• Non ci sono risultati.

So far, most part of the existing literature has b een devoted to quantum transp ort mo dels whereonlyconductionbandelectronscontributetothecurrent owandundertheparab olicband approximation,withonlyasmallregionoftheBrillouinzoneneartheminimumofthebandb ei

N/A
N/A
Protected

Academic year: 2021

Condividi "So far, most part of the existing literature has b een devoted to quantum transp ort mo dels whereonlyconductionbandelectronscontributetothecurrent owandundertheparab olicband approximation,withonlyasmallregionoftheBrillouinzoneneartheminimumofthebandb ei"

Copied!
35
0
0

Testo completo

(1)

DIPARTIMENTO DI SCIENZE MATEMATICHE

QUADERNO N. 4- MAGGIO2006

Luigi Barletti,Lucio Demeio,

Giovanni Frosali

Multiband Quantum Transport Models

for Semiconductor Devices.

Dipartimentodi ScienzeMatematiche

UniversitaPolitecnicadelle Marche

ViaBrecceBianche1

(2)

Devices

LuigiBarletti 1

,LucioDemeio 2

andGiovanniFrosali 3

1

Dipartimento diMatematica\U.Dini"UniversitadegliStudidiFirenze-VialeMorgagni67/A,

[email protected]

2

Dipartimento diScienzeMatematiche UniversitaPolitecnica delleMarche-ViaBrecceBianche1,

I-60131Ancona,Italy [email protected]

3

Dipartimento diMatematica\G.Sansone" UniversitadiFirenze-ViaS.Marta3,I-50139Firenze,

[email protected]

1 Introduction

The mo delingof semiconductor devices, which isa very active and intense eld of research, has

to keep up with the sp eed at which the fabricationtechnology pro ceeds; the devices of the last

generationsb ecomesmallerandsmallerandtheyhavereachedasizesosmallthatquantume ects

dominate their b ehaviour.Quantum e ects such as resonant tunnelingand other size-quantized

e ectscannotb edescrib edbyclassicalorsemiclassicaltheoriesandneedafullquantumdescription

[Fre90, JAC92, KKFR89, MRS90,RBJ91,RBJ92].A very imp ortantfeature, thathas app eared

inthedevices ofthelast generationandwhichrequiresafullquantumtreatment,is thepresence

of theinterband current, that isacontributionto thetotalcurrent which arisesfromtransitions

b etweentheconductionandthevalencebandstates.Resonantinterbandtunnelingdio des(RITD)

areexamplesofsemiconductordeviceswhichexploitthisphenomenon;theyareofbigimp ortance

innanotechnologyfortheirapplicationstohigh-sp eedandminiaturizedsystems[YSDX91,SX89].

Inthebanddiagramstructure ofthesedio desthereisasmallregionwherethevalencebandedge

liesab ovetheconductionbandedge(valencequantumwell),makinginterbandresonancep ossible.

So far, most part of the existing literature has b een devoted to quantum transp ort mo dels

whereonlyconductionbandelectronscontributetothecurrent owandundertheparab olicband

approximation,withonlyasmallregionoftheBrillouinzoneneartheminimumofthebandb eing

p opulated. Inbip olarmo dels,thecontribution ofthevalenceband(the currentdueto theholes)

isalsoincludedatthemacroscopiclevel.Quantummo delswhichinclude theinterband resonance

pro cess are called \multibandmo dels", and have largely b een formulated and analyzed only in

(3)

divided intwoclasses: Schrodinger-based mo delsand Wigner-function-based (or density-matrix-

based)mo dels.Theformeronesaimatthecalculationofthewavefunctionforthesystemordevice

understudy,andcontainnostatistics.Thelatteronesinvolveelectronstatisticsortransp orttheory

concepts.

Hydro dynamicmo delshavealsob eenformulatedanddiscussed[Gar94];again,forthemostpart

only single-band hydro dynamics has receivedattention. Only recently, multibandhydro dynamic

mo dels,basedonthemultibandkineticmo delsmentionedab ove,haveapp eared.

Inthisreview pap er,we describ e themultibandmo delsthathave recently b eenformulatedin

b othclasses.Attentionisgiventothede nitionsoftherelevantquantitieswhichcharacterizeeach

mo delandtotheadvantagesanddisadvantagesofeachmo delcomparedtoothers. Thetechnical

details of thederivations ofthevariousmo dels,as well as therigorouspro ofsof consistency and

existenceofthesolutions,arediverteddirectlytothepap erswherethemo delshaveb eendescrib ed.

Thispap er isorganized asfollows:inSection 2we brie y recalltheBlo ch theoryof electrons

moving ina p erio dic p otential; Section 3 is devoted to the envelop e-function theory; in Section

4 we dealwith the multibandmo delsbased on theSchrodinger equation; Section 5containsthe

statistical kinetic mo dels based on the Wigner-function approach and in Section 6 we give an

outlineofthehydro dynamicmo dels.

2 The Schrodinger equation and the wave function in a periodic

potential

Thestartingp ointofanytheoreticaldescriptionofaquantumsystemistheSchrodingerequation,

whichwenowdiscussforap erio dicHamiltonian[RS72, MRS90].

We consider an ensemble of electrons moving in a semiconductor crystal. The electrostatic

p otentialgeneratedbythecrystalionsisrepresentedbyap erio dicp otentialV

L

(x),thep erio dicity

b eing describ ed asfollows:

V

L

(x+a)=V

L

(x); 8a2L;

where L is the p erio dic lattice of the crystal. The quantum dynamics of a single electron is,

therefore,generatedbytheHamiltonian

H=H

0

+V(x); (1)

where H

0

=p 2

=2m+V

L

(x) is the p erio dic part of the Hamiltonian,which contains the kinetic

energy andthep erio dic p otential.Also,p= i~ris themomentumop erator, m isthe electron

mass,~isPlanck'sconstantover2andV(x)isthep otentialduetoexternal elds,suchasbarriers

orbias.Thep erio dicHamiltonianH

0

hasacompletesystemofgeneralizedeigenfunctionsb

n (x;k ),

(4)

theso-calledBrillouinzone. Thisisde nedasthecenteredfundamentaldomainoftherecipro cal

latticeL



,i.e.

B=



k2R 3

kiscloser to0thantoanyotherp ointofL



:

TheBlo chwavessatisfythegeneralizedeigenvalueequation

H

0 b

n

(x;k )=

n (k )b

n

(x;k ); (2)

(or H

0

jnk i=

n

(k )jnk i inDirac's notation),where thegeneralized eigenfunctions

n

(k )arethe

energybandsofthecrystal.Accordingly,theintegerniscalled\band-index".

UsingDirac'snotation,wecho ose thefollowingnormalizationoftheBlo ch functions:

hnkjn 0

k 0

i=jBjÆ

nn 0

Æ(k k 0

); (3)

so thatanywave function canb e decomp osedas follows

(x)= X

n Z

B dk

jBj



n (k )b

n

(x;k ); (4)

where



n (k )=

Z

R 3

dxb

n

(x;k ) (x): (5)

Itis wellknownthattheBlo chwavescanb ewritten intheform

b

n

(x;k )=e ik x

u

n

(x;k ); (6)

whereu

n

(x;k ),calledBlochfunctions,areL-p erio dicinxandhavetheprop ertythatfu

n

(;k )jn2Ng

isanorthonormalbasisofL 2

(C)forany xedk2B,whereCdenotesthefundamentalcellofthe

direct latticeL.Inparticular,

Z

C u

n (x;k )u

n 0(x;

k )dx=Æ

nn 0

; k2B: (7)

The electron p opulation of the semiconductor material is partitioned into the energy bands

of the Hamiltonian. The highest o ccupied energy band usually contains only a small electron

p opulationandtherefore ithas manyuno ccupied states; this istheconduction band.Thestates

of all other (lower energy) bands are instead fullyo ccupied and formthe valence bands. Inthe

older devices, based on resonanttunneling, onlytheelectrons of theconduction band contribute

to the owofthecurrentacrossthedevice.Insomeofthedevicesofthelastgeneration,instead,

theresonanttunnelingo ccursb etween statesb elongingtodi erentbands,sothatalsothecarrier

p opulationofthevalenceband contributestothe owofcurrent.Forthedescription oftheselast

devices, multibandmo delsmustb eused.

