• Non ci sono risultati.

Iterative Multi-Resolution Retrieval of Non-Measurable Equivalent Currents for Imaging of Dielectric Objects

N/A
N/A
Protected

Academic year: 2021

Condividi "Iterative Multi-Resolution Retrieval of Non-Measurable Equivalent Currents for Imaging of Dielectric Objects"

Copied!
26
0
0

Testo completo

(1)

UNIVERSITY

OF TRENTO

DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL’INFORMAZIONE

38123 Povo – Trento (Italy), Via Sommarive 14

http://www.disi.unitn.it

ITERATIVE MULTI-RESOLUTION RETRIEVAL OF

NON-MEASUREBLE EQUIVALENT CURRENTS FOR IMAGING OF

DIELECTRIC OBJECTS

P. Rocca, M. Donelli, G. L. Gragnani, and A. Massa

May 2009

(2)
(3)

Non-Measurable Equivalent Currents for Imaging of Diele tri Obje ts P. Ro a

1

, M. Donelli

1

, G. L. Gragnani

2

, and A. Massa

1

1

Departmentof InformationEngineeringandComputerS ien e,ELEDIAResear h Group,UniversityofTrento, ViaSommarive14,38050Trento-Italy,Tel. +390461 882057,Fax. +390461882093

2

DepartmentofBiophysi alandEle troni Engineering,UniversityofGenoa,Via OperaPia11/A,16145Genoa-Italy,Tel. +390103532244,Fax+390103532245

E-mail: paolo.ro adisi.unitn.it, massimo.donellidisi.unitn.it, gragnanidibe.unige.it, andrea.massaing.unitn.it

Abstra t. Inthispaper,aniterativemulti-resolutionmethodforthere onstru tion oftheunmeasured omponentsofthe equivalent urrentdensityisproposedin order toimprovetheretrievalofthediele tri propertiesofanunknowns enarioprobedby interrogatingele tromagneti waves. Themathemati al formulation, on ernedwith losslessas well aslossydiele tri s atterers, isprovided and thetheory is supported by a set of representative examples dealing with syntheti as well as experimental s atteringdata.

Key Words - Inverse s attering, Non-measurable urrents, Iterative multi-s aling method.

Classi ation Numbers (MSC) - 45Q05,78A46, 78M50

1. Introdu tion

In the frameworkof ele tromagneti data inversion,several methodologies onsider the introdu tionofanequivalent urrentdensitydened intothe diele tri domaininorder to linearize the s attering equations [1℄[2℄[3℄[4℄. One of the main drawba ks of these approa hes lies in the non-uniqueness of the arising inverse sour e problem [5℄ and,

(4)

onsequently, howtoproperlytake intoa ount theso- allednon-radiating (or non-measurable when the ele tromagneti data are measured only in a limited domain or positions outside the investigation domain) omponents of the unknown equivalent sour e. Failing to do so usually auses an ina urate retrieval of the s atterer prole, whi h,in many realisti ases, suers from astrong low-pass ee t [1℄[2℄.

In order to over ome this drawba k, Habashy et al. [6℄ proposed a re onstru tion method where the problem of non-measurable urrents was properly and dire tly addressed by means of an iterative algorithm that pro eeds through the minimization of two ost fun tions. At the initial step the s attering data are mat hed through the re onstru tion of the radiating orminimum norm s attering urrents, then subsequent stepsrenethenon-radiatings atteringandthe materialpropertiesinsidethes atterer.

Takingintoa ounttheseguidelines,Gragnani andCaorsi [7℄proposedanonlinear pro edure. Starting from the re onstru tion of the measurable urrent omponents, arried out through a singular value de omposition (SVD) of the dis retized Green's operator, the problem was re ast asthe solution of a nonlinear set of equations where the unknowns are the non-measurable omponents as well as the diele tri properties of the investigation domain. Although the obtained results indi ated a signi ant improvement ompared to those obtained through the minimum-norm solution, the method showed some ina ura ies due to the trade-o between a hievable spatial-resolutionandthedimensionofthenon-radiating urrentsspa e. Asamatteroffa t,the existen e of non-radiating urrents auses the non-uniqueness of the the inverse sour e problem(i.e.,determiningthe urrent dened intheinvestigationdomainthat radiates an assigned ele tromagneti eld in the observation domain) and the orresponding presen e of anon-empty null spa e of the integral s attering operator [8℄[9℄. Moreover, sin e a numeri ally-a urate dis retizationof the integral s attering operators requires a detailedrepresentation of the equivalentsour es hara terized by a samplingbeyond the Nyquist rate, the resultant set of algebrai equations is generally undetermined and the arising impedan e matrix turns out to be non-square with a null-spa e of large dimension. Therefore, arough urrent des riptionwith a smallernumberof basis fun tionsde reasesthesizeofthenullspa e,butityieldsanina uratespatiala ura y inthe re onstru tion. On the other hand, theproblem be omesharder tosolve whena more detailedrepresentation isadopted due to the non-uniqueness of the solution.

(5)

a reasonable re onstru tion of the s atterer under test when the number of degrees of freedomtomodeltheobje tissmall[10℄,aniterativemulti-zoomingpro essisadopted. Bykeepingatea hiterationofthezoomingpro essthenumberofunknowns losetothe numberofindependentdata olle tablefromtheeldmeasurements[11℄,itispossibleon onehandtofullyexploittheredu tionofthenull-spa eforrestoringthe well-positionof theinverseproblemand,ontheotherhand,toenhan ethea hievablespatialresolution thusavoidinglow-detailedre onstru tions[10℄. More spe i ally,startingfroma oarse representation of the unknowns, the method iteratively denes a subgridding of the supportof the equivalent urrent density su essively improvingthe representation (in terms of spatial a ura y) of the urrent as well as the s atterer prole of lossless and lossydiele tri obje tsbyminimizingasuitablenonlinearmulti-resolution ostfun tion.

