• Non ci sono risultati.

[1] R. Y. Tsien, The Green Fluorescent Protein, Annu. Rev. Biochem., 1998, 67, 509–544.


Academic year: 2021

Condividi "[1] R. Y. Tsien, The Green Fluorescent Protein, Annu. Rev. Biochem., 1998, 67, 509–544."


Testo completo



[1] R. Y. Tsien, The Green Fluorescent Protein, Annu. Rev. Biochem., 1998, 67, 509–544.

[2] S. J. Remington, Fluorescent proteins: maturation, photochemistry and photophysics, Curr. Opin. Struct. Biol., 2006, 16, 714–721.

[3] V. Tozzini, V. Pellegrini, F. Beltram, Green Fluorescent Proteins and Their Applications to Cell Biology and Bioelectronics in CRC Handbook of Or- ganic Photochemistry and Photobiology, 2nd Edition, (ed.: W. Horspool, F.

Lenci), CRC Press LLC, 2004, cap. 139.

[4] R. Nifos`ı, Molecular Mechanisms of Green Fluorescent Protein Photophys- ics, Tesi di Perfezionamento, Scuola Normale Superiore, Pisa, 2004.

[5] D. M. Chudakov, S. Lukyanov, K. A. Lukyanov, Fluorescent proteins as a toolkit for in vivo imaging, Trends Biotechnol., 2005, 23 (12), 605-613.

[6] O. Shimomura, F. H. Johnson, Y. Saiga, Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hy- dromedusan, Aequorea., J. Cell. Comp. Physiol., 2002, 59, 223-239.

[7] O. Shimomura, Discovery of Green Fluorescent Protein, in Green Fluores- cent Protein: Properties, Applications, and Protocols, Second Edition (ed.:

M. Chalfie, S. R. Kain), John Wiley Sons, Inc., Hoboken (New Jersey), 2006, cap. 1.

[8] M. V. Matz, A. F. Fradkov, Y. A. Labas, A. P. Savitsky, A. G. Zaraisky, M.

L. Markelov, S. A. Lukyanov, Fluorescent proteins from nonbioluminescent Anthozoa species, Nat. Biotechnol., 1999, 17 (10), 969-973.

[9] A. Miyawaki, Green fluorescent protein-like proteins in reef Anthozoa an- imals, Cell. Struct. Funct., 2002, 27 (5), 343-347.

[10] M. Orm¨o, A. B. Cubitt, K. Kallio, L. A. Gross, R. Y. Tsien, S. J. Rem- ington, Crystal structure of the Aequorea victoria green fluorescent protein, Science, 1996, 273 (5280), 1392-1395.

[11] A. Miyawaki, Innovations in the Imaging of Brain Functions using Fluor-

escent Proteins, Neuron, 2005, 48, 189-199.


[12] A. Nagy, A. M´aln´asi-Csizmadia, B. Somogyi, D. L˝orinczy, Thermal stabil- ity of chemically denatured green fluorescent protein (GFP) A preliminary study. Thermochimica Acta, 2004, 410, 161–163

[13] D. P. Barondeau, C. D. Putnam, C. J. Kassmann, J. A. Tainer, E. D. Get- zoff, Mechanism and energetics of green fluorescent protein chromophore synthesis revealed by trapped intermediate structures, Proc. Natl. Acad. Sci.

USA, 2003, 100 (21), 12111–12116.

[14] N. Agmon, Proton Pathways in Green Fluorescence Protein, Biophys. J., 2005, 88, 2452–2461.

[15] K. Brejc, T. K. Sixma, P. A. Kitts, S. R. Kain, R.Y. Tsien, M. Orm¨o, S.

J. Remington, Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein, Proc. Natl. Acad. Sci.

USA, 1997, 94, 2306 –2311.

[16] M. Cotlet, J. Hofkens, S. Habuchi, G. Dirix, M. Van Guyse, J. Michiels, J.

Vanderleyden, F. C. De Schryver, Identification of different emitting spe- cies in the red fluorescent protein DsRed by means of ensemble and single- molecule spectroscopy, Proc. Natl. Acad. Sci. USA, 2001, 98 (25), 14398 –14403.

[17] A. A. Pakhomov, V. I. Martynov, GFP Family: Structural Insights into Spectral Tuning, Chem. & Biol., 2008, 15, 755-764.

[18] G. Jung, J. Wiehler, A. Zumbusch, The Photophysics of Green Fluorescent Protein: Influence of the Key Amino Acids at Positions 65, 203, and 222, Biophys. J., 2005, 88, 1932–1947.