(5)

3 Envelope function theory

The wave function of an electron moving under the action of a p erio dic p otential, which we

have describ ed inthe previous Section, isa fastoscillating object (b oth intimeand space) and

is therefore not well suited for numerical computations. A widely used metho dology is that of

smo othingoutthesefastoscillations,thusleadingtothe\envelop efunction"approach.Envelop e

functions can b eintro duced inbasicallytwodi erentways, one due toWannier[Wan62] (called

the Wannier-Slater envelop e functions) and one due to Luttinger and Kohn [LK55] (called the

Luttinger-Kohn envelop e functions). The Luttinger-Kohn envelop e functions are the building

blo cks of the Kane mo del, which will b e describ ed in the next Section. Here, we intro duce the

de nitions andoutlinethemostimp ortantprop erties ofb othkindsofenvelop efunctions.

3.1 Wannier-Slaterenvelop efunctions

TheWannier-Slater(W-S)envelop e functions[Wan62]arede ned asfollows:

f

n (x)=

1

(2 ) 3=2

Z

B



n (k )e

ixk

dk ; (8)

where

n

(k )isgivenby(5). NotethattheW-Senvelop e functionsareinverse Fouriertransforms

to which fastoscillations due to thep erio dic p otentialhave b een removed.In other words,each

envelop efunctionf

n

hastheprop ertythatitsFouriertransformissupp ortedintheBrillouinzone

B. TheW-Senvelop e functions areeasily expressed intermsofthewave functionbyintro ducing

\continuous-indexWannierfunctions"

a

n (x;x

0

)= 1

(2 ) 3=2

Z

B b

n (x;k )e

ix 0

k

dk : (9)

Using(5), (8)and(9)we get

f

n (x)=

Z

R 3

a

n (x

0

;x) (x 0

)dx 0

; (10)

and,conversely,

(x)= X

n 1

jBj Z

R 3

a

n (x;x

0

)f

n (x

0

)dx 0

: (11)

To b etter understand the meaning of the W-S envelop e functions, consider the (discrete-index)

Wannierfunctions[Wan62],whicharetheFouriercomp onentsoftheBlo chwaveswithresp ect to

k :

a

n

(x )= Z

B dk

jBj b

n (x;k )e

ik 

= Z

B dk

jBj u

n (x;k )e

ik (x )

; (12)

where  is a p oint of the p erio dic lattice L. The most imp ortant prop erty of the Wannier

functions is that they are lo calized at the sites of the lattice, with an exp onential decay away

(6)

oscillatoryb ehaviourthroughoutR.TheWannierfunctions,liketheBlo chwaves,formacomplete,

generalized, orthonormalbasisandanywave functioncan b eexpandedas

(x)= X

n X

2L f

n ()a

n

(x );

where

f

n ()=

Z

B dk

jBj



n (k )e

ik 

:

If the lengthscale of the crystallattice is smallwith resp ect to themacroscopic scale describ ed

bythevariablex,theBrillouinzoneb ecomesverylargeandtheFourierco eÆcientsf

n

()can b e

replacedbythecontinuousFouriertransform,yieldingde nition(8).

ThedynamicsoftheW-Senvelop e functionscanb ededucedfrom(10)and(11),andfromthe

Schrodingerequation

i~

@

@t

(x;t)=H (x;t);

whereHistheHamiltonianop erator(1).Thisyields(see[Bar03b]forthedetailsofthederivation):

i~

@

@t f

n

(x;t)=e

n

( ir)f

n (x;t)+

X

n 0

Z

R 3

V WS

nn 0

(x;x 0

)f

n 0

(x 0

;t)dx 0

: (13)

Here,

V WS

nn 0

(x;x 0

)= 1

jBj Z

R 3

a

n

(y ;x)V(y )a

n (y ;x

0

)dy (14)

are matrix-elements of the external p otential with resp ect to the continuous-index Wannier

functions and e

n

( ir) are pseudo-di erential op erators asso ciated to the energy bands with a

cut-o outside theBrillouinzone,namely

e



n

( ir)f

n (x;t)=

1

(2 ) 3

Z

R 6

I

B (k )

n (k )f

n (x

0

)e ik (x x

0

)

dx 0

dk :

whereI

B

isthecharacteristicfunctionoftheBrillouinzoneB.

3.2 Luttinger-Kohnenvelop efunctions

Ageneral de nitionofenvelop efunctions inthesense ofLuttingerandKohn[Bur92,LK55] may

b egivenasfollows.Letfv

n

(x)jn2Ngb e L-p erio dicfunctionsthatformanorthonormalbasisof

L 2

(C).Then,theLuttinger-Kohn(L-K) envelop e functionsofawave function ,withresp ect to

thebasisv

n

(x)arefunctions F

n

(x)suchthat

(i) (x)= P

n F

n (x)v

n (x);

(ii) theF

n

areslowlyvaryingwithresp ect tothelatticep erio dicity,namely

supp

^

F

n



B; n2N; (15)

where

^

F denotestheFouriertransformofF .

(7)

Usually thebasis functions v

n

arechosen to b e theBlo ch functionsu

n

(x;k )evaluatedat k =0,

so that

(x)= X

n F

n (x)u

n (x;0);

but, of course, other choices are p ossible. It can b e provedthat the L-K envelop e functions are

uniquelydeterminedbythetwoconditions(i)and(ii)andthattheParseval-likeequality

k k 2

= 1

jCj X

n kF

n k

2

(16)

holds.ItisnotdiÆculttoseethattheL-Kenvelop e functionsareeasilyexpressed intermsofthe

wave functionas follows:

f

n (x)=

Z

B dk

jBj 1=2

Z

R 3

dyX

n (y ;k )e

ik x

(y ); (17)

where

X

n

(y ;k )= 1

jBj 1=2

v

n (y )e

ik y

; y2R 3

; k2B; n2N: (18)

isa(generalized)Luttinger-Kohnbasis[LK55].Byusingtheab overelationsitisp ossibletodeduce

thedynamicsofL-Kenvelop e functions.Inthecasev

n (x)=u

n

(x;0)we have[Wen99]

i~

@

@t F

n

(x;t)=

n (0)F

n (x;t)

~ 2

2m

F

n (x;t)

~ 2

m X

n 0

K

nn 0

rF

n 0

(x;t)

+ X

n 0

Z

R 3

V LK

mn 0(x;x

0

)F

n 0

(x 0

;t)dx 0

: (19)

Here, 

n

(0)isthem-thenergy bandevaluatedatk=0and

K

nn 0

= Z

C u

n

(x;0)ru

n 0(x;

0)dx= K

n 0

n

(20)

are the matrixelementsof the gradientop erator b etween Blo ch functions (which,we recall, are

real-valued).Thematrix-elementsoftheexternalp otentialaregivenby

V LK

nn 0

(x;x 0

)= 1

(2 ) 3

Z

B dk

Z

R 3

dy Z

B dk

0



 n

e ik x

X

n

(y ;k )V(y )X

n 0

(y ;k 0

)e ik

0

x 0

o

; (21)

where, ofcourse,u

n

hastob e usedinde nition(18)inplaceofv

n .

4 Pure-state multiband models

The equations of envelop e-function dynamics, eqs. (13) and (19), are still to o complicated for

mo delingpurp osesand,therefore,theyshouldb econsideredasstartingp ointsforbuildingsimpler

(8)

First ofallwenote that,iftheexternal p otentialisslowlyvaryingwith resp ect tothe lattice

p erio d,thentheL-p erio dicfunctionu

n (y ;0)u

n

0(y ;0)in(21)(seede nition(18))canb esubstituted

byitsaverageonap erio diccell.Hence,wecan write

V LK

nn 0(x;x

0

) 1

jBjjCj(2 ) 3

Z

C u

n (z)u

n 0(z)

dz

 Z

B dk

Z

R 3

dy Z

B dk

0 n

e ik

0

x

e

iy (k k 0

)

e ik

0

x 0

V(y ) o

andso,using(7) ,jCjjBj=(2 ) 3

,andBR 3

,

V LK

nn 0

(x;x 0

)Æ

nn 0

Æ(x x 0

)V(x x 0

): (22)

In other words, ifthe p otential V is smo oth enough,the complicated p otential term ineq. (19)

can b e approximatedby thesimplemultiplicationbyV(x)of each F

n

.Thesameprop erty holds

forV WS

nn 0

(x;x 0

)(see de nition(14)) andthepro ofissimilar.

