• Non ci sono risultati.

Hydraulic clutch system: POG modeling and state space equations

N/A
N/A
Protected

Academic year: 2021

Condividi "Hydraulic clutch system: POG modeling and state space equations"

Copied!
12
0
0

Testo completo

(1)

Hydraulic clutch system: POG modeling and state space equations

P a Supply pressure Q a Volume flow rate

K v Valve proportional constant

C m Hydraulic capacity of the cylinder P 1 Pressure within the cylinder

A Section of the piston x p Position of the piston v p Velocity of the piston m p Mass of the piston

b p Friction coefficient of the piston K m Stiffness of the spring

F m Spring force against the piston v d Wear velocity of the clutch discs

Valvola (K v ) m p

b P , A

K m

P a

1 2

3 4

5 6

R = 0 x p

P 1 C m Q x

Q v

• The system can be graphically represented as follows:

P a

K v Q v

C m

P 1

Q x F x

G= A

m p

v p b p

F p

K m

F m

v d

• This scheme is obtained in POG Modeler using the following commands:

**, Gr, Si, Sn, Si, As, Si, POG, Si, EQN, Si, SLX, Si iP, 1, a, En, P a=1000, Fn, Q a, An, -90

iG, 1, 2, Kn, K v, Fn, Q v - -, a, b

iC, 2, b, Kn, C m, En, P 1

CB,[2;3],[b;c], Kn,F2=A*E1, En,[P 1;v p], Fn,[Q x; F x], Sh,[0.7;-0.8]

mM, 3, c, Kn, m p, En, v p, Sh, -0.1 mB, 3, c, Kn, b p, Fn, F p, Sh, 0.4

mK, 3, 4, Kn, K m, Fn, F m, Ln, 1.4, Tr, 0.3 - -, c, d, Ln, 1.4

mV, 4, d, En, -v d, Fn, F d, Pin,1

(2)

• The corresponding POG block scheme is:

Q a P a

K v Q v

1 C m

P 1

A A

1 m p

v p

b p F p

1 s 1

s

1 s

K m F m

F d

v d

• The POG state space equations L ˙x = Ax + Bu and y = Cx + Du are:

 

C m 0 0 0 m p 0 0 0 K 1

m

 

| {z }

L

˙x =

 

−K v −A 0 A −b p −1

0 1 0

 

| {z }

A

  P 1

v p F m

 

| {z }

x

+

 

K v 0

0 0

0 −1

 

| {z }

B

u

"

Q a F d

#

| {z }

y

=

"

−K v 0 0 0 0 1

#

| {z }

C

x +

"

K v 0 0 0

#

| {z }

D

"

P a v d

#

| {z }

u

• Usually the hydraulic capacitance C m is very small. The reduced model when C m = 0 can be obtained graphically inverting the following path:

P a

Q a

- 

K v

?

?

 -

 -

6

1 s

6

1 C m

6

P 1

-  

Q x

A 

- A - F x

- 

?

1 s

?

1 m p

v ? p

 -

 

b p

6

6

F b

- -

 -

6

1 s

6

K m

6

F m

- 

F d

v d

• Note: the hydraulic capacitor C m is the only dynamic element present

along the considered path.

(3)

• In the new block scheme the hydraulic capacitor C m = 0 can be neglected:

P a

Q a

- -

1 K v

6

6

 

- -

?

s

?

C m

 ?  

Q x

A 

- A - F x

- 

?

1 s

?

1 m p

v ? p

 -

 

b p

6

6

F b

- -

 -

6

1 s

6

K m

6

F m

- 

F d

v d

• The reduced POG block scheme when C m = 0 is:

P a

Q a

- -

1 K v

6

6

  

Q x A 

- A - F x

- 

?

1 s

?

1 m p

v ? p

 -

 

b p

6

6

F b

- -

 -

6

1 s

6

K m

6

F m

- 

F d

v d

• The state space equations of the reduced system are:

"

m p 0 0 K 1

m

#

| {z }

L

˙x =

"

−b p − K A 2 v −1

1 0

#

| {z }

A

"

v p F m

#

| {z }

x

+

"

A 0

0 −1

#

| {z }

B

u

"

Q a F d

#

| {z }

y

=

"

A 0 0 1

#

| {z }

C

x +

"

0 0 0 0

#

| {z }

D

"

P a v d

#

| {z }

u

• Note: when the graphical reduction is used, the state space equations of

the reduces system are obtained “directly reading” the the POG block

scheme of the reduced system.

