

Table3

Alkylationofdimethylphenolsand2,4,6-trimethylphenol:selectivityafter240minofreactionat358K.Runconditions:dimethylphenols1.2molL−1,cyclohexene1.1molL−1, Amberlyst15,400mgorCH3SO3H180mg,solvent1,2-dichloroethane,reactionvolume10mL.

Catalyst Conv.(%) r0a Selectivity(%)

Ether 2-CyclohexylDMPb 3-CyclohexylDMPb 4-CyclohexylDMPb Cyclohexyl cyclohexene 2,6-Dimethylphenol Amberlyst15 15 2.6 26 – 5 15 13 CH3SO3H 7.2 0.9 18 – 11 16 55 3,5-Dimethylphenol Amberlyst15 35 16 24 27 – 5 10 CH3SO3H 14 4.1 29 14 – 0.1 13 2,3-Dimethylphenol Amberlyst15 95 44 4 38 5 12 4 CH3SO3H 13 3.1 18 19 – 5 55 2,4-Dimethylphenol Amberlyst15 80 30 10 42 10c 5 CH3SO3H 12 2.1 12 10 2c – 62 2,5-Dimethylphenol Amberlyst15 57 14 16 16 – 16 2 CH3SO3H 16 1.5 16 9 – 4 15 2,4,6-Trimethylphenol Amberlyst15c 1 0.2 50 CH3SO3Hc 5 0.6 – – – – 50 a(105molL−1s−1gcat−1). b DMP=dimethylphenol.

c Betweenthetwopossibleisomer(in3or5position)ithasnotverifiedwhatisformed,butthe5isomerismoreplausible,duetothelowersterichindranceofthe5 position.

dLargepartoftheproductsarepeach,formationoftracesoftheetherandthem-isomerhasbeenobservedafter20hofreaction.

simultaneouspresenceoftwocontraryeffects:thesterichindrance

andtheinductiveeffectofthemethylgroups.Thereactivityof

2,5-dimethyl-phenolis clearlyinfluencedbythesterichindranceof

themethylgroups,inparticulartheonein2-positionsslowsdown

theattackof thecyclohexyl cationtoward thehydroxyl group,

whilethatin5-positionsimultaneouslyhamperstheattacktoboth

orthoandparapositions.Asamatteroffact,2,4,6-trimethyl-phenol

showsanegligiblereactivitytowardelectrophilicattack,thus

sug-gestingthecyclohexylcation isgreatly influencedby thesteric

hindrancebothontheattacktothehydroxyl groupandtothe

phenylring.

Theinfluenceofthemethylgroupsontheringalkylation

selec-tivityisstrictlyrelatedtothepositionofthesubstituentratherthan

theirinductiveeffect.Forinstance,3,5-and2,3-dimethylphenol

show,inthepresenceofAmberlyst15asacatalyst,anortho–para

ratioof5.4and3.2,respectively.Asamatteroffact,suchabehavior

suggeststhattherelativereactivityoftheparapositionsofthese

compoundsisabout3timeslowerthantheorthoones.The

compar-isonoftheseresultswiththealmostequalrelativereactivityofthe

orthoandparapositions,observedinthecyclohexylationof

phe-nolinthepresenceofAmberlyst15asacatalyst,suggestsastrong

effectofthesterichindranceofthemethylgroupsonthe

selectiv-OH + O OH OH + OH Cy Cyisomers

acid catalyst

acid cata lyst acidca talyst + OCy Cy isomers + acid catalyst

n

acid catalyst

(7)

300 250 200 150 100 50 0 0.0 0.2 0.4 0.6 0.8 1.0 concent rat io n (mol L -1 )

time (minutes)

cylohexene

cyclohexyl phenyl ether

2-cyclohexyphenol

4-cyclohexyphenol

Fig.10.Reactivityof2,3-dimethylphenol.Runconditions:T358K,solvent 1,2-dichloroethane,Amberlyst15,400mg,reactionvolume10mL.

ity.Furthersupporttothisistheequalreactivityoftheorthoand

parapositionsofthe2,5-dimethylphenol.Inthiscase,itislikely

thatthemethylin5-positionhasthesameeffectonthereactivity

oftheorthoandparapositionwiththeconsequentequalrelative

reactivity.

When CH3SO3H is used the ortho selectivity increases as

already observed for phenol. For instance, cyclohexylation of

3,5-dimethylphenol catalyzed byCH3SO3H shows an very high

ortho–pararatio(o/p=140)andinanycase,foreachphenolwith

unsubstituted orthoand para position, there is a neat increase

oftheorthoselectivityinthepresenceofCH3SO3Hcomparedto

Amberlyst15.Sucha behaviorisnotstraightforward,sinceitis

not clear what are the reasonsof such a specific ortho

direct-ingaction of theCH3SO3H, however,either themechanism via

cyclohexyl phenyl ether rearrangement [37–39], or that via a

methanesulfonic–phenolcomplex[40]canberesponsibleforthis

behavior. 250 200 150 100 50 0 0.00 0.05 0.8 0.9 1.0 cyclohexene (mol/ L) time (minutes)

cyclohexene

cyclohexylphenyl ether

2 cyclohexyl phenol

4 cyclohexyl phenol

Fig.11.Reactivityof2,3-dimethylphenol.Runconditions:T358K,solvent 1,2-dichloroethane,CH3SO3H180mg,reactionvolume10mL.