Anothertypicalapproximationisthee ective-massdynamics.Thiscanb eeasilydeducedfrom

theWannier-Slaterequations(13)bysimplysubstituting theenergy-band function

n

(k )withits

parab olic approximationnearastationary p oint(thatwe assumetob e alwaysk=0forthesake

ofsimplicity).This,togetherwiththeapproximation(22)yieldsacompletelydecoupleddynamics

oftheform

i~

@

@t f

n (x;t)=

~ 2

2 rM

1

n rf

n

(x;t)+V(x)f

n (x;t)

whereM isthee ective-masstensor:

M 1

n

=rr

n (k )j

k =0 :

The e ective-mass mo del is widely used in semiconductor mo deling and it has b een rigorously

studied, asanasymptotic dynamics,inRefs. [AP05], [BLP78]and [PR96].However,ifinterband

e ects have to b e included, then we have to go b eyond thee ective-massapproximationand to

include atleasttwocoupledbands.

4.1 Thetwo-bandKane mo del

Asimplemultibandmo delwas intro duced byKane [Kan56] intheearly60'sinordertodescrib e

theelectron transp ortwithtwoallowedenergy bandsseparated byaforbiddenregion.TheKane

mo delisasimpletwo-bandmo delcapableofincludingoneconductionbandandonevalenceband

anditisformulatedastwocoupledSchrodinger-likeequationsfortheconduction-bandandvalence-

band envelop e functions[BFZ03].ThecouplingtermistreatedbythekP p erturbation metho d

[Wen99],whichgivesthesolutionsofthesingleelectronSchrodingerequationintheneighb orho o d

(9)

of electrons and holes,resp ectively, are concentrated. TheKane mo delis very imp ortantforthe

mo delingoftheRITDdevices,andiswidelyusedinliterature [SX89,YSDX91].

Fromourp ointof view,theKane mo delcan b e viewedasanapproximateevolutionequation

forL-Kenvelop e functionsarisingfromeq.(19)whenusingthefollowingapproximations:

1. theexternalp otentialkernel(21)issubstitutedbythelo calanddiagonalapproximation(22);

2. onlytwobands(conductionandvalence) areincluded;

3. theb ottomofconduction bandE

c

=

c

(0) andtopofvalenceband E

v

=

v

(0)are viewedas

functionsofthep ositionx(thisallowstomo delbandheterostructures) .

Thus, using the indices c for conduction and v for valence, we have a two-term L-K envelop e

functionexpansion

(x)=

c (x)u

c (x)+

v (x)u

v (x);

ofthewavefunction andthefollowingevolutionequationsfor

c and

v :

i~

@

@t

c

(x;t)=(E

c

+V)(x)

c (x;t)

~ 2

2m



c (x;t)

~ 2

m Kr

v (x;t);

i~

@

@t

v

(x;t)=(E

v

+V) (x)

v (x;t)

~ 2

2m



v (x;t)+

~ 2

m Kr

c (x;t);

(23)

whichisthetwo-bandKanemo del.NotethatthequantityK,calledKanemomentum,isgivenby

K=K

cv

= K

v c

= Z

C u

c (x)ru

v (x)dx

(see (20) and recall that the Blo ch functions u

c and u

v

are real-valued). A wordof caution has

to b e sp ent on thenotation:

c and

v

are not really band-projections (sp ectral projections) of

the wave function, not only b ecause of the envelop e function approximation but also b ecause

the Hamiltonianop erator de ned by the right-hand side of eq. (23)is not diagonal,even inthe

absence of external p otentials. The identi cation of

c and

v

with sp ectral projections is only

approximatelytruefork0.

TheKanemo delintheSchrodinger-likeform(23)hasb eenrecentlystudiedbyJ.Ke ,[Kef03],

andintheWigner-equationformbyBorgioli,FrosaliandZweifel[BFZ03].

4.2 TheMorandi-Mo dugnomultibandmo del

In this section we brie y intro duce themultibandenvelop e function mo del, intro duced recently

byMo dugnoandMorandi(M-M);forthecompletederivationofthemo delwerefer thereader to

[MM05].

(10)

Thestartingp ointistheW-Senvelop efunctiondynamics(13).Whenthep otentialV issmo oth

enough, we can approximatethematrix-elementsV WS

nn 0

inthesamewayas we deduced eq.(22),

obtaining

V WS

nn 0

(x;x 0

) 1

jBj(2 ) 3=2

Z

R 3

dk Z

R 3

dk 0

n

e ik x

B

nn 0(k ;k

0

)

^

V(k k 0

)e ik

0

x 0

o

(24)

where

B

nn 0(k ;

k 0

)= 1

jCj Z

C u

n (z;k )u

n 0(z;

k 0

)dz: (25)

By usingtheeigenvalueequation(2)oneobtains

B

nn 0

(k ;k 0

)= 1

jCj

~

m (k k

0

) P

nn 0

(k ;k 0

)

E

nn 0(k ;

k 0

)

; forn6=n 0

,

where

P

nn 0(k ;k

0

)= Z

C u

n

(x;k )( i~r)u

n 0(x;k

0

)dx (26)

and

E

nn 0(k ;

k 0

)=

n (k ) 

n 0(k

0

)

~ 2

2m (k

2

k 02

):

Moreover,ascan b ededucedfromeq.(3),thediagonaltermsaresimplygivenby

B

nn (k ;k

0

)= jBj

(2 ) 3

= 1

jCj

: (27)

Using(24),(25)and(27)ineq.(13)(andrecallingthatBR 3

)weget

i~

@

@t f

n

(x;t)=

n

( ir)f

n

(x;t)+V(x)f

n (x;t)

+

~

m X

n 0

6=n Z

R 3

dk Z

R 3

dk 0

e ik x

(2 ) 3

P

nn 0(k ;k

0

)

E

nn 0(k ;

k 0

)

^

V(k k 0

)

^

f

n 0(k

0

;t)

where a diagonal part and a non-diagonal part of the dynamics can b e clearly distinguished.

Assuming, for the sake of simplicity, that the stationary p oint of each band is k = 0 and that

the crystal momentumk remains small during the whole evolution, we can expand the term

P

nn 0=E

nn

0, which characterizes the interband coupling, to rst order in k and k 0

. After some

manipulationsbymeansofstandardp erturbation techniques, wegetthemultibandequation

i~

@

@t f

n

(x;t)=

n

( ir)f

n

(x;t)+V(x)f

n (x;t)

i~

m

rV(x) X

n 0

6=n P

nn 0

E

nn 0

f

n 0(x;

t)

~

m

rV(x) X

n 0

6=n M



nn 0

E

nn 0

rf

n 0

(x;t)

~

m X

0 M

nn 0

E

nn 0



r 2

V(x)f

n 0

(x;t)+rV(x)rf

n 0(x;

t)



: (28)

(11)

whereweput P

nn 0

P

nn 0(0;

0),E

nn 0

E

nn 0

(0;0)and

M

nn 0 =

~

m X

n 00

6=n 0

P

nn 00P

n 00

n 0

E

n E

n 00

; M



n 0

n

=

~

m X

n 00

6=n 0

P

nn 00P

n 00

n 0

E

n 0 E

n 00

aree ective-massterms.Asimpletwo-bandmo delcan b ebuiltusing thefollowingassumptions:

1. onlytwobands(candv ) areincluded;

2. theenergybandop erator

n

( ir)issubstitutedbyitsparab olicapproximation(e ective-mass

energyband);

3. the interband terms of order greater than 2 in k are neglected (this amounts to neglecting

termsprop ortionalto thematricesM

nn 0);

4. theb ottomoftheconductionbandandthetopofthevalencebandarefunctionsofthep osition

x(asinthetwo-bandKanemo del).