An outlineof the paper isas follows. The mathemati alissues on erned with the proposedapproa haredetailedinSe tion2,whileSe tion3is devotedtoapreliminary numeri alassessment. A set of representative test ases aredealt with andanalyzed by omparing the obtained results with those from the homogeneous-resolution method [7℄ (in the following, indi ated as bare approa h) as well as the minimum-norm solution. Moreover, some omparisons with an alternative

IMSA

-based approa h [12℄ are dis ussed. Eventually, inSe tion 4,some on lusions are drawn.

2. Mathemati al Formulation

Let us onsider a two-dimensional inverse s attering problem under

T M

plane wave illumination. By onsideringasetof

V

illuminations,

E

v

inc

(r) = E

inc

v

(x, y) ˆ

z v = 1, ..., V

, probinganunknowninvestigationdomain

D

inv

des ribedthroughthefollowing ontrast fun tion

τ (x, y) = [ε

R

(x, y) − 1] − j

σ(x,y)

ωε

0

,

(1)

(

ε

R

and

σ

being the relative permittivity and ondu tivity, respe tively;

ε

0

is the diele tri permittivity of the lossless and non-magneti ba kground) the arising ele tromagneti s attering phenomena turn out to be des ribed by the Data and State integral equations that inthe ontrast-sour e formulationappear as follows

E

v

scat

(x, y) = −j

k

2

0

4

R R

D

inv

J

v

eq

(x

, y

) H

(2)

0

(k

0

d) dx

dy

(x, y) ∈ D

obs

(2)

τ (x, y) E

v

inc

(x, y) = J

eq

v

(x, y) + j

k

0

2

4

τ (x, y)

R R

D

inv

J

v

eq

(x

, y

) H

(2)

0

(k

0

d) dx

dy

(x, y) ∈ D

inv

(3)

(6)

where

J

v

eq

(x, y) = τ (x, y) E

tot

v

(x, y) ; v = 1, . . . , V

(4)

k

0

=

λ

,

λ

being the wavelength of the free-spa e ba kground mediumand

H

(2)

0

is

the

0

-thorder se ond-kind Hankelfun tion [

d =

q

(x − x

)

2

+ (y − y

)

2

℄. Starting from the measurement of a set of

M

(v)

(

v = 1, ..., V

) samples of the s atteredele tri eld,

E

v

scat

(x, y)

, olle tedinanexternalobservationdomain

D

obs

and of the knowledgeof the in ident eldin the investigationdomain,the inversion pro ess is aimed at determining

τ (x, y)

and

J

v

eq

(x, y)

in the investigation domain through the inversionof(2)(3). Towardsthisend,theiterativemulti-s alingstrategy(

IMSA−NR

) isadoptedwhereamulti-resolutionrepresentationoftheunknownsistakenintoa ount atea h step

s

of the re onstru tion pro ess

τ (x, y) =

R(s)

X

r=1

N

(r)

X

n(r)=1

τ



x

n(r)

, y

n(r)



B

n(r)

(x, y)

(5)

J

eq

v

(x, y) =

R(s)

X

r=1

N(r)

X

n(r)=1

c

v

n(r)

V

n(r)

v

(x, y)

(6) where

n

B

n(r)

(x, y) ; n(r) = 1, ..., N(r)

o

isasetofre tangularbasisfun tions,

r

and

N(r)

being the spatial-resolution index and the number of basis fun tions at the

r

-th level, respe tively. Moreover,

n

V

v

n(r)

(x, y) ; n(r) = 1, ..., N(r)

o

denes an orthonormal set of eigenve tors omputed by means of the

SV D

of the dis retized external Green's operator

G

ext

[7℄, whi hturns out being equalto

G

v

ext

(x, y) =

M

(v)

X

m=1

N(r)

X

n(r)=1

U

v

m

(x, y) α

v

n(r)

h

V

v

n(r)

(x, y)

i

.

(7)

A ording to su h a des ription, the problem unknowns are the on-trast oe ients

n

τ



x

n(r)

, y

n(r)



; n(r) = 1, ..., N(r); r = 1, ..., R(s)

o

and the non-radiating sour e omponents

n

c

v

n(r)

= ζ

n(r)

v

; n(r) = I(r) + 1, ..., N(r); r = 1, ..., R(s)

o

, sin e the remaining sour e oe ients (namely, the minimum norm omponents,

n

c

v

n(r)

= ξ

n(r)

v

; n(r) = 1, ..., I(r); r = 1, ..., R(s)

o

are easily omputed asfollows

ξ

n(r)

v

=

1

α

v

n(r)

M

(v)

X

m=1

[U

m

v

(x, y)]

E

v

scat

(x

m

, y

m

)

(8) where

n

U

v

m

(x, y) ; m = 1, ..., M

(v)

o

isanotherset of orthonormaleigenve torsfrom (7) and

n

α

v

n(r)

; n(r) = 1, ..., I(r)

o

(7)

theapex

standsfor omplex onjugate. Theseunknowns arethendeterminedthrough a multi-steppro edure, where the followingoperationstake pla e:

Zero-order Re onstru tion (

s = 0

)

Attherstiteration,theregionofinterest(

RoI

) oin ideswith

D

inv

(

D

(0)

RoI

= D

inv

).