[19] J. J. van Thor, T. Gensch, K. J. Hellingwerf, L. N. Johnson, Phototrans- formation of green fluorescent protein with UV and visible light leads to decarboxylation of glutamate 222, Nat. Struct. Bio., 2002, 9 (1), 37-41.

[20] M. B. Elowitz, M. G. Surette, P. Wolf, J. Stock, S. Leibler, Photoactivation turns green fluorescent protein red, Curr. Biol., 1997, 7 (10), 809-812.

[21] M. E. Bulina, D. M. Chudakov, O. V. Britanova, Y. G. Yanushevich, D. B.

Staroverov, T. V. Chepurnykh, E. M. Merzlyak, M. A. Shkrob, S. Lukyanov, K. A. Lukyanov, A genetically encoded photosensitizer, Nat. Biotechnol., 2006, 24 (1), 95-99.

[22] M. E. Bulina, K. A. Lukyanov, O. V. Britanova, D. Onichtchouk, S. Luky- anov, D. M. Chudakov, Chromophore-assisted light inactivation (CALI) using the phototoxic fluorescent protein KillerRed, Nat. Protoc.3, 2006, 1 (2), 947-953.

[23] W. Weber, V. Helms, J. A. McCammon, P. W. Langhoff, Shedding light on the dark and weakly fluorescent states of green fluorescent proteins, Proc.

Natl. Acad. Sci. USA, 1999, 96, 6177– 6182.

[24] J. Yang, G. Huang, Y. Liu, S. Peng, Photoisomerization of the green fluores- cence protein chromophore and the meta- and para-amino analogues, Chem.

Commun., 2008, 1344–1346.

[25] R. S. H. Liu, Photoisomerization by Hula-twist. Photoactive biopigments,

Pure Appl. Chem., 2002, 74 (8), 1391-1396.


[26] R. Bizzarri, R. Nifos`ı, S. Abbruzzetti, W. Rocchia, S. Guidi, D. Arosio, G.

Garau, B. Campanini, E. Grandi, F. Ricci, C. Viappiani, F. Beltram, Green Fluorescent Protein Ground States: The Influence of a Second Protonation Site near the Chromophore , Biochemistry, 2007, 46 (18), 5494-5504.

[27] R. Bizzarri, M. Serresi, S. Luin, F. Beltram, Green fluorescent protein based pH indicators for in vivo use: a review, Anal. Bioanal. Chem., 2009, 393 (4), 1107-1122.

[28] D. Arosio, G. Garau, F. Ricci, L. Marchetti, R. Bizzarri, R. Nifos`ı, F.

Beltram, Spectroscopic and Structural Study of Proton and Halide Ion Co- operative Binding to GFP, Biophys. J., 2007, 93 (1), 232–244.

[29] M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, D. C. Prasher, Green fluorescent protein as a marker for gene expression, Science, 1994, 263 (5148), 802-805.

[30] K. A. Lukyanov, D. M. Chudakov, S. Lukyanov, V. V. Verkusha, Innova- tion: Photoactivatable fluorescent proteins, Nat. Rev. Mol. Cell. Biol., 2005, 6 (11), 885-891.

[31] J. Lippincott-Schwartz, G. H. Patterson, Fluorescent proteins for photo- activation experiments, Methods Cell Biol., 2008, 85, 45-61.

[32] J. Lippincott-Schwartz, G. H. Patterson, Photoactivatable fluorescent pro- teins for diffraction-limited and super-resolution imaging, Trends Cell Biol., 2009, 19 (11), 555-565.

[33] R. Ando, H. Hama, M. Yamamoto-Hino, H. Mizuno, A. Miyawaki, An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein, Proc. Natl. Acad. Sci. USA, 2002, 99 (20), 12651-12656.

[34] H. Tsutsui, S. Karasawa, H. Shimizu, N. Nukina, A. MIyawaki, Semi- rational engineering of a coral fluorescent protein into an efficient high- lighter, EMBO Rep., 2005, 6 (3), 233-238.

[35] J. Wiedenmann, S. Ivanchenko, F. Oswald, F. Schmitt, C. R¨ocker, A. Salih, K. D. Spindler, G. U. Nienhaus, EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion, Proc. Natl. Acad. Sci.

USA, 2004, 101 (45), 15905-15910.

[36] N. G. Gurskaya, V. V. Verkhusha, A. S. Shcheglov, D. B. Staroverov, D. B.