Thisyields

i~

@

@t



c

(x;t)=(E

c

+V)(x)

c (x;t)

~ 2

2 rM

1

c r

c (x;t)

i~

mE

g (x)

rV(x)P

v (x;t);

i~

@

@t



v

(x;t)=(E

v

+V)(x)

v (x;t)

~ 2

2 rM

1

v r

v (x;t)

i~

mE

g (x)

rV(x)P

c (x;t);

(29)

whereE

g

(x)=E

c (x) E

v

(x)istheband-gap.ContrarilytotheKanemo del(23),inthetheM-M

mo del (29)the envelop e functions 

c and 

v

are true band-functions, to the extent that inthe

absence ofexternalp otentials(V =0)thedynamicsisdiagonal.

5 Statistical multiband models:density matrix and Wigner function

Wenowturnourattentiontothemultibandmo delsthatmakeuseofstatisticalconcepts, mainly

of the Wigner-functionapproach [Wig32, MRS90, BJ99, JBBB01 , Bar03a]. A multiband mo del

involvingthedensitymatrixwasalreadyintro ducedbyKriegerandIafrate[KI87,IK86]bytaking

matrixelementsofthedensityop eratorb etweenBlo chstates.Subsequently,anumb erofmultiband

mo delsbased onWigner-functionapproach weredevelop ed. In[Bar03b,Bar04a, BD02]envelop e

functions wereusedto construct themultibandWignerfunction;in[BFZ03]aWignerversion of

theKanemo delwasintro duced;in[DBBBJ02,DBBJ02,DBJ03a,DBJ03b]themultibandWigner

functionwasobtainedbyusingtheBlo ch-staterepresentation ofthedensitymatrix.

(12)

We recall that statistical states in quantum mechanics are describ ed either in terms of the

densityop erator ortheWignerfunctionf(x;p),[Fey72].Thedensityop eratorisusuallyde ned

by a statistical mixture of states, say f

j

jj 2 Ng, where

j

(x) are the wave functions that

characterize each state of the mixture. If 

j

 0 is the probability distribution of the states,

then P

j



j

=1andthedensityop eratorisgivenby

= X

j



j j

j ih

j

j (30)

inDirac'snotation,andthedensitymatrixinthespacerepresentation isgivenby

(x;x 0

)= X

j



j

j (x)

j (x

0

)= X

j



j hxj

j ih

j jx

0

i: (31)

TheWignerfunctionf(x;p)isde nedbytheWigner-Weyltransformofthedensityop erator,that

is

f(x;p)= Z

d

(2 ~) 3





x+



2

;x



2



e ip =~

: (32)

In the theoretical mo dels based on the solution of the Schrodinger equation (pure states),

the calculation of the current across the device, j(x), followsthestandard quantum-mechanical

de nition

J(x)=

~

m

Im (x)r (x)



: (33)

In the statistical mo dels, instead, the current is expressed interms of the density matrix or in

termsoftheWignerfunction.Inthe rstcase thecurrentis

J(x)= i~

2m (r

x r

x 0

)(x;x 0

)j

x=x 0

; (34)

and,intheWignerpicture,by

J(x)= 1

m Z

pf(x;p)dp; (35)

anexpressionwhichis,remarkably,identicaltotheclassicalexpressionforthecurrentinstatistical

systems.Itcanb eeasilyshownthat,inthecaseofpurestates,thesetwoexpressions coincidewith

(33).

5.1 Wigner-functionbased statisticalmo dels

A suitable partition of the Wigner function among the energy bands can b e obtained by using

the completeness of the Blo ch states inequation (32). We adopt hereafter Dirac's notation and

consider,forthesakeofsimplicity,theone-dimensionalcaseonly.Byde ningtheco eÆcients

mn

andtheintegralkernel W

mn ,

(13)



mn (k ;k

0

;x;p)= Z Z

d

2 ~ D

x+



2

nk

ED

nk 0

x



2 E

e ip =~

(36)

W

mn (x;p;x

0

;p 0

)= Z

B 2

dk dk 0



mn (k ;k

0

;x;p)



mn (k ;k

0

;x 0

;p 0

); (37)

the Wigner function can b e written as a sum of projections over the Flo quet subspaces of the

energy bands(see [DBBJ02]fordetails):

f(x;p)= X

mn f

mn

(x;p); (38)

where

f

mn

(x;p)= Z

B 2

dk dk 0



mn (k ;k

0

)

mn (k ;k

0

;x;p): (39)

By expressing  as afunctionof f, we can write f

mn

=P

mn

f, where P

mn

is thelinear integral

op erator

(P

mn

f)(x;p) 1

2 ~ Z Z

dx 0

dp 0

W

mn (x;p;x

0

;p 0

)f(x 0

;p 0

):

Here, 

mn (k ;k

0

)=hmkjjnk 0

iarethematrixelementsofthedensityop eratorintheBlo ch-state

representationandthelinearintegralop eratorP

mn

isaprojectionop eratorandyieldstheWigner

projectionsf

mn

fromthetotalWignerfunctionf.

Thetimeevolution of theWigner function is givenby the sumof the timeevolutionsof the

band projections,

i~

@f

@t

(x;p;t)= X

mn i~

@f

mn

@t

(x;p;t);

givenby[DBBJ02]

i~

@f

mn

@t

= X

2L h

b



m ()f

mn (x+



2

;p;t) b

n ()f

mn (x



2

;p;t) i

e ip=~

+ Z Z

dx 0

d

c

W

mn (x;p;x

0

;  )ÆV(x 0

; ) b

f(x 0

; ;t); (40)

where c

W

mn

istheFouriertransformofW

mn

withresp ect tothemomentumvariable:

c

W

mn (x;p;x

0

; )= 1

2 ~ Z

dp 0

W

mn (x;p;x

0

;p 0

)e ip

0

 =~

: (41)

Equation(40)istheequationthatgovernsthetimeevolutionoftheFlo quetprojectionsf

mn ofthe

Wignerfunctionforanensembleofelectronsmovinginasemiconductorcrystalinthepresenceof

external eldsandallowingforenergybandsofarbitraryshap e.The rstterm,containingthesum

over the latticevectors, refers to theaction of thep erio dic p otential of thecrystal lattice,while

the last term,written intheformof an integral op erator, refers to the actionof theexternal or

self-consistent eldsactingontheelectrons. The rstterm,asshownin[DBBJ02],reducestothe

(14)

thistermastothestreamingterm,whilethesecondtermwillb ecalledtheforceterm,inanalogy

withthe corresp ondingforce termoftheBoltzmannequation. Theseequations showthat,inthe

absence ofexternal elds,di erentbandsremaindynamicallyuncoupled andeachcontributionto

the Wigner function evolves indep endently. Inthe case V(x)  0, these equations were already

writtenbyMarkowich,MauserandPoupaud[MRS90,MMP94]forasingleband.Itcanb eshown

that,inthecase ofasingleparab olicband,eq.(40)reducesto theusualWignerequation inthe

e ective massapproximation

@f

@t +

p

m



@f

@x +

i

~

 [ÆV]f=0;

wherem



isthe(one-dimensional)electrone ective massintheselectedband and

(  [ÆV]f)(x;p)= 1

2 ~ Z

R 2

e i(p p

0

) =~

ÆV(x;)f(x;p 0

)ddp 0

(42)

isapseudo-di erential op eratorwithsymb ol

ÆV(x;)=V



x+



2



V



x



2



: (43)

A multiband mo del for electron transp ort in semiconductors, based on the density-matrix

approach, was intro duced by Krieger and Iafrate in [KI87, IK86].They considered a statistical

ensembleof electrons movingunder theactionof anexternaltime-dep endentelectric eld.Here,

we brie y summarizethis mo delinasimpli edform.Their mo delisobtainedby expandingthe

densitymatrixelementsinBlo chfunctions:

(y ;z)= X

mn Z

B 2

dk dk 0



mn (k ;k

0

)b

m (k ;y )b

n (k

0

;z); (44)

where 

mn (k ;k

0

) = hmkjjnk 0

i are the already-intro duced matrix elements b etween Blo ch

functions,whoseevolutionisgivenby

i~

@

mn (k ;k

0

)

@t

=[

m (k ) 

n (k

0

)]

mn (k ;k

0

)

+ X

l Z

B dk

00

[V

ml (k ;k

00

)

ln (k

00

;k 0

) V

ln (k

00

;k 0

)

ml (k ;k

00

)]: (45)

Here, V

mn (k ;k

0

) = hmkjVjnk 0

i are the matrix elementsof the external p otentialin the Blo ch

representation. The main source of diÆculty with this approach lies exactly in these matrix

elements,whichareill-de nedformostp otentialsofpracticalinterest.