Obtaina oarsere onstru tionofboth the ontrast

τ (x

n

, y

n

)

,

n = 1, ..., N

,and the indu ed equivalent urrents

J

v

eq

(x

n

, y

n

)

,

n = 1, ..., N

,

v = 1, ..., V

, by subdividing the

RoI

into

N

uniform ellsa ordingtotheamountofinformation olle tedfrom the s attered eld measurement[11℄ and solving the problemas in[7℄;

Higher-order Re onstru tions (

s ≥ 1

)

After the

0

-th order re onstru tion, the syntheti zoom is iteratively performed inside

D

(s−1)

RoI

to fo us the re onstru tion on the support where the unknown

s atterers are supposed to be lo ated. More indetail,

 Regions-of-Interest (

RoI

s) Estimation

In reasethestep ounter(

s → s+1

). Startingfromthere onstru tionobtained at the previous step (

s

), dene the number

Q

(s)

, the lo ations (

x

(s)

c(q)

,

y

(s)

c(q)

,

q = 1, ... , Q

(s)

), and the extensions (

L

(s)

(q)

,

q = 1, ... , Q

(s)

) of the regions-of-interest

D

(s)

RoI(q)

(wherethe

Q

(s)

s atterersaresupposedtobelo ated)a ording to the lustering pro edure des ribed in [12℄ and perform a noise ltering to eliminatesome artifa ts in the re onstru ted image [13℄;

 Initialization

In the

RoI

s, set the urrents to the minimum norm solution [

c

v

n(r)

= ξ

n(r)

v

,

n(r) = 1, ..., I(r)

and

ζ

v

n(r)

= 0.0

,

n(r) = I(r) + 1, ..., N(r)

, being

r = R(s)

℄ as well asthe obje t fun tion [

τ

(s)

guess



x

n(r)

, y

n(r)



= τ

M N

(s)



x

n(r)

, y

n(r)



℄, where

τ

M N

(s)



x

n(r)

, y

n(r)



=

1

V

V

X

v=1

J

v

M N



x

n(r)

, y

n(r)



E

v

tot

M N



x

n(r)

, y

n(r)



(9) being

E

v

tot

M N

(x, y)

the eld generated in the

RoI

s when the s atterer is modeled by means of the minimum-norm equivalent sour e

J

v

M N

(x, y) =

P

R(s)

r=1

P

I(r)

n(r)=1

ξ

n(r)

v

V

n(r)

v

(x, y)

℄. More spe i ally,

E

v

tot

M N



x

n(r)

, y

n(r)



= E

v

inc



x

n(r)

, y

n(r)



+

+

N(r)

X

u(r)=1

J

v

M N



x

u(r)

, y

u(r)



G

v

2d



A

u(r)

, d

u(r),n(r)



(10)

G

v

(8)

of the

u

-th ellatthe

r

-thresolution level,respe tively;

 Unknowns Retrieval

Determine a new estimate of the unknowns {

τ

(s)

(q)



x

n(r)

, y

n(r)



;

n(r) =

1, ..., N(r)

,

r = 1, ..., R(s)

}and{

ζ

v

n(r)

,

n(r) = I(r)+1, ..., N(r)

,

r = 1, ..., R(s)

} through the minimizationof the multi-resolution ost fun tion

Φ

(s)

IM SA−NR

=

Γ

(s)

P

Q

(s)

q=1

P

V

v=1

P

R(s)

r=1

P

I(r)

n(r)=1



w

n(r)

(q)

ξ

v

n(r)

V

n(r)

v



x

n(r)

, y

n(r)



2



(11)

Γ

(s)

being the residual dened as

Γ

(s)

=

Q

(s)

X

q=1

V

X

v=1

R(s)

X

r=1

N(r)

X

n(r)=1

n

w

n(r)

(q)

τ

(s)

(q)



x

n(r)

, y

n(r)



E

inc

v



x

n(r)

, y

n(r)



+

I(r)

X

j(r)=1

ξ

j(r)

v

V

j(r)

v



x

n(r)

, y

n(r)



+

N(r)

X

j(r)=I(r)+1

ζ

n(r)

v

V

j(r)

v



x

n(r)

, y

n(r)



+

+ τ

(q)

(s)



x

n(r)

, y

n(r)



N(r)

X

u(r)=1

I(r)

X

j(r)=1

ξ

j(r)

v

V

j(r)

v



x

u(r)

, y

u(r)



+

+

N

(r)

X

j(r)=I(r)+1

ζ

v

n(r)

V

j(r)

v



x

u(r)

, y

u(r)



G

2d



A

u(r)

, d

u(r),n(r)



2

(12)

where

w

is aweighting fun tion

w

n(r)

(q)

=

0 if



x

n(r)

, y

n(r)



/

∈ D

RoI(q)

(s−1)

1 if



x

n(r)

, y

n(r)



∈ D

RoI(q)

(s−1)

;

(13)  Convergen e Che k

Go to the RoIs Estimation until a stationary ondition [12℄ either on the numberof

RoI

s

1

s

s

X

γ=1

n

Q

(s)

− Q

(γ)

o

≤ η

q

(14)

or onthe qualitative re onstru tion parameters

min

q=1,...,Q

(s)

u

(s)

(q)

− u

(s−1)

(q)

u

(s)

(q)

× 100

< η

u

,

u = x

c

, y

c

, L

(15)

holds true (

s = S

opt

),

η

q

and

η

u

being xed thresholds.