3.4. Reactionpathproposedforthereactions

Alkylation, etherification and olefin oligomerization are the

reactionsbetweenphenolsandcyclohexeneobservedinthe

pres-enceofacidcatalysts.Alltheexperimentalevidencessuggestthe

reactionpathdepictedinScheme1.Therearethreeparallelandtwo

consecutiveacidcatalyzedreactions.Inparticular,theformation

ofcyclohexylphenyletherisreversible(alsotheformationofthe

aliphaticetherisreversible[41]),whileringalkylationofphenol,

cyclohexeneoligomerizationcyclohexylphenylether

rearrange-mentand alkylphenolsisomerizationarepracticallyirreversible

[39].

4. Conclusions

Thereactionbetweenphenolandcyclohexeneoccursviaa

com-plexpath,whichischaracterizedbytheformationofthecyclohexyl

phenyletherasreversibleintermediateanditscomplete

conver-siontotheproductsofringalkylationattheendofthereaction,

whenevercatalystdeactivationdoesnotoccur.Thereactionsof

O-alkylation,ringalkylation,etherrearrangementandcyclohexene

oligomerizationoccursimultaneously,butthelatterispractically

negligiblebyselectingthepropersolventorcarryingoutthe

reac-tionin excessof phenols. Inthepresence of Amberlyst15 and

36resinstheselectivityofringalkylationofphenolseemstobe

drivenbythetypicalortho/paraorientingeffectofthehydroxyl

group.Onthecontrary,aspecificactionofhomogeneoussystems

(CH3SO3HandAlCl3)towardformationoftheorthoisomershas

beenobserved,butitisnotclearwhatisthereasonofsucha

behav-ior.The electrophilicattackof thecyclohexylcation isstrongly

influencedbythesterichindranceofthemethylgroupasamatter

offact,thealkylationof2,4,6-trimethylphenolpracticallydoesnot

occur,andtheactivation,duetotheinductiveeffecttothe

con-tiguouspositionsofthemethylgroup,isnegligiblecomparedto

thedeactivationinducedbythesterichindrance.

Acknowledgments

FinancialsupportbyCa’FoscariUniversityofVeniceisgratefully

acknowledged(Ateneofund2009).AthanktoDr.DavideMontin

forsomepreliminaryexperimentscarriedoutduringhisdegreein

IndustrialChemistry.Finally,aspecialthanktoMr.ClaudioTortato

forthehelpfuldiscussions.

References

[1]K.Komiya,S.Fukuoka,M.Aminaka,K.Hasegawa,H.Hachiya,H.Okamoto,T. Watanabe,H.Yoneda,I.Fukawa,T.Dozono,in:P.T.Anastas,T.C.Williamson (Eds.),GreenChemistry:DesigningChemistryfortheEnvironment,American ChemicalSociety,Washington,DC,1996,p.20.

[2]V.C.Malshe,E.S.Sujatha,React.Funct.Polym.43(2000)183–194. [3]A.Sato,I.Shimizu,E.Matsuzaka,US4144279.

[4]M.A.Harmer,Q.Sun,Appl.Catal.A:Gen.221(2001)45–62. [5]W.F.Hölderich,G.Heitmann,Catal.Today38(1997)227–233. [6]A.Mitsutani,Catal.Today73(2002)57–63.

[7]K.G.Chandra,M.M.Sharma,Catal.Lett.19(1993)309–317.

[8]H.Zhang,S.M.Mahajani,M.M.Sharma,T.Sridhar,Chem.Eng.Sci.57(2002) 315–322.

[9]A.deAngelis,C.Flego,P.Ingallina,L.Montanari,M.G.Clerici,C.Carati,C.Perego, Catal.Today65(2001)363–371.

[10]R.A.Rajadhyaksha,D.D.Chaudhari,Ind.Eng.Chem.Res.26(1987)1276–1280. [11]R.H.Rosenwald,AlkylationinKirkOhtmerEncyclopediaofChemical

Technol-ogy,vol.2,Wiley,1978,p.50.

[12]H.W.B.Bird,AlkylphenolsinKirkOhtmerEncyclopediaofChemical Technol-ogy,vol.2,Wiley,1978,p.73.

[13]G.D.Yadav,S.Ganesh,Pathre,Ind.Eng.Chem.Res.46(2007)3119–3127. [14]G.D.Yadav,P.Kumar,Appl.Catal.A:Gen.286(2005)61–70.

[15]N.Bhatt,A.Patel,J.Mol.Catal.A:Chem.264(2007)214–219. [16]R.Anand,K.U.Gore,B.S.Rao,Catal.Lett.81(2002)33–41.

[17] R.Amandi,K.Scovell,P.Licence,T.J.Lotz,M.Poliakoff,GreenChem.9(2007) 797–801.