TheWigner-functionformalismhasalsob eenusedbyBuotandJensen[Buo74,Buo76,Buo86,

BJ90]toformulatemultibandmo delswithintheframeworkoftheLattice-Weyltransform,inwhich

a non-canonical de nition of the Wigner function, based on a discrete Fourier Transform,was

intro duced.Thisde nitionoftheWignerfunctionmakesuseoftheWannierfunctionsintro duced

(15)

eq.(12));here, Listhedirect latticeandthevectors are elementsofthedirect lattice.We can

consider matrixelementsofthedensity op eratorintheWannierrepresentation,



mn

(;)=hmjjni

with;2L.A Wignerfunctionisthenintro duced by

f

mn

(k ;)=N X

v 2L



mn

(+v ; v )e 2ik v

; (46)

whereN isanormalizationfactor,2Lisalatticevectorandk2B.Thisde nitionoftheWigner

function is sometimescalled discrete Wigner-Weyltransform,and has asimilar structure of the

de nitiongivenin(32);therearehoweversomeimp ortantdi erences: theWignerfunctionisonly

de ned onthelatticep oints;itisde nedbyaFourierseries,ratherthattheFouriertransform;it

isafunctionofthecrystalmomentum,whichhasnotb eenintegratedover.Accordingto(35),the

currentdensityisthengivenby

J()= X

mn Z

B dk

jBj p

m f

mn

(k ;); (p=~k )

andis alsode ned onthelatticep oints.

5.2 ReducedWigner-Blo ch-Floquetmo dels

Equations(40)arethemostgeneraltimeevolutionequationsthatcanb e writtenfortheFlo quet

projections of the multiband Wigner function in presence of external elds and in absence of

collisions.The actionof the p erio dic p otential is describ ed by the rst term,which containsthe

Fourierco eÆcientsoftheenergybands,andwhichreducestotheusualfree-streamingop eratorin

theparab olic-bandapproximation.Thesecondtermdescrib estheactionoftheexternalp otential.

We note that, while the rst term requires only the knowledge of the energy band functions,

the second term requires the knowledge of the Blo ch eigenfunctions of the material of interest.

Therefore,themo delequations(40)areveryhardtosolveinfullgeneralityinpracticalapplications,

andthederivationofasetofsimpli edmo delsis needed.Inthefollowingsubsections,weoutline

someofthereducedmo delswhichhave b eenderivedwithintheBlo ch-Flo quetapproach.

Two-bandmo delin theparab olicband approximationwithoutexternal elds

It is interesting to consider a simple two-bandmo del in the parab olic band approximationand

without external elds, in order to study the o -diagonal Flo quet projections of the Wigner

function, which arise in this case. In atwo-band mo del, the Wigner function and its evolution

(16)

n = 0;1.The Wigner function is given by the sumof four contributions, f

00 , f

01 , f

10 and f

11 .

It can b e seen easily from equations (36), (39) and (37) that f

01

= f

10

, while f

00 and f

11 are

real. Each of the four contributions evolves according to equations (40). In the parab olic band

approximation,thedi erentialequationsforf

00 andf

11 are:

@f

00

@t +

p ~k

0

m

0

@f

00

@x

=0

@f

11

@t +

p ~k

1

m

1

@f

11

@x

=0;

(47)

wherem

0 andm

1

arethee ective massesforband0andband1resp ectivelyandk

0 andk

1 arethe

valuesofthecrystalmomentumatwhichband0andband1attaintheirminimum.Theevolution

equationsforf

01 andf

10

=f

01

haveinsteadadi erentstructure.Asimplecalculationshowsthat:

i~

@f

01

@t

=





0 (k

0 )+

(p ~k

0 )

2

2m

0

 



1 (k

1 )+

(p ~k

1 )

2

2m

1



f

01 (x;p)+

i~

2



p ~k

0

m

0 +

p ~k

1

m

1



@f

01

@x 1

8



~ 2

m

0

~ 2

m

1



@ 2

f

01

@x 2

: (48)

whichfollowsfromequation (40)afterexpanding f

mn

(x =2;p;t) inTaylorseriesab out =0

andusingparab olic pro lesforthetwobands. Byintro ducingthefrequencies

!

01

=(

0 (k

0 ) 

1 (k

1 ))=~

01 (p)=!

01

+(p ~k

0 )

2

=(2m

0

~) (p ~k

1 )

2

=(2m

1

~)

andthenewfunction

g

01

(x;p;t)=f

01

(x;p;t)e i01(p)t

;

equation(48)canb e castinthemoreelegantform

@g

01

@t +

1

2



p ~k

0

m

0 +

p ~k

1

m

1



@g

01

@x i~

8



1

m

0 1

m

1



@ 2

g

01

@x 2

=0: (49)

Notethatinthede nitionoftheWignerfunction(38)f

01 andf

10

app earonlyinthecombination

f

01 +f

10

, consistently with the Wigner function b eing real. Equation (48)shows that the time

evolutionof f

01

isgivenby threecontributions: anoscillatory term,afree streaming termand a

di usive term with imaginarydi usion co eÆcient(Schrodinger-like term). The frequency of the

oscillatory term,

01

,is prop ortionalto thedi erence ofthetotalenergies of theparticlesofthe

twobands; the velo city of the free streaming termis an average of the relative velo cities of the

particlewithresp ect to thetwominimaandtheimaginarydi usionco eÆcientvanisheswhenthe

twoe ective massesareequal.

Equations(47) and(49) completelydescrib e the timeevolution of all thecomp onentsof the

Wignerfunctioninatwo-bandmo delwiththeparab olic-bandapproximationand intheabsence

(17)

Multibandmo delin theLuttinger-Kohnapproximation

As we have already seen in Section 3.2, the Luttinger-Kohn mo del [LK55]considers the carrier

p opulations near minima (or maxima) of the energy bands and it is therefore to b e used in

conjunction with theparab olic-band approximation.For theBlo ch states near theminimum(or

maximum)oftheband,theBlo chfunctionsu

n

(x;k )arereplacedwiththesetoffunctionsu

n (x;k

n ),

i.e.theBlo chfunctionsattheb ottom(ortop)oftheband,hereassumedatk=k

n

.Thefunctions

e ik x

u

n (x;k

n

), after a suitable normalization,also form a complete set (see Ref. [LK55] and see

alsoSection3.2)andanywavefunctioncanb eexpandedintheirbasis.InthisSection, weusethe

Luttinger-Kohn basis forexpressing theFlo quet projections f

mn

ofthe Wignerfunctionand for

writingtheevolutionequations.TheactionofthefreeHamiltonianistreatedintheparab olic-band

approximation.

Ifthen thbandhasanextremumat k=k

n

,we canapproximatetheBlo chwavesas

hxjnk i=b

n

(x;k )u

n (x;k

n )e

ik x

: (50)

Since thefunctions u

n (x;k

n

)are p erio dicfunctionswithp erio d a,wecan intro ducetheirFourier

expansion,

u

n (x;k

n )=

1

X

n 0

= 1 b

U n

n 0e

iK

n 0x

;

where, K

n

= 2 n=aare vectors oftherecipro cal latticewith K

n

= K

n

. After evaluatingthe

co eÆcients

mn

andthe integralkernel W

mn

inthisbasis, andaftercarryingouttheintegration

overthemomentumvariablesk andk 0

,oneobtainsfortheFlo quet projectionf

mn

of theWigner

function:

f

mn

(x;p)=4

X

m 0

n 0

m 00

n 00

b

U m

m 0

b

U n

n 0

b

U m

m 00

b

U n

n 00

e i(K

m 0 K

n 0)x

H





a

p

~ K

m 0

+K

n 0

2



 Z

dx 0

sin2[ =a jp=~ (K

m 0+K

n

0)=2j](x x 0

)

x x

0

f



x 0

;p ~ K

m 0

+K

n 0

K

m 00

K

n 00

2



e i(K

m 00 K

n 00)x

0

;

where the integrals are p erformedover the whole real line andH is theHeaviside function.The

evolutionequationshave b een formulatedforthecase oftwoenergy bands intheparab olic band

approximation.If m

0 and m

1

arethee ective massesfor band 0and band 1resp ectively andk

0

andk

1

arethevaluesofthecrystalmomentumatwhichband0andband1attaintheirminimum,

wehave that

(18)