Chepurnykh, A. F. Fradkov, S. Lukyanov, K. A. Lukyanov, Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light, Nat. Biotechnol., 2006, 24 (4), 461-465.

[37] D. M. Chudakov, V. V. Verkusha, D. B. Staroverov, E. A. Souslova, S.

Lukyanov, K. A. Lukyanov, Photoswitchable cyan fluorescent protein for protein tracking, Nat. Biotechnol., 2004, 22 (11), 1435-1439.

[38] G. J. Kremers, K. L. Hazelwood, C. S. Murphy, M. W. Davidson, D. W.

Piston, Photoconversion in orange and red fluorescent proteins, Nat. Meth- ods, 2009, 6 (5), 355-358.

[39] A. F. Fradkov, V. V. Verkusha, D. B. Staroverov, M. E. Bulina, Y. G.

Yanushevich, V. I. Martynov, S. Lukyanov, K. A. Lukyanov, Far-red fluor-

escent tag for protein labelling, Biochem. J., 2002, 368 (Pt 1), 17-21.


[40] N. C. Shaner, R. E. Campbell, P. A. Steinbach, B. N. Giepmans, A. E.

Palmer, R. Y. Tsien, Improved monomeric red, orange and yellow fluor- escent proteins derived from Discosoma sp. red fluorescent protein, Nat.

Biotechnol., 2004, 22 (12), 1567-1572.

[41] S. Habuchi, M. Cotlet, T. Gensch, T. Bednarz, S. Haber-Pohlmeier, J.

Rozenski, G. Dirix, J. Michiels, J. Vanderleyden, J. Heberle, F. C. DeS- chryver, J. Hofkens, Evidence for the isomerization and decarboxylation in the photoconversion of the red fluorescent protein DsRed, J. Am. Chem.

Soc., 2005, 127 (25), 8977-8984.

[42] G. H. Patterson, J. Lippincott-Schwartz, Selective photolabeling of proteins using photoactivatable GFP, Methods, 2004, 32 (4), 445-450.

[43] M. Schneider, S. Barozzi, I. Testa, M. Faretta, A. Diaspro, Two-photon activation and excitation properties of PA-GFP in the 720-920-nm region, Biophys. J., 2005, 89 (2), 1346-1352.

[44] V. V. Verkusha, A. Sorkin, Conversion of the monomeric red fluorescent protein into a photoactivatable probe, Chem. Biol., 2005, 12 (3), 279-285.

[45] S. Habuchi, R. Ando, P. Dedecker, W. Verheijen, H. Mizuno, A. Miyawaki, J. Hofkens, Reversible single-molecule photoswitching in the GFP-like fluor- escent protein Dronpa, Proc. Natl. Acad. Sci. USA, 2005, 102 (27), 9511- 9516.

[46] M. Andresen, A. C. Stiel, S. Trowitzsch, G. Weber, C. Eggeling, M. C.

Wahl, S. W. Hell, S. Jakobs, Structural basis for reversible photoswitching in Dronpa, Proc. Natl. Acad. Sci. USA, 2007, 104 (32), 13005-13009.

[47] R. Bizzarri, M. Serresi, F. Cardarelli, S. Abbruzzetti, B. Campanini, C.

Viappiani, F. Beltram, Single aminoacid replacement makes Aequorea Vic- toria fluorescent proteins reversibly photoswitchable, J. Am. Chem. Soc., (in fase di pubblicazione)

[48] M. Andresen, M. C. Wahl, A. C. Stiel, F. Gr¨ater, L. V. Sch¨afer, S. Trowitz- sch, G. Weber, C. Eggeling, H. Grubm¨uller, S. W. Hell, S. Jakobs, Structure and mechanism of the reversible photoswitch of a fluorescent protein, Proc Natl Acad Sci USA, 2005, 102 (37), 13070-13074.

[49] D. M. Chudakov, V. V. Belusov, A. G. Zaraisky, V. V. Novoselov, D. B.

Staroverov, D. B. Zorov, S. Lukyanov, K. A. Lukyanov, Kindling fluorescent proteins for precise in vivo photolabeling, Nat. Biotechnol., 2003, 21 (2), 191-194.

[50] N. C. Shaner, G. H. Patterson, M. W. Davidson, Advances in fluorescent protein technology, J. Cell Sci., 2007, 120 (24), 4247-4260.