(8)

[19]M.M.Sharma,React.Funct.Polym.26(1995)3–23. [20] A.J.Hoefnagel,H.vanBekkum,Catal.Lett.85(2003)7–11.

[21]K.Wilson,D.J.Adams,G.Rothenberg,J.H.Clark,J.Mol.Catal.A:Chem.159 (2000)309–314.

[22]P.F.Siril,H.E.Cross,D.R.Brown,J.Mol.Catal.A:Chem.279(2008)63–68. [23]A.Akelah,A.Moet,FunctionalizedPolymersandTheirApplications,Chapman

andHall,1990.

[24] G.A.Olah,A.M.White,D.H.O’Brien,Chem.Rev.70(1970)561–591. [25]G.A.Olah,G.K.SuryaPrakash,J.Sommer,Superacids”,J.Wiley,1985,p.90. [26] N.S.Isaacs,PhysicalOrganicChemistry,Longman,1987,p.395.

[27]Y.Tsuji,M.M.Toteva,H.A.Garth,J.P.Richard,J.Am.Chem.Soc.125(2003) 15455–15466.

[28]R.Klimkiewicz,H.Grabowska,H.Teterycz,Appl.Catal.A:Gen.246(2003) 125–136.

[29]B.Chaudhuri,M.M.Sharma,Ind.Eng.Chem.Res.30(1991)227–231. [30] E.Modrogan,M.H.Valkenberg,W.F.Hoelderich,J.Catal.261(2009)177–187. [31]Q.Ma,D.Chakraborty,F.Faglioni,R.P.Muller,W.A.Goddard,T.Harris,C.

Camp-bell,Y.Tang,J.Phys.Chem.A110(2006)2246–2252.

[32]B.Bjoerkqvist,H.Toivonen,J.Chromatogr.178(1979)271–276.

[33]G.W.Roberts,in:P.N.Rylander,H.Greenfield(Eds.),CatalysisinOrganic Syn-thesis,AcademicPress,1976,p.1.

[34]S.Kajount,B.M.Kierman,D.R.Brown,H.G.M.Edwards,J.A.Dale,S.Plant,Catal. Lett.85(2003)33–40.

[35]N.C.Marziano,A.tommasin,C.Tortato,J.Chem.Soc.Trans.2(1991)1575–1580. [36]C.Reichardt,SolventsandSolventEffectsinOrganicChemistry,2nded.,VCH,

Weinheim,1988,p.22.

[37]K.Schofield,AromaticNitration,CambridgeUniversityPress,Cambridge,1980. [38] P.B.D.DeLaMare,J.H.Ridd,AromaticSubstitution,ButtherworthsScientific

Pubblications,London,1959.

[39] C.B.Campbell,A.Onopchenko,D.C.Young,Ind.Eng.Chem.Res.29(1990) 642–647.

[40] G.Sartori,F.Bigi,R.Maggi,A.Arienti,J.Chem.Soc.PerkinTrans.1(1997) 257–260.

[41] J.F.Izquierdo,F.Cunill,M.Vila,M.Jhorra,J.Tejero,Ind.Eng.Chem.Res.33(1994) 2830–2835.

Figura

Fig. 2 shows the reaction profile in the presence of CH 3 SO 3 H:
Fig. 6. Reactivity of cyclohexyl phenyl ether. Run conditions: T 358 K Amberlyst 15, 400 mg, solvent 1,2-dichloroethane, reaction volume 10 mL.
Fig. 8. Reactivity of cyclohexyl phenyl ether. Run conditions: cyclohexyl phenyl ether 0.21 mol L −1 , T 358 K, AlCl 3 1 mmol, solvent 1,2-dichloroethane, reaction  vol-ume 10 mL.
Fig. 10. Reactivity of 2,3-dimethyl phenol. Run conditions: T 358 K, solvent 1,2- 1,2-dichloroethane, Amberlyst 15, 400 mg, reaction volume 10 mL.

Riferimenti

Documenti correlati

The considered nature of the deformation of the coal array in combination with other methods is possible when selecting control options of valid deformations of undermined

The United States are quite interesting in this big comparison because despite this may seem a completely different country, far away from the Italian horizon, culture

t 98 t) neurome lanin is characterized by the pres- ence of both lipofuscin and melanin com po nents. l t see med therefo re of intere st to extend our research to

The comparison between the simulations and experimental results shows that strong three-dimensional effects influence the flow field over the pitching airfoil tested in the wind

The main purpose of this study was to assess the presence of this yeast in breeding canaries (Serinus canaria) distributed in Piedmont.. Materials

Herein, we have studied the electronic properties and, moreover, the chemical and thermal stability of these materials through density functional theory (DFT) and exper- iments by

La “marcia indietro” della Cassazione in tema di acque meteoriche di dilavamento, in Rivista giuridica dell’ambiente, 2015, n.. MEZZETTI (a cura di), Manuale di

L'aptamero peptidico Tf2, un breve peptide di sei amminoacidi (HKYLRW), è stato selezionato per tale scopo tramite studi computazionali in modo da mostrare una buona anità