@t +

m

0

@x +

~ (

00

f)(x;p)=0 (51)

@f

11

@t +

p ~k

1

m

1

@f

11

@x +

i

~ (

11

f)(x;p)=0; (52)

i~

@f

01

@t

=





0 (k

0 )+

(p ~k

0 )

2

2m

0

 



1 (k

1 )+

(p ~k

1 )

2

2m

1



f

01 (x;p)

i~

2



p ~k

0

m

0 +

p ~k

1

m

1



@f

01

@x 1

8



~ 2

m

0

~ 2

m

1



@ 2

f

01

@x 2

+(

01

f)(x;p); (53)

where

mn

isanop erator actingonthewholeWignerfunctionf and,recallingde nition(42),is

givenby

(

mn

f) (x;p;t)= Z Z

dx 0

d

c

W

mn (x;p;x

0

;  )ÆV(x 0

; ) b

f(x 0

; ;t)

=4

X

m 0

n 0

m 00

n 00

b

U m

m 0

b

U n

n 0

b

U m

m 00

b

U n

n 00e

i(K

m 0

K

n 0

)x

H





a

p

~ K

m 0

+K

n 0

2



 Z

dx 0

e i(K

m 00

K

n 00

)x

0sin2[ =a jp=~ (K

m 0+K

n

0)=2j](x x 0

)

x x

0

 Z

d ÆV(x 0

; )e i(p (K

m 0+K

n 0 K

m 00 K

n 00)=2) =~

b

f(x 0

; ;t): (54)

A two-bandmo delwith empty-latticeeigenfunctions

Adi erentsimpli cationofthetransp ortequationscanb eobtainedbyusingtheBlo ch functions

ofthe\emptylattice",that isp erio dic planewaves.Here, we consideronlythetwolowestenergy

bands, givenby



0 (k )=

~ 2

k 2

2m

(55)



1 (k )=

~ 2

2m

[H(k )(k K) 2

+H( k )(k+K) 2

]; (56)

withK=2 =aandmthebareelectronmass,and whoseeigenfunctionsare

0k

(x)=hxj0k i= 1

p

2

e ik x

(57)

1k

(x)=hxj1k i= 1

p

2

(H(k )e iKx

+H( k )e iKx

)e ik x

: (58)

By using this basisin thede nition (39)of the multibandWigner function, one obtains forthe

band projectionsf

mn

(see [DBJ03b]forthedetails):

(19)

f

00

(x;p)= 1

 H



K

2

p

~



Z

sin2(K =2 jp=~j)(x x 0

)

x x

0

f(x 0

;p)dx 0

(59)

f

01

(x;p)= 1

 Z



e

H



3~K

4

;p;0



e i(

1 +

2

+K)(x x 0

) sin(

2

1 )(x x

0

)

x x

0

+ e

H



0;p;

3~K

4



e

i( 3+ 4 K)(x x 0

) sin(

4

3 )(x x

0

)

x x

0



f(x 0

;p)dx 0

(60)

f

11

(x;p)= 1

 Z



e

H



~K ;p;

~K

2



sin2(K =4 jp=~+3K =4j)(x x 0

)

x x

0

+ e

H



~K

2

;p;~K



sin2(K =4 jp=~ 3K =4j)(x x 0

)

x x

0

+2H



K

4

p

~



sin2(K =4 jp=~j)(x x 0

)

x x

0

cos 3

2

K(x x

0

)



f(x 0

;p)dx 0

: (61)

wherethefunction e

H (a;x;b)H(x a)H(b x)hasb eenintro duced,and

1 (p)=

K

2 +

p

~ +

K

2

2 (p)=

K

4

p

~ +

K

4

3 (p)=

K

4 +

p

~ K

4

4 (p)=

K

2

p

~ K

2

:

ThetimeevolutionoftheFlo quetprojections oftheWignerfunctionisgivenby:

@f

00

@t +

p

m

@f

00

@x +

i

~ (

00

f)(x;p)=0

@f

11

@t +

p

m

@f

11

@x +

i

~ (

11

f)(x;p)=0;

@f

01

@t +

p

m

@f

01

@x +

i

~ (

01

f)(x;p)=0;

whereisanop erator actingonthetotalWignerfunctionf andisgivenby

(20)

(

00

f)(x;p)=

 H

a

~

x x

0

 Z

ÆV(x 0

; ) b

f(x 0

; ;t)e ip =~

ddx 0

(

01

f)(x;p)= 1

 Z



e

H



3~K

4

;p;0



e

i( 1+ 2+K)(x x 0

) sin(

2

1 )(x x

0

)

x x

0

+ e

H



0;p;

3~K

4



e i(

3 +

4

K)(x x 0

) sin(

4

3 )(x x

0

)

x x

0



 Z

ÆV(x 0

; ) b

f(x 0

; ;t)e ip =~

ddx 0

(

11

f)(x;p)= 1

 Z 

e

H



~K ;p;

~K

2



sin2(K =4 jp=~+3K =4j)(x x 0

)

x x

0

+ e

H



~K

2

;p;~K



sin2(K =4 jp=~ 3K =4j)(x x 0

)

x x

0

+2H



K

4

p

~



sin2(K =4 jp=~j)(x x 0

)

x x

0

cos 3

2

K(x x 0

)



 Z

ÆV(x 0

; ) b

f(x 0

; ;t)e ip =~

ddx 0

Equations(59)-(61)showthattheFlo quetprojectionsoftheWignerfunctiongivenbythismo del

arefunctions withcompact supp ortand cover di erentp ortionsof thephase space. Thesupp ort

of the projection f

00

on the lower band, for example, corresp onds to the rst Brillouin zone;

the supp orts of theother projections are larger and extend b eyond the rstBrillouinzone. The

equations ofthistwo-bandmo delarevery hardtoapproach numerically,b ecause ofthepresence

ofconvolutionintegralsofhighlyoscillatoryfunctions.

5.3 Envelop e-functionbased statisticalmo dels

Analternativeapproachtostatisticalmo delsbasedontheWignerpicturestartsfromanenvelop e-

functionmo del,suchastheKanemo del(23)ortheM-Mmo del(29)andthenapplyingtheWigner

transformation(32)directlytotheenvelop efunctions (

c and

v

intheformercase,

c and

v in

thelatter).

Foratwo-bandmo delweneeda22matrixofWignerfunctions(Wignermatrix),de ned as

thecomp onent-wiseWignertransform:

w

ij

(x;p)=(W

ij

)(x;p); i;j2fc;v g;

where W denotes theWignertransformation(32)and 

ij

is anenvelop e-functiondensity matrix

(i.e., in the pure-state case, it is given by 

ij (x;x

0

) =

i (x)

j (x

0

) for the Kane mo del and by



ij (x;x

0

)=

i (x)

j (x

0

)fortheM-Mmo del).Theself-adjointnessofthedensityop eratorimplies

(21)



ij (x;x

0

)=

ji (x

0

;x) =) w

ij

(x;p)=w

ji (x;p):

TheevolutionequationfortheWignermatrixinthecase oftheKanemo del(23)is



@

@t +

p

m

r

x +

i

~

 [V

cc ]



w

cc

= i~K

2m

r

x (w

cv w

v c )

Kp

m (w

cv +w

v c )



@

@t +

p

m

r

x +

i

~

 [V

cv ]



w

cv

= i~K

2m

r

x (w

cc +w

v v )+

Kp

m (w

cc w

v v )



@

@t +

p

m

r

x +

i

~

 [V

v c ]



w

v c

= i~K

2m

r

x (w

cc +w

v v )+

Kp

m (w

cc w

v v )



@

@t +

p

m

r

x +

i

~

 [V

v v ]



w

v v

= i~K

2m

r

x (w

cv w

v c )+

Kp

m (w

cv +w

v c )

(62)

whereweput

V

ij

(x;)=(E

i +V)



x+



2



(E

j +V)



x



2



; i;j2fc;v g; (63)

andthepseudo-di erentialop erator,inthepresentthree-dimensionalcase,isgivenby

( []f)(x;p)= 1

(2 ~) 3

Z

R 6

e i(p p

0

) =~

(x;)f(x;p 0

)ddp 0

: (64)

The system (62) has b een studied from a mathematicalp ointof view in [BFZ03]. The Wigner

matrixdescribingthermalequilibriumof theKane mo delhasb een analyzedinRef.[Bar04a].