(4)

• The same reduced state space equations could have been obtained math- ematically as follows.

• Putting C m = 0 in the state space equations of the original system, one obtains the following constraint:

−K v P 1 − Av p + K v P a = 0

• The state variable P 1 can be expressed as follows:

P 1 = − A

K v v p + P a = h

K A v 0 i

x + 

1 0  u where x is the new state space vector and u is the input vector.

• In this case the old state space vector x can be expressed as follows:

  P 1

v p F m

 

| {z }

x

=

K A v 0

1 0

0 1

| {z }

T

"

v p F m

#

| {z }

x

+

 1 0 0 0 0 0

| {z }

T u

"

P a v d

#

| {z }

u

⇔ x = Tx+T u u

• When x = Tx + T u u the system cannot be transformed using a normal

“congruent state-space transformation”.

• A “congruent input state-space transformation” x = Tx + T u u applied to POG system S generates a transformed and reduced POG system S:

S =

( L ˙x = Ax + Bu

y = Cx + Du ⇒ S =

( L ˙x = Ax + Bu y = Cx + Du where the new matrices L, A, C, B and D are defined as follows:

L = T T LT, A = T T AT, C = CT, and

B = T T (AT u + B), D = (CT u + D).

• When T u = 0 this new “congruent input state-space transformation”

reduces to the previously defined “congruent state-space transformation”.

(5)

• Using the command “EQN, Yes” one obtains an ascii file “* EQN.txt”

containing the Matlab state space equations of the system:

-- Matlab c o m m a n d s - - - ( P O G _ H y d r a u l i c _ C l u t c h _ S S _ w h e n _ C m _ i s _ 0 . m ) - - - -

% State space e q u a t i o n s :

% LM * dot_X = AM * X + BM * U

% Y = CM * X + DM * U

% S y m b o l i c P a r a m e t e r s of the POG block scheme :

syms P_a Q_a K_v C_m P_1 A m_p v_p b_p K_m F_m v_d F_d s

LM = ... % Energy matrix LM :

[ C_m , 0 , 0 ;...

0 , m_p , 0 ;...

0 , 0 , 1/ K_m ];

AM = ... % Power matrix AM :

[ - K_v , -A , 0 ;...

A , - b_p , -1 ;...

0 , 1 , 0];

BM = ... % Input matrix BM :

[ K_v , 0 ;...

0 , 0 ;...

0 , -1];

CM = ... % Output matrix CM :

[ - K_v , 0 , 0 ;...

0 , 0 , 1];

DM = ... % Input - output matrix DM : [ K_v , 0 ;...

0 , 0];

X = ... % State vector X :

[ P_1 ;...

v_p ;...

F_m ];

U = ... % Input vector U :

[ P_a ;...

v_d ];

Y = ... % Output vector Y :

[ Q_a ;...

F_d ];

- - - -

• Using Matlab the reduced system can be obtained as follows:

-- Matlab c o m m a n d s - - - ( P O G _ H y d r a u l i c _ C l u t c h _ S S _ w h e n _ C m _ i s _ 0 . m ) - - - -

% % % % % % % % % % M a t r i c e s of the state space t r a n s f o r m a t i o n %%%%%

C_m = 0; LM = eval ( LM );

T = [ - A / K_v 0; 1 0; 0 1];

Tu = [ 1 0; 0 0; 0 0];

% % % % % % % % % % Input state space c o n g r u e n t t r a n s f o r m a t i o n %%%%%

[ Lt , At , Bt , Ct , Dt ] = P O G _ C o n g r u e n t _ T r a n s f o r m a t i o n ( LM , AM , BM , CM , DM ,T , Tu );

- - - -

(6)

• The function “ POG Congruent Transformation ” applies a POG congruent transformation to a given (LM, AM, BM, CM, DM) system:

% [ Lt , At , Bt , Ct , Dt ] = P O G _ C o n g r u e n t _ T r a n s f o r m a t i o n (L ,A ,B ,C ,D ,T , Tu , S i m p l i f y )

%

% It a p p l i e s a C o n g r u e n t T r a n s f o r m a t i o n to a POG state space system :

% L * dot_X = A * X + B * U = > Lt * dot_Xt = At * Xt + Bt * U

% Y = C * X + D * U = > Y = Ct * Xt + Dt * U

% where Lt =T ’* L *T , At =T ’* A *T , Bt =T ’*( A * Tu + B ) , Ct = C * T and Dt = C * Tu + D .