3. Numeri al Validation

(9)

performed by onsidering syntheti as well as experimental s attering data where eld data are olle ted for both lossless as well as lossy diele tri obje ts. Moreover, some re onstru tions on erned with inhomogeneous obje ts are ompared with those obtainedbymeansofanotherimplementationofthesamemulti-resolutionstrategythat, unlikethe

NR

-based approa hathand, exploits the ontrast-eld (

CF

) formulationof the s attering equations (2)-(3).

Figure 1 shows the a tual geometry of the rst model on whi h we tested the

IMSA − NR

. The s atterer is a lossless homogeneous (

τ

ref

= 1.0

) ir ular ylinder of radius

R =

λ

6

entered at

x

ref

C

= y

ref

C

= 0.15 λ

and lo ated in a square investigation domain

λ

-sided. By onsidering su h a s enario, syntheti s attering data have been generatedwitha

MoM

simulator(partitioning

D

inv

in

N

M oM

= 100 ×100

homogeneous squaresub-domains)using

V = 4

illuminationsand

M

(v)

= 8

,

v = 1, ..., V

,measurement lo ations in a ir ular observation domain (

R

D

obs

= 0.74 λ

). Moreover, the samples of

E

v

scat

(x

m

, y

m

)

,

m = 1, ..., M

(v)

,

v = 1, ..., V

, have been blurred with a Gaussian noise hara terized by dierent values of signal-to-noise ratio (

SNR

) in order to assess the robustnessof theapproa h. There onstru tion resultsobtainedbyminimizingthe ost fun tion (11) through the alternate onjugate gradient method [14℄ are shown in Figs. 2-3 (

SNR = 10 dB

) and Figs. 4-5 (

SNR = 5 dB

) in terms of both diele tri prole and equivalent urrentdensity [i.e.,

J

eq

(x, y) =

P

V

v=1

J

v

eq

(x,y)

V

℄. The

IMSA − NR

-based

inversion has been arriedout by dis retizing

D

(s)

RoI

in

N(r) = 10 × 10

,

r = R(s)

square sub-domains. For omparison,the minimum-normsolutionand that obtained with the bare approa h [7℄ are also shown (

D

inv

dis retized into

N = 20 × 20

in order to have aspatial resolutionof the sameorder asthatof the

IMSA − NR

inthe

RoI

where the a tual s atterer is lo ated). As it an be observed, whatever the

SNR

value, a non-negligibleimprovementisobtainedwhenusingtheiterativemulti-s alingpro edure. As a matter of fa t, by omparing the retrieved distributions [Fig. 2( ) and Fig. 3( )

-SNR = 10 dB

; Fig. 4( ) and Fig. 5( ) -

SNR = 5 dB

℄ with the a tual proles [Fig. 2(d) and Fig. 3(d)℄, it turns out that the

IMSA − NR

performs better as onrmed by the error indexesdened as follows

Ξ

τ

(j)

=

R

X

r=1

1

N

(r)

(j)

N

(r)

(j)

X

n(r)=1

τ

(S

opt

)



x

n(r)

, y

n(r)



− τ

ref



x

n(r)

, y

n(r)



τ

ref



x

n(r)

, y

n(r)



×100

(16) where

N

(j)

(r)

ranges over the whole investigation domain

(j ⇒ tot)

, or over the area where the a tual obje t is lo ated

(j ⇒ int)

, or over the ba kground belonging to the

(10)

investigationdomain

(j ⇒ ext)

,

δ =

r

h

x

(S

opt

)

C

− x

ref

C

i

2

+

h

y

(S

opt

)

C

− y

ref

C

i

2

λ

(17)

∆ =

(

L

(S

opt

)

− L

ref

L

ref

)

× 100

(18)

and reported inTab. I.

The se ond test ase is on erned with a set of data experimentally-a quired in a ontrolledenvironmentattheInstituteFresnel,Marseille,Fran e[15℄. Theexperimental set-up onsisted of axed emitter(adouble-ridgedhorn transmittingantenna)and the obje t has been illuminated from

V = 36

dierent lo ations equally-spa ed on a ir le

R

D

obs

= 720 mm ± 3 mm

inradius. Due tothe physi al limitations,the s attered eld has been measured in

M

(v)

= 49

points for ea h illumination angle from a re eiver rotating, with a me hani al support, around the verti al axis of s atterer under test. A detaileddes ription ofthe underlyingexperimentalsetup together withthe omplete data-set an be found in the introdu tion of [16℄ (pp. 1565-1571) by Belkebir and Saillard. As far as the s attering ongurationis on erned, two dierent experiments with lossless as well as lossy obje ts are onsidered. In the former ase, the multiple-obje ts s enario alled twodielTM_8f.exp illuminated by the probing sour e at a working frequen y of

f = 3 GHz

has been managed. More in detail, the s atterers are two lossless homogeneous diele tri ylinders hara terized by an obje t fun tion

τ

(1)

ref

= τ

(2)

ref

= 2.0 ± 0.3

with ir ular ross-se tions

R = 0.15 λ

in radius and pla ed about

0.3 λ

from the enter of the experimental setup. The latter experiment deals withthere tTM_de e.expdataset,whereano- enteredhighly ondu ting ylinderof re tangularse tionof

0.17 λ×0.34 λ

isilluminatedbyanimpingingwaveatthefrequen y of

f = 4 GHz

. Inboththeexperiments,theobje tshavebeensupposedtolieinasquare area of

30 cm × 30 cm

(i.e.,

3 λ × 3 λ

when

f = 3 GHz

,and

4 λ × 4 λ

when

f = 4 GHz

). The retrieved proles are shown in Fig. 6 and Fig. 8

, respe tively. As expe ted, thus onrming the on lusionsdrawn inthe rst example,the re onstru tion with the

IMSA − NR

[Fig. 6( ), Fig. 8( )℄ is mu h loser to the a tual ylinder ompared

Be ause of the highly ondu ting assumption on the s atterer properties, the a-priori ondition

(11)

to the bare solution [Fig. 6(b), Fig. 8(b)℄ where the s atterers are only lo alized. Moreover, the reported results demonstrate that the proposed inverse algorithm an work ee tively whendealingwith omplex s enarios, where eithermultiple obje ts, or small loss type of s atterers are embedded in the region under test. For ompleteness, Figure7 and Figure9 reports the inversion results interms of urrent densities.