[51] V. Adam, M. Lellimousin, S. Boehme, G. Desfonds, K, Nienhaus, M. J.

Field, J. Wiedenmann, S. McSweeney, G. U. Nienhaus, D. Bourgeois, Struc-

tural characterization of IrisFP, an optical highlighter undergoing multiple

photo-induced transformations, Proc. Natl. Acad. Sci. USA, 2008, 105 (47),



[52] A. C. Stiel, M. Andresen, H. Bock, M. Hilbert, J. Schilde, A. Sch¨onle, C.

Eggeling, A. Egner, S. W. Hell, S. Jakobs, Generation of monomeric revers- ibly switchable red fluorescent proteins for far-field fluorescence nanoscopy, Biophys. J., 2008, 95 (6), 2989-2997.

[53] E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Oleynch, J. S.

Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, Imaging intracellular fluorescent proteins at nanometer resolution, Science, 2006, 313 (5793), 1642-1645.

[54] R. A. G. Cinelli, V. Pellegrini, A. Ferrari, P. Faraci, R. Nifos`ı, M. Tyagi, M. Giacca, F. Beltram, Green fluorescent proteins as optically controllable elements in bioelectronics, Appl. Phys. Lett., 2001, 79 (20), 3353-3355.

[55] R. R. Birge, N. B. Gillespie, E. W. Izaguirre, A. Kusnetzow, A. F. Lawrence, D. Singh, Q. Wang Song, E. Schmidt, J. A. Stuart, S. Seetharaman, K. J.

Wise, Biomolecular Electronics: Protein-Based Associative Processors and Volumetric Memories, J. Phys. Chem. B, 1999, 103, 10746-10766.

[56] V. Voliani, R. Bizzarri, R. Nifos`ı, S. Abbruzzetti, E. Grandi, C. Viappiani, F. Beltram, Cis-Trans Photoisomerization of Fluorescent-Protein Chromo- phores, J. Phys. Chem. B, 2008, 112 (34), 10714-10722.

[57] S. Luin, V. Voliani, G. Lanza, R. Bizzarri, R. Nifos`ı, P. Amat, V. Tozzini, M.

Serresi, F. Beltram, Raman Study of Chromophore States in Photochromic Fluorescent Proteins, J. Am. Chem. Soc., 2009, 131 (1), 96-103.

[58] M. G¨oppert-Mayer, ¨ Uber Elementarakte mit zwei Quantenspr¨ungen, An- nalen der Physik, 1931, 401 (3), 273-294.

[59] W. Kaiser and C. G. B. Garrett, Two-Photon Excitation in CaF




, Phys. Rev. Lett., 1961, 7, 229–232.

[60] P. R. Monson, W. M. McClain, Polarization Dependence of the Two- Photon Absorption of Tumbling Molecules with Application to Liquid 1- Chloronaphthalene and Benzene, J. Chem. Phys., 1970, 53 (1),29-37.

[61] M. Drobizhev, N. S. Makarov, T. Hughes, A. Rebane, Resonance Enhance- ment of Two-Photon Absorption in Fluorescent Proteins, J. Phys. Chem.

B, 2007, 111 (50), 14051-14054.

[62] W. Denk, D. W. Piston, W. W. Webb, Multi-Photon Molecular Excitation in Laser-Scanning MIcroscopy, in Handbook Of Biological Confocal Micro- scopy, Third Edition (ed.: J. B. Pawley), Springer, New York, 2006, cap.


[63] N. S. Makarov, M. Drobizhev, A. Rebane, Two-photon absorption standards in the 550-1600 nm excitation wavelength range, Opt. Expr., 2008, 16 (6), 4029-4047.

[64] W. R. Zipfel, R. M. Williams, W. W. Webb, Nonlinear magic: multiphoton microscopy in the biosciences, Nat. Biotechnol., 2003, 21 (11), 1369-1377.

[65] C. Xu, W. W. Webb, Measurement of two-photon excitation cross-sections of molecular fluorophores with data from 690 to 1050 nm, J. Opt. Soc. Am.

B, 1996, 13 (3), 481-491.


[66] C. Xu, W. W. Webb, Multiphoton Excitation of Molecular Fluorophores and Nonlinear Laser Microscopy, in Topics in Fluorescence Spectroscopy;

Volume 5: Nonlinear and Two-Photon-Induced Fluorescence (ed.: J. Lakow- icz), Plenum Press, New York, 1997, cap. 11

[67] M. Albota, C. Xu, W. W. Webb, Two-photon fluorescence excitation cross- sections of biomolecular probes from 690 to 960 nm, Appl. Opt., 1998, 37 (31), 7352-7356.