%

% If S i m p l i f y = Si ( or Yes ) the s y m b o l i c output m a t r i c e s are s y m p l i f i e d

%

f u n c t i o n [ Lt , At , Bt , Ct , Dt ] = P O G _ C o n g r u e n t _ T r a n s f o r m a t i o n ( LM , AM , BM , CM , DM , Tx , Tu , S i m p l i f y ) if nargin <7; Tu =0; end

if sum ( size ( Tu ))==2; Tu = zeros ( size ( LM ,1) , size ( BM ,2)); end if nargin <8; S i m p l i f y = ’ Si ’; end

if i s n u m e r i c ( LM )&& i s n u m e r i c ( AM )&& i s n u m e r i c ( BM )&& i s n u m e r i c ( CM )&&...

i s n u m e r i c ( DM )&& i s n u m e r i c ( Tx )&& i s n u m e r i c ( Tu ) Lt = Tx . ’* LM * Tx ;

At = Tx . ’* AM * Tx ; Bt = Tx . ’*( BM + AM * Tu );

Ct = CM * Tx ; Dt = DM + CM * Tu ; else

Lt = sym ( Tx . ’* LM * Tx );

At = sym ( Tx . ’* AM * Tx );

Bt = sym ( Tx . ’*( BM + AM * Tu ));

Ct = sym ( CM * Tx );

Dt = sym ( DM + CM * Tu );

if strcmp ( Simplify , ’ Si ’ )|| strcmp ( Simplify , ’ Yes ’) Lt = s i m p l i f y ( Lt );

At = s i m p l i f y ( At );

Bt = s i m p l i f y ( Bt );

Ct = s i m p l i f y ( Ct );

Dt = s i m p l i f y ( Dt );

end end return

% -- Matlab file : P O G _ C o n g r u e n t _ T r a n s f o r m a t i o n . m - - - -

• Using Matlab the transformed system can be obtained as follows:

% -- Matlab Output - - - ( P O G _ H y d r a u l i c _ C l u t c h _ S S _ W h e n _ C m _ i s _ 0 . m ) - - - - Lt =

[ m_p , 0]

[ 0 , 1/ K_m ]

At =

[ - A ^2/ K_v - b_p , -1]

[ 1 , 0]

Bt = [ A , 0]

[ 0 , -1]

Ct = [ A , 0]

[ 0 , 1]

% - - - -

• The output has been obtained as follows:

% -- Matlab c o m m a n d s - - - ( P O G _ H y d r a u l i c _ C l u t c h _ S S _ W h e n _ C m _ i s _ 0 . m ) - - - - disp ( ’ Lt = ’ ); disp ( Lt )

disp ( ’ At = ’ ); disp ( At ) disp ( ’ Bt = ’ ); disp ( Bt ) disp ( ’ Ct = ’ ); disp ( Ct ) disp ( ’ Dt = ’ ); disp ( Dt )

% - - - -

(7)

• When C m = 0, the same reduced system could have been obtained defining a POG scheme without the hydraulic capacitor C m = 0.