TheevolutionequationfortheWignermatrixinthecase oftheM-Mmo del(4.2)is



@

@t +pM

1

c r

x +

i

~

 [V

cc ]



w

cc

= [F ]w

cv

 [F

+ ]w

v c



@

@t +p

M 1

c +M

1

v

2 r

x i~

4 r

x

 M

1

c M

1

v

2 r

x +

ip

~

 M

1

c M

1

v

2 p



w

cv

= i

~

 [V

cv ]w

cv

+ [F ]w

cc

 [F

+ ]w

v v



@

@t +p

M 1

c +M

1

v

2 r

x +

i~

4 r

x

 M

1

c M

1

v

2 r

x ip

~

 M

1

c M

1

v

2 p



w

v c

= i

~

 [V

v c ]w

v c

 [F

+ ]w

cc

+ [F ]w

v v



@

@t +pM

1

v r

x +

i

~

 [V

v v ]



w

v v

=  [F

+ ]w

cv

+ [F ]w

v c

(65)

whereweput

F



(x;)=

rV P

mE



x



2



;

(22)

and thesymb ols V

ij

arestill given by (63). Fromeq.(26) we see that that P and, consequently,

F



arepurelyimaginary,sothat thefollowingrelationshold:

 [F

 ]w

ij

=  [F

 ]w

ji

; i;j2fc;v g:

Inthesp ecialcaseofconstantandopp osite e ective-masses,

M

c

=m



I; M

v

= m



I;

theab ovesystemreducesto



@

@t +

p

m



r

x +

i

~

 [V

cc ]



w

cc

= [F ]w

cv

 [F

+ ]w

v c



@

@t i~

4m

 r

2

x +

ip 2

~m

 +

i

~

 [V

cv ]



w

cv

= [F ]w

cc

 [F

+ ]w

v v



@

@t +

i~

4m

 r

2

x ip

2

~m

 +

i

~

 [V

v c ]



w

v c

=  [F

+ ]w

cc

+ [F ]w

v v



@

@t p

m



r

x +

i

~

 [V

v v ]



w

v v

=  [F

+ ]w

cv

+ [F ]w

v c

;

(66)

(see also Ref. [FM05]). The negative e ective-mass intro duced in this mo del has the e ect of

makingtheHamiltonianunb oundedfromb elow.Asitiswellknown,suchaHamiltonianisnotvery

go o d,esp ecially forstatistical purp oses(the thermal equilibriumstates are ill-de ned).However,

the correct interpretationis that (66)should b e considered just as anapproximationofthe true

dynamicsforsmallvaluesofthemomentump.

6 Hydrodynamicmodels

It is universally recognized that the hydro dynamic approach presents imp ortantprop erties b oth

from the theoretical and the numerical p oint of view b ecause it gives an interpretation of the

transp ort phenomenon by macroscopic quantities and it pro duces many advantages from the

computationalp ointofview.

Theliteratureonhydro dynamicmo delsisverybroad,b othinclassicalaswellasinsemiclassical

andquantumframework.

Someveryinterestingresultshaveb eenachieved,prop osingquantumhydro dynamicequations,

able to describ e the b ehaviour of nanometric devices like resonant tunneling dio des. Here, we

restrict ourselves to describing the hydro dynamic versions of the Kane mo del and of the M-M

(23)

Mostoftheresultspublishedintheliteraturerefertosingle-bandproblems.Thegeneralization

to multibandmo delspresents several diÆculties.Amongothers,thede nitionofthemacroscopic

quantitieswitharealisticphysicalmeaningandthediÆcultyinimp osingb oundaryconditions.

Inthis reviewwe give aninsightintotheclassicalderivation ofatwo-bandquantum uid.As

wehavesaid,theab ove-mentionedmultibandmo delsarebasedonthesingleelectronSchrodinger

equation, and the resultingequations areessentially linear.By applyingthe WKB metho d,it is

p ossibleto derive azero-temp erature hydro dynamicversion oftheSchrodinger two-bandmo dels.

Whenitisdesirable tomo delthedynamicsofafamilyof electrons,thestatistical description

requires theintro duction ofasequence of mixedstates,with anattachedo ccupation probability.

In this case, the WKB metho d leads to a sequence of hydro dynamic equations. Starting from

it, it is p ossible to derive a set of equations for certain macroscopic averaged quantities. These

hydro dynamicequations share asimilarstructure with the corresp onding equations for asingle

electron, the only di erence b eing the app earance of terms that can b e interpreted as thermal

tensors,andofadditionalsourceterms.Thesenewtermsdep endonallstates,sothesystemisnot

closed unless appropriateclosureconditionsareprovided.It isclearthat the nal hydro dynamic

mo delwithtemp erature isbynomeansequivalenttotheoriginalquantummo del.We couldsay

thatthenonlinearityoftheresultinghydro dynamicmo delis\genuine"andisthepricetopayfor

keepingonlya nitenumb erofequations.

6.1 Thehydro dynamicquantities

Inordertoobtainhydro dynamicversionsofthekineticmo delsdescrib ed intheprevioussections,

one p ossibility is to follow the general hydro dynamic approach to quantum mechanics due to

Madelung [LL77]. This approach consists in writing the wave function in the quasi-classical

form aexp iS





, where a is called the amplitude and S= the phase. With this approach, the

hydro dynamic limitis valid only for pure states, that is to say, it is valid only for a quantum

systematzero temp erature.Inthecaseofatwo-bandmo del,we have

a (x;t)=

p

n

a

(x;t)exp



iSa(x;t)





; a=c;v : (67)

where the squared amplitudehas the physical meaning of the probability density of ndingthe

\particle"atsomep ointinspace,andthegradientofthephasecorresp ondstotheclassicalvelo city

ofthe\particle".

Intheframeworkoftwo-bandmo dels,thedensities

n

ab

=

a b

;

are intro duced, where

a

, with a = c;v , is the envelop e function for the conduction and the

valence band, resp ectively. When a= b, thequantities n = n = j j 2

are real andrepresent

(24)

thep ositionprobabilitydensitiesoftheconductionbandandofthevalencebandelectrons,alb eit

onlyinanapproximatesense,since

c and

v

areenvelop e functionswhich mixtheBlo chstates.

Nevertheless, n=

c c

+

v v

isexactly thetotalelectron density intheconduction and inthe

valence band,and, as exp ected, itsatis es acontinuityequation. Whena6=b,the density

a b

is acomplexquantity,which do es not haveaprecise physical meaning.Despiteof this, asit will

b ecome clearinthenext section, the complexquantities

a b

app ear explicitly intheevolution

equationforthetotaldensityn.

Itiscustomary,after(67),towritethecouplingtermsinamoreconvenientway,byintro ducing

thecomplexquantity

n

cv

=

c v

= p

n

c p

n

v e

i

; (68)

where isthephase di erence de nedby

= S

v S

c



: (69)

Inthis way,inorder tostudy azero-temp erature quantumhydro dynamicmo del,we need touse

onlythethreequantitiesn

c

;n

v

andtocharacterize thezeroordermoments.

Thesituationis moreinvolved forthe current densities. In analogyto the one-band case,we

intro ducethequantummechanicalelectron currentdensities

J

ab

=Im

a r

b



: (70)

Itis naturaltorecovertheclassicalcurrentdensities,

J

c

= Im 

c r

c



=n

c rS

c

; J

v

= Im 

v r

v



=n

v rS

v

; (71)

whose physicalmeaningisclear.