Finally, the re onstru tion of inhomogeneous obje ts is taken into a ount to further assess the ee tiveness of the

IMSA − NR

approa h. In these experiments, the results of the

IMSA − NR

are ompared with those of both the bare approa h and the

IMSA − CG

[17℄ where, unlike (2) and (3), the inverse s attering equations are expressed in terms of the diele tri prole and the indu ed ele tri eld instead of ontrast and sour e distributions. The s attered eld data have been experimentally-a quired at the same laboratory of the previous experimental dataset [18℄. The same investigation domain

D

inv

has been kept, while the a quisition setup diers in terms of radius of the measurement domain (i.e.,

R

D

obs

= 167 cm

), number of views, and number of measurement points. As regards to the data-sets alled FoamDielExtTM and FoamDielIntTM,

V = 8

and

M

(v)

= 241

. Two dierent obje ts having radius equal to

R

1

= 80 mm

and

R

2

= 30 mm

and estimated diele tri properties

τ

(1)

ref

= 0.45 + j0.0

and

τ

ref

(2)

= 2.0 + j0.0

are undertest in both s enarios. In the former ase (FoamDielExtTM),theobje tsare pla ed one lose tothe other, whilethe small s atterer is lo ated inside the bigger one inthe FoamDielIntTM s enario.

The images of the re onstru ted diele tri proles for both test ases are shown in Fig. 10(

f = 2 GHz

) and Fig. 11 (

f = 4 GHz

), respe tively. They are on erned with the solutionsobtained with the bare approa h [Figs. 10(a)-11(a)℄, the

IMSA − NR

[Figs. 10(b)-11(b)℄ and the

IMSA − CG

[Figs. 10( )-11( )℄. Also in su h a numeri al assessment, is worth noti ing that the

IMSA − NR

su eeds in distinguishing and orre tly lo alizing the two s atterers. On the ontrary, the solutions from the bare approa hpresentsome artifa ts[Fig. 10(a)℄andalow-passrepresentation ofthea tual prole [Fig. 11(a)℄,respe tively.

As far as the

IMSA − CG

is on erned, the retrieved prolesare quite similarto thoseobtainedby

IMSA − NR

approa hthuspointingout thee ien y andreliability ofthemulti-zoomingstrategyfordealingwithinverses atteringproblems. Nevertheless, itisworthwhiletoobservethatthequalityofthe

IMSA−NR

re onstru tionsisslightly betterthan thatof the

IMSA − CG

ones. As amatteroffa t,both s atterersturn out

(12)

11( ),respe tively. Su haneventismainlyrelatedtotheattemptofthe

NR

te hnique of exploiting the information on the s atterer oming from the non-radiating parts of the indu ed equivalentsour es. Otherwise, the

CF

approa h of the

IMSA − CG

only onsiders the amount of information oming from the s attered eld, whi h is related tothe measurable omponentof the equivalent sour e(i.e.,

J

v

M N

).

4. Con lusions

In this paper, the

IMSA − NR

has been des ribed. The iterativemethod pro eeds by improvingatea hstepamulti-resolutionrepresentationofboththeobje tfun tionand the equivalent urrent density inthe investigationdomain. At ea h step, the s attered data are initially mat hed through the solution of an inverse sour e problem for the minimum-normpart ofthe s attering urrents. Then,the pro ess updates the material propertiesand the non-radiatingpart of the equivalent urrents inorder tominimizea suitable multi-resolution ost fun tion.

A preliminary evaluation of the ee tiveness of the

IMSA − NR

in dealing with noisy as well as experimental data has been arried out pointing out a signi ant improvement with respe t to single-step approa hes for the re onstru tion of non-measurable urrents. Moreover, some omparisonswith analternative

CF

formulation of the

IMSA

strategy have pointed out that it is protable to exploit the knowledge of the existen e of the null-spa eof the inverse s attering operators. Certainly, several issues still need to be addressed, but, thanks to these experiments, it may be stated thatgloballytheapproa hdemonstratedana eptablestabilityandrobustnesstonoisy onditionsallowing,alsointhepresen eoflargeerrorsinthes atteringdata,ana urate lo alizationand re onstru tion of lossless as wellas lossy s atterers under test.

(13)

Referen es

[1℄ M. M. Ney, A. M. Smith, and S. S. Stu hly, A solution of ele tromagneti imaging using pseudoinversetransformation, IEEE Trans.Med. Imag.,vol.3,pp.155-162,1984.

[2℄ S. Caorsi, G. L. Gragnani, and M. Pastorino, Equivalent urrent density re onstru tion for mi rowaveimaging re onstru tion, IEEE Trans.Mi rowave Theory Te h., vol. 37, no. 5,pp. 910-916,May1989.

[3℄ T.M.Habashy,E. Y.Chow,andD. G.Dudley, Proleinversionusingtherenormalized sour e-typeintegralequationapproa h, IEEETrans.AntennasPropagat.,vol.38,no.5,pp.668-681, May1990.