• The POG scheme:

P a

K v

P 2 Q x F x

G= A

m p

v p b p

F p

K m

F m

v d

• The POG source code of the reduced system:

**, Gr, Si, Sn, No, As, Si, EQN, Si, POG, No, SLX, Si iP, 1, a, En, P a=1000, Fn, Q a, An, -90

iG, 1, 2, Kn, K v, Fn, Q v - -, a, b

CB,[2;3],[b;c], Kn,F2=A*E1, En,[P 1;v p], Fn,[Q x; F x], Sh,[0.5;-0.8]

mM, 3, c, Kn, m p, En, v p, Sh, -0.1 mB, 3, c, Kn, b p, Fn, F p, Sh, 0.4

mK, 3, 4, Kn, K m, Fn, F m, Ln, 1.4, Tr, 0.3 - -, c, d, Ln, 1.4

mV, 4, d, En, -v d, Fn, F d, Pin,1

• The POG block scheme of the reduced system:

Q a P a

1 K v

P 2

A A

1 m p

v p

b p F p

1 s 1

s K m

F m

F d

v d

(8)

• Using the command “SLX, Si” the POG modeler generates the Simulink file “* SLX.slx” and the Matlab file “* SLX m.m”:

-- Matlab c o m m a n d s - - - ( P O G _ H y d r a u l i c _ C l u t c h _ S S _ S L X _ m . m ) - - - - clear all ; close all

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

% %%% S I M U L A T I O N OF SYSTEM : P O G _ H y d r a u l i c _ C l u t c h _ S S

% % % % % % % % % % % % SYSTEM P A R A M E T E R S % % % % % % % % % % % % % % % % % % % % % % % % % % K_v =1; % 2. Hyd . C o n d u c t a n c e . I n t e r n a l p a r a m e t e r . C_m =1; % 3. Hyd . C a p a c i t a n c e . I n t e r n a l p a r a m e t e r . A =1; % 5. P a r a m e t e r . T r a n s f o r m e r / G y r a t o r . m_p =1; % 6. Mass . I n t e r n a l p a r a m e t e r . b_p =1; % 7. F r i c t i o n . I n t e r n a l p a r a m e t e r . K_m =1; % 8. S t i f f n e s s . I n t e r n a l p a r a m e t e r .

% % % % % % % % % % % % INPUT VALUES % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % P_a =1000; % 1. P r e s s u r e . Input value .

v_d =0; % 9. V e l o c i t y . Input value .

% % % % % % % % % % % % I N I T I A L C O N D I T I O N S % % % % % % % % % % % % % % % % % % % % % % % % % V_3_0 =0; % 3. Volume . I n i t i a l c o n d i t i o n .

P_6_0 =0; % 6. M o m e n t u m . I n i t i a l c o n d i t i o n . x_8_0 =0; % 8. D i s p l a c e m e n t . I n i t i a l c o n d i t i o n .

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % Tfin =10; N r _ T s _ P o i n t s =2000; Ts = Tfin / N r _ T s _ P o i n t s ;

S L X _ N a m e = ’ P O G _ H y d r a u l i c _ C l u t c h _ S S _ S L X ’;

O u t _ S i m = sim ( SLX_Name , ’ s t o p t i m e ’ , n u m 2 s t r ( Tfin ) , ’ S a v e O u t p u t ’ , ’ on ’ , ’ S a v e T i m e ’ , ’ off ’ );

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % V a r i a b l e s = O u t _ S i m . get ;

V a r i a b l e s = s e t d i f f ( Variables , ’t ’ );

Nr_Var = length ( V a r i a b l e s );

t = O u t _ S i m . get ( ’t ’ );

% %%%%% PLOT THE OUTPUP V A R I A B L E S Y % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % S =[2 ,1]; Ns = S (1)* S (2); Nr = Ns ;

for ii =1: Nr_Var ; Unit ( ii )={ ’1 ’ }; Var ( ii )={[ ’ Var \ _ ’ n u m 2 s t r ( ii )]}; end for ii =0: Ns : Nr_Var

if ii + Ns > Nr_Var ; Nr = Nr_Var - ii ; end for jj =1: Nr

figure (900+ ii / Ns )

y = O u t _ S i m . get ( V a r i a b l e s { ii + jj });

s u b p l o t ( S (1) , S (2) , jj )

plot (t , y / eval ([ ’( ’ Unit { ii + jj } ’) ’ ])); grid on

ylabel ([ strrep ( V a r i a b l e s { ii + jj } , ’_ ’ , ’\ _ ’) ’ [ ’ Unit { ii + jj } ’] ’ ]) title ( Var { ii + jj })

if jj > Nr - S (2); xlabel ( ’ Time [ s ] ’ ); end end

end

- - - -

(9)

• The parameters of the system must be properly tuned (use SI Units):