Theintro duction ofthecomplexquantity(68)allowstowrite 

a r

b

in(70)as



c r

v

=n

cv u

v

; 

v r

c

=n

cv u

c

; (72)

wherethecomplexvelo citiesu

c andu

v

aregivenby

u

c

=u

os;c +iu

el;c

; u

v

=u

os;v +iu

el ;v

: (73)

withu

os;c andu

os;v

theso-calledosmotic velo cityandcurrent velo citygivenby

u

os;a

=

r p

n

a

p

n

a

; u

el;a

=rS

a

= J

c

n

a

;a=c;v : (74)

Inanalogywiththesingle-bandcasewehavede nedtheosmoticandcurrentvelo citiesascomplex

quantities which can b e expressed solely bymeansof n

c

;n

v

;J

c and J

v

.Inaddition,thecoupling

termn hasb eende ned byintro ducingthephase di erence  .We notethat

(25)

rn

cv

=n

cv (u

c +u

v

): (75)

Coming back to the choice of the hydro dynamic quantities, we maintain that, for a zero-

temp eraturequantumhydro dynamicsystem,itissuÆcienttotake theusualquantitiesn

c ,n

v ,J

c

andJ

v

,plusthephase di erence  .Thiswillb e con rmedinthenextsection.

6.2 Hydro dynamicversion of theKane system

TheKanemo delwasintro ducedinSection4.1byusingenvelop efunctions.Beforeintro ducingthe

hydro dynamicform,werewrite itbyusingdimensionlessvariables.Tothis aimwe intro ducethe

rescaled Planckconstant =~= ,where thedimensionalparameter isgivenby =mx 2

R

=t

R ,

by usingx

R andt

R

as characteristic (scalar) lengthandtimevariables. Theband energy can b e

rescaled by taking new p otential units V

0

= mx 2

R

=t 2

R

. A dimensional argument shows that the

originalcouplingco eÆcient isarecipro cal ofacharacteristic lenght,thusthe co eÆcientis scaled

byKx

R

,comp onentwise.

Hence,droppingtheprimesandwithoutchangingthenameofthevariables,wegetthefollowing

scaled Kanesystem,whichwillb e theobjectofourstudy:

i

@

c

@t

=

 2

2



c +V

c c

 2

Kr

v

i

@

v

@t

=

 2

2



v +V

v v +

2

Kr

c

;

(76)

whereKistherescaledcouplinginterbandco eÆcient,istherescaledPlanckconstant,V

c

=E

c + V

and V

v

=E

v

+V. IntheKane mo delthe coupling parameterhasto b e considered constant. In

realistic heterostructure semiconductor devices, the parameter K, approximativelyexpressed in

termsofthee ectiveelectronmassandtheenergygap,dep ends onthelayercomp ositionthrough

thespatialco ordinates.

Takingintoaccountthewaveform(67)andusingtheequationsofsystem(76),timederivation

ofn

a

;a=c;v gives immediately

@n

c

@t

+rJ

c

= 2K Im( n

cv u

v )

@n

v

@t

+rJ

v

= 2K Im (n

cv u

c );

(77)

where (71) hasb een used forJ

c and J

v

. We remark that theright-hand sideof (77), containing

the termsn

cv u

v andn

cv u

c

, can b e expressed interms ofosmotic andcurrent velo cities, andthe

(26)

Addingtheequationsin(77)andusingtheidentity Im(

c r

v

) Im(

v r

c

)=rImn

cv

;

weobtainthebalancelawforthetotaldensity

@

@t (n

c +n

v

)+r(J

c +J

v

+2K Imn

cv )=0;

whichisjust thequantumcounterpart oftheclassicalcontinuityequation.

Thederivationoftheequationsforthephases S

c ,S

v

,andconsequentlyforJ

c andJ

v

,ismore

involved.

Referringthereadertotheoriginalpap er[AF05]formoredetails,theequationsforthecurrents

take theform

@J

c

@t

+ div



J

c J

c

n

c +

2

r p

n

c

r

p

n

c

 2

4

rrn

c



+ n

c rV

c

= 2

Re



r(

c

(Kr

v

)) 2r

c

(Kr

v )



: (78)

@J

v

@t

+ div



J

v J

v

n

v +

2

r p

n

v

r

p

n

v

 2

4

rrn

v



+ n

v rV

v

= 

2

Re



r(

v

(Kr

c

)) 2r

v

(Kr

c )



: (79)

The left-handsides of the equations for the currents can b e put in a morefamiliar formby

using theidentity

div



r p

n

a

r

p

n

a 1

4

rrn

a



= n

a

2 r



 p

n

a

p

n

a



; a=c;v :

Thecorrection terms

 2

2

 p

n

a

p

n

a

; a=c;v;

canb eidenti edwiththequantumBohmp otentialsforeachband,b ecausetheycanb einterpreted

as internal self-consistent p otentials, in analogywith the single-band case. The right-hand sides

can b efurtherexpressed intermsofthehydro dynamicquantities,obtainingthe nalsystem

@J

c

@t

+ div



J

c J

c

n

c



n

c r



 2

 p

n

c

2 p

n

c



+n

c rV

c

= rRe(n

cv Ku

v

) 2Re(n

cv Ku

v u

c );

@J

v

@t

+ div



J

v J

v

n

v



n

v r



 2

 p

n

v

2 p

n

v



+n

v rV

v

= rRe(n

cv Ku

c

)+2Re(n

cv Ku

c u

v ):

(80)

It is evident that the equations for the conduction and the valence band are coupled. Also,

(27)

oftheclassicalMadelung uidequationstoatwo-bandquantum uid. Inthis context, we cho ose

thefollowingconstraint

r= J

v

n

v J

c

n

c

: (81)

Nowwe areinp ositiontorewrite thehydro dynamicsystem(80)asfollows

@n

c

@t

+divJ

c

= 2K Im(n

cv u

v );

@n

v

@t

+divJ

v

= 2K Im(n

cv u

c );

@J

c

@t

+ div



J

c J

c

n

c



n

c r



 2

 p

n

c

2 p

n

c



+n

c rV

c

= rRe(n

cv Ku

v

) 2Re( n

cv Ku

v u

c );

@J

v

@t

+ div



J

v J

v

n

v



n

v r



 2

 p

n

v

2 p

n

v



+n

v rV

v

= rRe(n

cv Ku

c

)+2Re(n

cv Ku

c u

v );

r= J

v

n

v J

c

n

c

;

(82)

wheren

cv

;u

v ,andu

v

areexpressedinthetermsofthehydro dynamicquantitiesn

c

;n

v

;J

c

;J

v ,and

by(68)and(73).

6.3 Thenonzero-temp eraturecase

The extension of the previous analysis to an electron ensemble requires a quantum statistical

mechanicstreatment.Accordingtothegeneraldiscussionattheb eginningofSection5,itisp ossible

to represent an electron ensemble as amixed quantum mechanicalstate given by asequence of

pure states

k

, with o ccupation probabilities k

 0,so that P

k

 k

=1. Inthe two-band case,

each pure state is represented by a couple of envelop e-functions, k

c and

k

v

and, therefore, we

shallextend thede nitionofthehydro dynamicquantitiesas asup erp osition, withweights k

,of

the corresp onding pure-state quantities. For example,the density will b e n

a

= P

k

 k

k

a k

a , for

a=c;v .

Inthesequelwe shallworkattheformallevel,andwe referto theequationsfoundin[AF05].

Thek -thstate fortheKanesystemisdescrib ed bythesolutionsofthesystem

i

@ k

c

@t

=

 2

2

 k

c +V

c k

c

 2

Kr k

v

;

i

@ k

v

=

 2

 k

v +V

v k

v +

2

Kr k

c :

(83)

Riferimenti

Documenti correlati

In Section 5 it is presented the approach that measure the performance of critical supply chain processes, in order to encourage a cooperative behavior across

The first step of the work has referred to the definition and analysis of the maximum loads the catamaran is subjected to, during the most common racing

As a matter of facts since the FDM candidate is actu- ally a quantum fluid ℏ and m are interpreted as the Planck constant and particle mass, we showed also that quantum vortices

TheYl the d[(aUlf.. If we assume that X is tailed, then, by Defi- nition l, it is totally tailed. Hence, by Proposition 4, it is also totally headed. - Then aimof..t ~ompeete

Second, it shows the analysis of how the presence of quantum properties in bipartite states a¤ects the performance of these states, when they are used as resources in

The present work investigates the remedies the Italian law grants to the shareholder, who disagrees with the company’s organizational and management resolutions he did not

In that case, we could say that the external control, and in particular the accounting control entrusted to the external auditor, should not be mandatory, but it should be quite

parab olic band approximation and in the absence of external elds.