[4℄ S. Caorsi, G. L. Gragnani, and M. Pastorino, A multiview mi rowaveimagingsystem for two-dimensional penetrable obje ts, IEEE Trans. Mi rowave Theory Te h., vol. 39, no. 5, pp. 845-851,May1991.

[5℄ N. Bleistein and J. K. Cohen, Nonuniqueness in the inverse sour e problem in a ousti s and ele tromagneti s,J. Math.Phys. N. Y.,vol.18, no.2,pp.194-201,Feb.1977.

[6℄ T.M. Habashy, M.L. Oristaglio and A. T. de Hoop, Simultaneous nonlinear re onstru tion of two-dimensionalpermittivity and ondu tivity, Radio S ien e, vol. 29, no. 4, pp. 1101-1118, Jul.-Aug.1994.

[7℄ S. Caorsi, and G. L. Gragnani, Inverse-s attering method for diele tri obje ts based on the re onstru tionofthe nonmeasurableequivalent urrentdensity, Radio S ien e, vol.34,no. 1, pp.1-8,1999.

[8℄ A. J. Devaney and E. Wolf, Radiating and nonradiating lassi al urrent distributions and the eldstheygenerate, Phys. Rev. DPart. Fields,vol.8,no.4,pp.1044-1047,Aug.1973.

[9℄ G.Gbur, Nonradiatingsour esand theinverse sour eproblem, Ph.D.Thesis,Dept. of Physi s andAstronomy,UniversityofRo hester,Ro hester,N.Y.,2001.

[10℄ W.C.Chew,Y.M.Wang,G.Otto,D.LesselierandJ.C.Bolomey,Ontheinversesour emethod ofsolvinginverses atteringproblems, InverseProblems,vol.10,pp.547-553,1994.

[11℄ O.M. Bu i and G.Fran es hetti, Onthe degreesoffreedom of s attered elds, IEEE Trans. AntennasPropagat.,vol.37,no.7,pp.918-926,Jul.1989.

[12℄ S Caorsi, M.Donelli, and A. Massa,Dete tion, lo ation, and imagingof multiple s atterersby meansoftheiterativemultis alingmethod, IEEETrans.Mi rowaveTheoryTe h.,vol.52,pp. 1217-1228,Apr.2004.

[13℄ S. Caorsi, M. Donelli, and A. Massa, Analysis of the stability and robustness of the iterative multis aling approa h for mi rowave imaging appli ations, Radio S i., vol. 39, RS5008, pp. 1-17,O t.2004.

[14℄ R. E. Kleinmann and P. M. Van den Berg,  A modied gradient method for two-dimensional problemsintomography, J. Comput.Appl.Math., vol.42,pp.17-35,1992.

[15℄ K. Belkebir, S. Bonnard, F. Sabouroux, and M. Saillard, Validation of 2D inverse s attering algorithmsfrommulti-frequen yexperimentaldata, J.Ele tromagn. Waves Appl.,vol.14,pp. 1637-1668,De .2000.

(14)

[17℄ M.Donelli, D. Fran es hini,A. Massa, M.Pastorino,and A. Zanetti, Multi-resolution iterative inversion of real inhomogeneous targets, Inverse Problems, vol. 21, no. 6, pp. S51-S63, De . 2005.

[18℄ J.-M. Gerin, P. Sabouroux, and C. Eyraud, Free spa e experimental s attering database ontinuation: experimental set-up andmeasurementpre ision, Inverse Problems, vol.21, no. 6,pp.S117-S130,De .2005.

(15)

/

λ

x

/

λ

y

−0,25

0,25

0,50

−0,50

0,25

0,50

−0,50

−0,25

1.2

τ

ref

(x, y)

0.0

Figure 1. O-Centered Cir ular S atterer (

R =

λ

6

,

x

C

= y

C

= 0.15λ

,

τ = 1.0

). Referen e s enario of the rst numeri altest ase.

(16)

/

λ

x

/

λ

y

−0,25

0,25

0,50

−0,50

0,25

0,50

−0,50

−0,25

/

λ

x

/

λ

y

−0,25

0,25

0,50

−0,50

0,25

0,50

−0,50

−0,25

1.2

Re {τ (x, y)}

0.0

1.2

Re {τ (x, y)}

0.0

(a) (b)

/

λ

x

/

λ

y

−0,25

0,25

0,50

−0,50

0,25

0,50

−0,50

−0,25

/

λ

x

/

λ

y

−0,25

0,25

0,50

−0,50

0,25

−0,25

0,50

−0,50

1.2

Re {τ (x, y)}

0.0

1.2

Re {τ (x, y)}

0.0

( ) (d)

Figure 2. O-Centered Cir ular S atterer (

R =

λ

6

,

x

C

= y

C

= 0.15λ

,

τ = 1.0

,

V = 4

,

M

(v)

= 8

,

SNR = 10 dB

). Obje t Fun tion Re onstru tion - Minimum-normsolution (a). Retrieved distributions with the bare [7℄ pro edure(b) and the

IMSA − NR

approa h[

s = S

opt

= 4

( )℄. Optimalre onstru tion of the a tual diele tri prole a hievable with the

IMSA − NR

approa h (d).