-- Matlab c o m m a n d s - - - ( P O G _ H y d r a u l i c _ C l u t c h _ N L _ S L X _ m . m ) - - - - clear all ; close all

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

% %% SI UNITS

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

meters = 1; km =1000* meters ; cm = 0.01* meters ; mm = 0.001* meters ; liters = 0 . 0 0 1 * meters ^3;

sec = 1; msec = 0.001* sec ; m i c r o s e c = 0 . 0 0 1 * msec ; m i n u t e s = 60* sec ; hours = 60* m i n u t e s ; kg = 1; gr = 0.001* kg ; Newton = 1; kN = 1000* Newton ; Nm = Newton * meters ;

rad = 1; d e g r e e s =( pi /180)* rad ; rounds =2* pi * rad ; giri =2* pi ;

rpm = 2* pi / m i n u t e s * rad / sec ; g_acc = 9.81* meters / sec ^2; kgf = g_acc ;

Volt =1; mVolt = 0 . 0 0 1 * Volt ; Amp =1; mAmp = 0 . 0 0 1 * Amp ; Ohm = Volt / Amp ; mOhm = 0 . 0 0 1 * Ohm ; Watt = Volt * Amp ; kWatt =1000* Watt ; Weber = Volt * sec ;

Henry = Volt * sec / Amp ; mHenry = 0 . 0 0 1 * Henry ; Joule =1; kJoule =1000* Joule ; K =1; C e l s i u s =1; Pa =1; atm = 1 0 1 3 2 5 * Pa ; mol =1;

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

% %%% S I M U L A T I O N OF SYSTEM : P O G _ H y d r a u l i c _ C l u t c h _ S S

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

% % % % % % % % % % % % INPUT VALUES % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % P_a_t =10* atm ; % 1. P r e s s u r e . Input value .

v_d_t =0; % 9. V e l o c i t y . Input value .

% % % % % % % % % % % % SYSTEM P A R A M E T E R S % % % % % % % % % % % % % % % % % % % % % % % % % %

K_v =(10* cm )^3/( sec *(0.2* atm )); % 2. Hyd . C o n d u c t a n c e . I n t e r n a l p a r a m e t e r . C_m =1 e -9; % 3. Hyd . C a p a c i t a n c e . I n t e r n a l p a r a m e t e r .

A =5* cm ^2; % 5. P a r a m e t e r . T r a n s f o r m e r / G y r a t o r . m_p =300* gr ; % 6. Mass . I n t e r n a l p a r a m e t e r . b_p =10; % 7. F r i c t i o n . I n t e r n a l p a r a m e t e r . K_m = P_a_t * A /(3* cm ); % 8. S t i f f n e s s . I n t e r n a l p a r a m e t e r .

% % % % % % % % % % % % I N I T I A L C O N D I T I O N S % % % % % % % % % % % % % % % % % % % % % % % % % P_1_0 =0; % 3. P e r s s u r e . I n i t i a l c o n d i t i o n .

v_p_0 =0; % 6. V e l o c i t y . I n i t i a l c o n d i t i o n . x_p_0 =0; % 8. D i s p l a c e m e n t . I n i t i a l c o n d i t i o n .

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % Tfin =0.4; N r _ T s _ P o i n t s =2000;

Ts = Tfin / N r _ T s _ P o i n t s ;

S L X _ N a m e = ’ P O G _ H y d r a u l i c _ C l u t c h _ N L _ S L X ’;

O u t _ S i m = sim ( SLX_Name , ’ s t o p t i m e ’ , n u m 2 s t r ( Tfin ) , ’ S a v e O u t p u t ’ , ’ on ’ , ’ S a v e T i m e ’ , ’ off ’ );

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % V a r i a b l e s = O u t _ S i m . get ;

V a r i a b l e s = s e t d i f f ( Variables , ’t ’ );

Nr_Var = length ( V a r i a b l e s );

t = O u t _ S i m . get ( ’t ’ );

% %%%%% PLOT THE OUTPUP V A R I A B L E S Y % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % S =[2 ,2]; Ns = S (1)* S (2); Nr = Ns ;

Unit ={ ’ Newton ’ , ’ atm ’ , ’ cm ^3/ sec ’ , ’ cm ’ };