[68] G. H. Patterson, D. W. Piston, Photobleaching in Two-Photon Excitation Microscopy, Biophys. J., 2000, 78 (4), 2159-2162.

[69] W. Denk, J. H. Strickler, W. W. Webb, Two-photon laser scanning fluor- escence microscopy, Science, 1990, 248, 73-76.

[70] E. B. Brown, J. B. Shear, S. R. Adams, R. Y. Tsien, W. W. Webb, Pho- tolysis of caged calcium in femtoliter volumes using two-photon excitation, Biophys. J., 1999, 76 (1 Pt 1), 489–499.

[71] P. Schwille, U. Haupts, S. Maiti, W. W. Webb, Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation, Biophys. J., 1999, 77 (4), 2251–2265.

[72] L. Belluscio, Two-photon imaging in live rodents, Curr Protoc Neurosci., 2005, Cap. 2:Unit 2.9.

[73] C. Xu, W. W. Webb, Multiphoton Excitation of Fluorescent Probes, in Handbook of biomedical nonlinear optical microscopy (ed.: B. R. Masters, P. So.), Oxford University Press, Inc., New York, 2008, cap. 13

[74] E. Spiess, F. Bestvater, A. Heckel-Pompey, K. Toth, M. Hacker, G. Sto- brawa, T. Feurer, C. Wotzlaw, U. Berchner-Pfannschmidt, T. Porwol, H.

Acker, Two-photon excitation and emission spectra of the green fluorescent protein variants ECFP, EGFP and EYFP, J. Microsc., 2005, 217 (Pt 3), 200-204.

[75] M. Drobizhev, S. Tillo, N. S. Makarov, T. E. Hughes, A. Rebane, Absolute Two-Photon Absorption Spectra and Two-Photon Brightness of Orange and Red Fluorescent Proteins, J. Phys. Chem. B, 2009, 113 (4), 855-859.

[76] R. NIfos`ı, Y. Luo, Predictions of Novel Two-Photon Absorption Bands in Fluorescent Proteins, J. Phys. Chem., 2007, 111 (50), 14043-14050.

[77] D. Geisthardt, J. Kruppa, Polyacrylamide Gel Electrophoresis: Reaction of Acrylamide at Alkaline pH with Buffer Components and Proteins, Anal.

Biochem., 1987, 160, 184-191.

[78] K. Norrman, A. Ghanbari-Siahkali, N. B. Larsen, Studies of spin-coated polymer films, Annu. Rep. Prog. Chem., Sect. C, 2005, 101, 174–201.

[79] A. Szallasi, P. M. Blumberg , Vanilloid (Capsaicin) Receptors and Mech- anisms, Pharmacol. Rev., 1999, 51 (2), 159-211.

[80] K. Braeckmans, L. Peeters, N. N. Sanders, S. C. De Smedt, J. Demesteer,

Three-Dimensional Fluorescence Recovery after Photobleaching with the

Confocal Scanning Laser MIcroscope, Biophys. J., 2003, 85 (4), 2240-2252.


Documenti correlati

A Torino Predella seguì le Lezioni di geometria generale tenute da Corrado Segre ed entrò in contatto con la cerchia dei matematici scherzosamente denominata Pitareide, che si

Moreover we can see on the right panel of figure 8 that even in the case of assuming an injected signal, the results remain the same with and without the azimuthal angle binning

We probe the ground state of CaIrO 3 and assess the effective tetragonal crystal field splitting and spin-orbit coupling at play in this system by means of resonant inelastic

La città è un arcipelago, – diverso da quello che pensò Ungers (fig.10), che era uno spazio di flussi tra isole –, oggi le isole non sono solo connesse tra loro in

Arabidopsis thaliana genes commonly expressed at the time of Vm depolarization upon Spodoptera littoralis (2 h) and Myzus persicae (5 h) herbivory and Pseudomonas syringae (16

As it is seen in the case study of Chefchaouen, a vernacular city can include all sorts of production sectors that the community needs by placing them in the functionally

Thanks to its high orbit and a set of complementary detectors providing continuous coverage of the whole sky, the INTEGRAL satellite has unique capabilities for the identifica- tion

(ii) dall’altro lato, però, la legge ha inteso evitare che questo più circoscritto ruolo di controllo dei deleganti possa indurre gli stessi a limitare la propria