(17)

-0.50

-0.25

0.0

0.25

0.50

x/

λ

-0.50

-0.25

0.0

0.25

0.50

y/

λ

0

0.2

0.4

0.6

0.8

1

Re{Jeq

MN

(x,y)}

-0.50

-0.25

0.0

0.25

0.50

x/

λ

-0.50

-0.25

0.0

0.25

0.50

y/

λ

0

0.2

0.4

0.6

0.8

1

Re{Jeq

TOT

(x,y)}

(a) (b)

-0.50

-0.25

0.0

0.25

0.50

x/

λ

-0.50

-0.25

0.0

0.25

0.50

y/

λ

0

0.2

0.4

0.6

0.8

1

Re{Jeq

TOT

(x,y)}

-0.50

-0.25

0.0

0.25

0.50

x/

λ

-0.50

-0.25

0.0

0.25

0.50

y/

λ

0

0.2

0.4

0.6

0.8

1

1.2

Re{Jeq

TOT

(x,y)}

( ) (d)

Figure 3. O-Centered Cir ular S atterer (

R =

λ

6

,

x

C

= y

C

= 0.15λ

,

τ = 1.0

,

V = 4

,

M

(v)

= 8

,

SNR = 10 dB

). Equivalent Current Density Re onstru tion

-Minimum-normsolution (a). Retrieved distributionswith the bare [7℄pro edure (b) and the

IMSA − NR

approa h [

s = S

opt

= 4

( )℄. A tual urrentdistribution

(18)

/

λ

x

/

λ

y

−0,25

0,25

0,50

−0,50

0,25

0,50

−0,50

−0,25

/

λ

x

/

λ

y

−0,25

0,25

0,50

−0,50

0,25

0,50

−0,50

−0,25

1.2

Re {τ (x, y)}

0.0

1.2

Re {τ (x, y)}

0.0

(a) (b)

/

λ

x

/

λ

y

−0,25

0,25

0,50

−0,50

0,25

0,50

−0,50

−0,25

1.2

Re {τ (x, y)}

0.0

( )

Figure 4. O-Centered Cir ular S atterer (

R =

λ

6

,

x

C

= y

C

= 0.15λ

,

τ = 1.0

,

V = 4

,

M

(v)

= 8

,

SNR = 5 dB

). Obje t Fun tion Re onstru tion - Minimum-normsolution (a). Retrieved distributions with the bare [7℄ pro edure(b) and the

IMSA − NR

(19)

-0.50

-0.25

0.0

0.25

0.50

x/

λ

-0.50

-0.25

0.0

0.25

0.50

y/

λ

0

0.2

0.4

0.6

0.8

1

Re{Jeq

MN

(x,y)}

-0.50

-0.25

0.0

0.25

0.50

x/

λ

-0.50

-0.25

0.0

0.25

0.50

y/

λ

0

0.2

0.4

0.6

0.8

1

Re{Jeq

TOT

(x,y)}

(a) (b)

-0.50

-0.25

0.0

0.25

0.50

x/

λ

-0.50

-0.25

0.0

0.25

0.50

y/

λ

0

0.2

0.4

0.6

0.8

1

Re{Jeq

TOT

(x,y)}

( )

Figure 5. O-Centered Cir ular S atterer (

R =

λ

6

,

x

C

= y

C

= 0.15λ

,

τ = 1.0

,

V = 4

,

M

(v)

= 8

,

SNR = 5 dB

). Equivalent Current Density Re onstru tion -Minimum-norm

solution (a). Retrieved distributions with the bare [7℄pro edure (b)and the

(20)

y/

λ

x/

λ

0.75

−0.75

−1.50

1.50

−0.75

0.75

1.50

−1.50

y/

λ

x/

λ

0.75

−0.75

−1.50

1.50

−0.75

0.75

1.50

−1.50

2.3

Re {τ (x, y)}

0.0

2.3

Re {τ (x, y)}

0.0

(a) (b)

y/

λ

x/

λ

0.75

−0.75

−1.50

1.50

−0.75

0.75

1.50

−1.50

2.3

Re {τ (x, y)}

0.0

( )

Figure 6. Dataset twodielTM_8f.exp - Ben hmark Marseille [16℄ (

f = 3 GHz

). Obje t Fun tion Re onstru tion - Minimum-normsolution(a). Retrieved distributions

(21)

-1.50

-0.75

0.0

0.75

1.50

x/

λ

-1.50

-0.75

0.0

0.75

1.50

y/

λ

0.2

0.4

0.6

0.8

1

| Jeq

MN

(x,y) |

-1.50

-0.75

0.0

0.75

1.50

x/

λ

-1.50

-0.75

0.0

0.75

1.50

y/

λ

0.2

0.4

0.6

0.8

1

| Jeq

TOT

(x,y) |

(a) (b)

-1.50

-0.75

0.0

0.75

1.50

x/

λ

-1.50

-0.75

0.0

0.75

1.50

y/

λ

0.2

0.4

0.6

0.8

1

| Jeq

TOT

(x,y) |

( )

Figure 7. Dataset twodielTM_8f.exp - Ben hmark Marseille [16℄ (

f = 3 GHz

). Equivalent Current Density Re onstru tion - Minimum-normsolution (a). Retrieved

distributionswith the bare [7℄pro edure (b)and the

IMSA − NR

approa h [

s = S

opt

= 5

( )℄.