Var ={ ’ Output Force ’ , ’ I n t e r n a l P r e s s u r e ’ , ’ Input Volume flow rate ’ , ’ Piston P o s i t i o n ’ };

for ii =0: Ns : Nr_Var

if ii + Ns > Nr_Var ; Nr = Nr_Var - ii ; end for jj =1: Nr

figure (900+ ii / Ns )

y = O u t _ S i m . get ( V a r i a b l e s { ii + jj });

s u b p l o t ( S (1) , S (2) , jj )

plot (t , y / eval ([ ’( ’ Unit { ii + jj } ’) ’ ])); grid on

ylabel ([ strrep ( V a r i a b l e s { ii + jj } , ’_ ’ , ’\ _ ’) ’ [ ’ Unit { ii + jj } ’] ’ ]) title ( Var { ii + jj });

if jj > Nr - S (2); xlabel ( ’ Time [ s ] ’ ); end end

end

- - - -

(10)

• The Simulink file “POG Hydraulic Clutch NL SLX.slx” has been modifies adding new “To Workspace” blocks:

• With the new parameter one obtains the following simulation results:

0 0.1 0.2 0.3 0.4

0 100 200 300 400 500 600

F_d_t [Newton]

Output Force

0 0.1 0.2 0.3 0.4

0 2 4 6 8 10 12

P_1 [atm]

Internal Pressure

0 0.1 0.2 0.3 0.4

−1 0 1 2 3 4 5 x 10

4

Q_a_t [cm

3

/sec]

Input Volume flow rate

Time [s]

0 0.1 0.2 0.3 0.4

0 0.5 1 1.5 2 2.5 3 3.5

x_p [cm]

Piston Position

Time [s]

(11)

• Files “* SLX.slx” and “* SLX m.m” can be modified in order to insert in the model the same non linearities which are present in the real system.

• The hydraulic valve, for example is a non linear static element usually defined as follows:

Q a (I, ∆P ) = K v (I) sign(∆P ) p

|∆P |

P a

∆P

- 

Q a (I, ∆P )

?

?

Q a

 -

P 1

where ∆P = P a − P 1 and K v (I) is a function of the current I.

• The reduced model is characterized by the following nonlinearity:

∆P (I, Q a ) =  Q a K v (I)

 2

P a

Q a

- -

∆P (I, Q a )

6

6

∆P

 

P 1

Q a where Q a is in the input volume flow rate.

• Also the stiffness K m of the spring is usually nonlinear:

F m (x)

x v p

x

 -

6

1 s

6

F m (x)

6

F m

-  v d

(12)

• The Simulink file “POG Hydraulic Clutch NL 2 SLX.slx” has been modi- fies adding new “Fnc” blocks:

• With the new parameters one obtains the following simulation results:

0 0.1 0.2 0.3 0.4

−100 0 100 200 300 400 500 600

F_d_t [Newton]

Output Force

0 0.1 0.2 0.3 0.4

0 2 4 6 8 10 12

P_1 [atm]

Internal Pressure

0 0.1 0.2 0.3 0.4

−0.5 0 0.5 1 1.5 2 2.5

3 x 10

4

Q_a_t [cm

3

/sec]

Input Volume flow rate

Time [s]

0 0.1 0.2 0.3 0.4

0 1 2 3 4 5 6

x_p [cm]

Piston Position

Time [s]

• New parameters: K v=(80*cm) 3 /(sec*(0.2*atm)); I 0=0*Amp; x0=1.5*cm;

k1=150; k2=1000 .

Riferimenti

Documenti correlati

Depending on the number of coordinates required for water flow description, the computer systems used for hydrodynamic phenomena modelling are classified as follows:

[r]

[r]

Trajectories of this type are referred to as: “Stable focus”. Computation of e At

Simulations: static three-phase state space. • Time behavior of the

Simple Examples of POG

The obtained reduced model is used as central element of an hybrid automotive power structure (endothermic engine, multi-phase synchronous motor and vehicle dynamics)..

In this frame- work we may cite, among the others, the Finite State Projection method [16, 17, 18], based on a proper truncation of the set of the (possibly) infi- nite states of