• Non ci sono risultati.

A Feasibility Study of a Single Event Spectrometer Based on Semiconductor Devices

N/A
N/A
Protected

Academic year: 2021

Condividi "A Feasibility Study of a Single Event Spectrometer Based on Semiconductor Devices"

Copied!
10
0
0

Testo completo

(1)

A Feasibility Study of a Single Event Spectrometer Based on Semiconductor Devices

S. Agosteo(1), A. Castoldi(1), L. Castellani (3), P. Colautti(2), G. D’Angelo(1), L. De Nardo(3), A. Favalli(1), I. Lippi(3),

R. Martinelli(3), G. Tornielli(3), P. Zotto(4).

(1) Dipartimento di Ingegneria Nucleare, Politecnico di Milano, via Ponzio 34/3, 20133 Milano, Italy and INFN, Sezione di Milano, via Celoria 16, 20133 Milano, Italy, e-mail: [email protected].

(2) INFN, Laboratori Nazionali di Legnaro, via Romea 4, 35020 Legnaro, Italy.

(3) Dipartimento di Fisica, Università di Padova and INFN, Sezione di Padova, via Marzolo 8, 35131 Padova, Italy.

(4) Dipartimento di Fisica, Politecnico di Milano, piazza Leonardo da Vinci 32,

20133 Milano, Italy and INFN, Sezione di Padova, via Marzolo 8, 35131

(2)

Single Event Effect Phenomenology

• Single Events are due to the interaction of a neutron with the silicon atoms releasing locally a large amount of

energy:

– Single Event Upset (SEU): Modification of a memory state;

– Latch-up: integrated circuit block recoverable by reset;

– Gate rupture (destructive);

– Device burn-out (destructive);

– Transient (noise signal in charge-sensitive devices).

(3)

Relevant Physics Processes

• Thermal Neutrons:

10 B(n, α ) 7 Li

(boron is a common dopant)

• Fast neutrons:

28 Si(n, α ) 25 Mg (Threshold E n =2.7 MeV)

28 Si(n,p) 28 Al (Threshold E n =4.0 MeV) etc.

• Inelastic scattering open at a certain threshold

(4)

SEU measurements on SRAMs

Thermal neutrons Fast neutrons from

9

Be(d,n)

10

B

(5)

A SEU spectrometer

• Try to measure the energy spectrum and the lineal-energy distribution of charged particles induced by neutron on silicon devices (at the LNL, Italy);

• Use a windowless p-i-n photodiode 200 µ m thick

not biased (V bias =0 V depletion layer 20 µ m thick) (Hamamatsu S3590-02):

– bare for SEE measurements;

– covered with TE plastic for microdosimetric applications;

– covered with a hydrogenated radiator for fast neutron

(6)

Spectrum of charged particles from thermal neutrons

• Thermal neutrons generated via the 9 Be(d,n) 10 B reaction (thick target + moderator);

• Several deuteron energies.

103 104

0.00 0.01 0.02 0.03 0.04 0.05

n + 10B ----> 7Li + α (Q =2.31 Me V)

2.3 MeV - 7Li+α

1.5 MeV -α 0.8 MeV - 7Li

In the cavity of the thermal neutron facilit9Be(d,n)y - 10B

E

d

=3.0 MeV E

d

=4.5 MeV E

d

=6.5 MeV

E*f(E)

E (keV)

(7)

Spectrum of charged particles from fast neutrons

• Monoenergetic neutrons from the 7 Li(p,n) 7 Be reaction;

• High LET particles are observed only above threshold.

1000 10000

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018

0.020 LiF monoenergetic neutrons - bare p-i-n photodiode

E

n

=0.996 Me V @0 ¡ E

n

=4.536 Me V @0 ¡

E*f(E)

E (ke V)

(8)

Measurements for microdosimetry applications

• Photodiode covered with TE plastic. Irradiation with monoenergetic neutrons;

• R

p

range of recoil protons in silicon – Depletion layer thickness @ V

bias

= 0 V: 20 µm

• Peak shift associated to charged collection from substrate

10 100 1000

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

En=0.996 Me V @ 0¡ - R

p=16 µm En=2.019 Me V @ 0¡ - R

p=50 µm En=4.536 Me V @ 0¡ - R

p=185 µm LiF mo noenergetic neutrons - with TE plastic

y*d(y)

y ( keV

µ

m

-1

)

(9)

Measurements for fast neutron spectrometry (recoil protons)

• Photodiode covered with a hydrogenated radiator;

• Photodiode calibrated with α -particles from a nat U source;

• Irradiation with monoenergetic neutrons.

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 10-7

10-6 1x10-5 1x10-4

10-3 LiF monoenergetic neutrons @ 0¡

w ith polyethylene Vbias=0 V

En=0.573 MeV En=0.680 MeV En=0.734 MeV En=0.787 MeV En=0.892 MeV En=0.996 MeV En=1.100 MeV En=1.203 MeV En=1.306 MeV En=1.511 MeV En=1.715 MeV En=1.918 MeV En=2.323 MeV

Response (cm

2 )

(10)

Conclusions

• The preliminary measurements with the p-i-n diode provide enough information for the development of an Application Specific Integrated Circuit (ASIC), currently under design;

• Limiting effects for SEU spectrometry and microdosimetry are:

– Uniformity and size of the depletion layer thickness;

– Field funneling effect;

– Noise in the detector ruling the lower detectable lineal energy (i.e.

minimum number of electron-hole pairs requested to discriminate

the signal from noise).

Riferimenti

Documenti correlati

It is, in fact, the first database that contains, in addition to the voice signals and their diagnosis, also information about life habits (i.e. smoking and alcohol abuse), the

DVB-H Digital Video Broadcasting Handheld DVB-T Digital Video Broadcasting Terrestrial DFT Discrete Fourier Transform. DMT Discrete Multitone Modulation DSP Digital Signal

Creare grandi cambiamenti compiendo piccoli passi PDF, ePub eBook, Caroline L?. Converso, , Dimagrir242 Smetter242 di fumare Imparer242 a risparmiare Quante volte abbiamo fatto

strutture senza garantire a loro la possibilità di un lavoro e di poter utilizzare le reti sociali e familiari che potrebbe avere nella Penisola per facilitare un loro

University of Trieste, Department of Economics, Business, Mathematical and Statistical Sciences,

More specifically, if an abnormal reaction to this information is observed regarding stock prices or trading volumes, then it can be concluded that earnings announcements

In the case of high energy accelerators, SEUs are mostly produced by secondary charged particles generated by neutron interactions.. The measurement of the energy and the

Only neutrons with an incident energy higher than 3 MeV contribute to the SEU measured cross section: the lowest energy reactions are in fact 28 Si(n,p) 28 Al with a 4 MeV