(22)

y/

λ

x/

λ

1.00

−1.00

−2.00

2.00

−1.00

1.00

2.00

−2.00

y/

λ

x/

λ

1.00

−1.00

−2.00

2.00

−1.00

1.00

2.00

−2.00

0.0

Im {τ (x, y)}

− 2.28

0.0

Im {τ (x, y)}

− 2.28

(a) (b)

y/

λ

x/

λ

1.00

−1.00

−2.00

2.00

−1.00

1.00

2.00

−2.00

0.0

Im {τ (x, y)}

− 2.28

( )

Figure 8. Dataset re tTM_de e.exp - Ben hmark Marseille [16℄(

f = 4 GHz

). Obje t Fun tion Re onstru tion - Minimum-normsolution(a). Retrieved distributions

(23)

-2.00

-1.00

0.0

1.00

2.00

x/

λ

-2.00

-1.00

0.0

1.00

2.00

y/

λ

0.1

0.2

0.3

0.4

0.5

| Jeq

MN

(x,y) |

-2.00

-1.00

0.0

1.00

2.00

x/

λ

-2.00

-1.00

0.0

1.00

2.00

y/

λ

0.1

0.2

0.3

0.4

0.5

| Jeq

TOT

(x,y) |

(a) (b)

-2.00

-1.00

0.0

1.00

2.00

x/

λ

-2.00

-1.00

0.0

1.00

2.00

y/

λ

0.1

0.2

0.3

0.4

0.5

| Jeq

TOT

(x,y) |

( )

Figure 9. Dataset re tTM_de e.exp - Ben hmark Marseille [16℄(

f = 4 GHz

). Equivalent Current Density Re onstru tion - Minimum-normsolution (a). Retrieved

distributionswith the bare [7℄pro edure (b)and the

IMSA − NR

approa h [

s = S

opt

= 2

( )℄.

(24)

y/

λ

x/

λ

0.50

−0.50

−1.00

1.00

−0.50

0.50

1.00

−1.00

y/

λ

x/

λ

0.50

−0.50

−1.00

1.00

−0.50

0.50

1.00

−1.00

2.1

Re {τ (x, y)}

0.0

2.1

Re {τ (x, y)}

0.0

(a) (b)

y/

λ

x/

λ

−1.00

1.00

−0.50

0.50

1.00

−1.00

−0.50

0.50

2.1

Re {τ (x, y)}

0.0

( )

Figure 10. Dataset FoamDielExtTM - Ben hmark Marseille [18℄ (

f = 2 GHz

). Obje t Fun tion Re onstru tion - Retrieved distributions with the bare [7℄pro edure

(a), the

IMSA − NR

approa h [

s = S

opt

= 2

℄ (b)and the

IMSA − CG

approa h

(25)

y/

λ

x/

λ

1.00

−1.00

−2.00

2.00

−1.00

1.00

2.00

−2.00

y/

λ

x/

λ

1.00

−1.00

−2.00

2.00

−1.00

1.00

2.00

−2.00

2.1

Re {τ (x, y)}

0.0

2.1

Re {τ (x, y)}

0.0

(a) (b)

y/

λ

x/

λ

−2.00

2.00

−1.00

1.00

2.00

−2.00

−1.00

1.00

2.1

Re {τ (x, y)}

0.0

( )

Figure 11. Dataset FoamDielIntTM - Ben hmark Marseille [18℄ (

f = 4 GHz

). Obje t Fun tion Re onstru tion - Retrieved distributions with the bare [7℄pro edure

(a), the

IMSA − NR

approa h [

s = S

opt

= 5

℄ (b)and the

IMSA − CG

approa h

(26)

S

N

R

=

10

d

B

S

N

R

=

5

d

B

M

N

S

o

lu

ti

o

n

A

p

p

r

o

a

ch

[7℄

I

M

S

A

N

R

M

N

S

o

lu

ti

o

n

A

p

p

r

o

a

ch

[7 ℄

I

M

S

A

N

R

Ξ

τ in

t

38

.3

20

.1

10

.1

38

.8

21

.4

19

.0

Ξ

τ e

x

t

4

.4

2

2

.4

5

0

.2

6

4

.2

5

3

.7

5

1

.2

9

Ξ

τ to

t

7

.2

6

3

.9

3

1

.0

9

7

.1

4

5

.2

2

2

.7

7

δ

1

.3

×

10

1

4

.6

×

10

2

2

.8

×

10

3

1

.5

×

10

1

9

.5

×

10

3

4

.6

×

10

2

17

5

93

1

17

1

12

7

25

Table I. O-Centered Cir ular S atterer (

R =

λ

8

,

x

C

= y

C

= 0.15λ

,

τ = 1.0

,

V = 4

,

M

(v)

= 8

). Obje t Fun tion Re onstru tion -Values of the error indexes for the distributionsretrieved with the bare pro edureand the

IMSA − NR

approa h at

Figura

Figure 1. O-Centered Cir
ular S
atterer ( R = λ
Figure 2. O-Centered Cir
ular S
atterer ( R = λ
Figure 3. O-Centered Cir
ular S
atterer ( R = λ
Figure 4. O-Centered Cir
ular S
atterer ( R = λ
+7

Riferimenti

Documenti correlati

Differences in the developmental process of such policy research institutes in the two countries analyzed are the obvious reflection of their divergent, yet evolving,

[r]

Partendo, quindi, dalla lettura e dall’analisi degli ECI – European Common Indicators – attraverso successivi livelli di affinamento e appro- fondimento della lettura –

Urban studies, and in particular the numerous experiences carried out in the disciplinary sector in the field of urban survey, establish in a consolidated way a series of elements

Gli elaborati restituiti a partire da ueste ac uisizioni sono stati integrati mediante rilievo diretto di tutti i particolari più minuti utili all’arricchimento

Nella determinazione della reale condizione della donna migrante sono rilevanti non solo le circostanze in cui è avvenuta la migrazione (le immigrate prive di documenti in regola

Viene innanzitutto applicato un gradiente di selezione della fetta (Slice Selection Gradient , GSS) per selezionare il volume anatomico di interesse; su questo stesso volume

The present study is the first to our knowledge describing the experience and needs of a heterogeneous sample of family CGs (husbands, wives, sons, and daughters) assisting