• Non ci sono risultati.

Antonio Pich. IFIC, CSIC Univ. Valencia

N/A
N/A
Protected

Academic year: 2022

Condividi "Antonio Pich. IFIC, CSIC Univ. Valencia"

Copied!
23
0
0

Testo completo

(1)

Antonio Pich

IFIC, CSIC – Univ. Valencia

Antonio.Pich@ific.uv.es

http://arxiv.org/pdf/0705.4264

(2)

ƒ Fermion Masses

ƒ Fermion Generations

ƒ Quark Mixing

ƒ Lepton Mixing

ƒ Standard Model Parameters

ƒ CP Violation

(3)

Quarks Leptons Bosons

photon

gluon

Higgs

up down electron neutrino e

charm strange muon neutrino μ

top beauty tau neutrino τ

e

μ

τ

Z

0

W ±

(4)

Fermion Masses are New Free Parameters

f

Couplings Fixed: H f f m f g = v

m

f

v

f H

( ) ( ) ( )

v

, , , ,

u

2

d

d u l

q q l

m m m c c c

⎡ ⎤ = ⎣ ⎡ ⎤ ⎦

⎣ ⎦

FERMION MASSESS

{ }

1 v

d u

Y H m q q d d q u u l

q m q q m l l

⎛ + ⎞

⎜ ⎟ ⎠

= − + +

L ⎝

SSB

Scalar – Fermion Couplings allowed by Gauge Symmetry

0

0 0

( )

( ) ( )† ( )

( ) ( )† ( )

( ) ( )

(

u

,

d

)

L d

(

d

)

R u

(

u R

) ( , )

l L l R

h.c.

Y

q q c φ q c φ q v l c φ l

φ φ φ

+ +

+

⎛ ⎞ ⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ − ⎟ ⎜ ⎟

⎡ ⎤

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= − ⎢ + ⎥ − +

⎢ ⎥

⎣ ⎦

L

(5)

( )

( )(0) (0)†( )†

( )

( )(0)

( ) ( ) ( )

, , h.c.

Y

d u l

j k j k

j j L k R k R j j L k R

j

j k

u d c φ d c φ u v l c

k

φ l

φ φ φ

+ +

+

⎧ ⎡ ⎤ ⎫

⎪ ′ ′ ⎛ ⎞ ′ ⎛ ⎞ ′ ⎛ ⎞ ⎪

⎜ ⎟ ⎜ − ⎟ ′ ′ ⎜ ⎟ ′

= − ⎨ ⎢ + ⎥ − ⎬ +

⎪ ⎣ ⎝ ⎠ ⎝ ⎠ ⎦ ⎝ ⎠ ⎪

⎩ ⎭

L

{ }

1 v h.c.

Y

= − ⎛ ⎜ + H ⎞ ⎟ d

L

′ ⋅ ′ dd

R

′ + u

L

⋅ ′ ′ uu

R

+ ⋅ l

L

′ ′ ′ ll

R

+

⎝ ⎠ M M M

L

SSB

Arbitrary Non-Diagonal Complex Mass Matrices

( ) ( ) ( ) v

, u , d , u , l

d l jk c jk c jk c jk

′ ′ ′ =

⎡ ⎤

M M M ⎦ ⎣ ⎦

WHY ?

FERMION GENERATIONS

Masses are the only difference

N

G

= 3 Identical Copies

0 1 Q

Q

=

= −

2 3 1 3 Q

Q

= +

= −

j j

j j

v u

l d

′ ′

⎛ ⎞

⎜ ′ ′ ⎟

⎝ ⎠ ( j = " 1, , N

G

)

(6)

DIAGONALIZATION OF MASS MATRICES

S

d d d d d d d

u u u u u u u

l l l l l l l

′ = ⋅ = ⋅ ⋅ ⋅

′ = ⋅ = ⋅ ⋅ ⋅

′ = ⋅ = ⋅ ⋅ ⋅

M H U S S U

M H U S U

M H U S S U

M M M

f f

f f f f

f f f f

1 1

=

⋅ = ⋅ =

⋅ = ⋅ =

H H

U U U U S S S S

( ) 1 v { d d + u u + }

Y

= − + Hd ⋅ ⋅ ulll

L M M M

diag ( , , ) ; diag ( , , ) ; diag ( , , )

u

= m

u

m

c

m

t d

= m

d

m

s

m

b l

= m

e

m

μ

m

τ

M M M

d d ; u u ;

d d ; u u ;

L L L L L L

R R R R R R

d u l

u u

d d l l

l l

l l

′ ′ ′

≡ ⋅ ≡ ⋅ ≡ ⋅

′ ′ ′

≡ ⋅ ⋅ ≡ ⋅ ⋅ ≡ ⋅ ⋅

S S S

S U S U S U

Mass Eigenstates Weak Eigenstates

N C N C

′ =

L L

f f L ′ ′ L = f f L L ; f f R ′ ′ R = f f R R

QUARK MIXING

u d ′ ′ = L L u LV ⋅ d L ; VS uS

d L ′ ≠

C C

L

C C

μ

(7)

[

f f 5

]

N C

f

f f

2 sin c a

os v

W W

Z

e Z

μ γ μ

θ θ − γ

= − ∑

L

Flavour Conserving Neutral Currents

u c t

d s b

Flavour Changing Charged Currents

( ) ( )

C C 5 i 5

i

i j

j

1 j 1 h.c.

2 2 l l

g W μ u γ μ γ d v γ μ γ l

= − ⎢ − + − ⎥ +

⎣ ∑ V ∑ ⎦

L

(8)

i

( ) i ( )

C 5 j

ij

j

C

(1 ) h.c.

2 2

l

l

W l

L g μ

μ ν γ γ

= − ∑ − V +

Separate Lepton Number Conservation

( Minimal SM without ν

R

)

i

( ) j ij

l

ν

l

≡ ν V

( ) †

CC

(1

5

) h.c.

2 2

l

l l

L = − g W

μ

∑ ν γ

μ

− γ l +

z IF m ν

i

= 0

( Co

, , e n served )

L e L μ L τ L + L μ + L τ z IF ν R i exist and m ν

i

≠ 0

BUT Br ( μ e γ ) < 1.2 × 10

11

; Br ( τ μ γ ) < 4.5 10 ×

8

(90 % CL)

(9)

Measurements of V ij

j i

2

( d u e ν e ) ij

Γ → ∝ V

We measure decays of hadrons (no free quarks)

Important QCD Uncertainties

W

d j i

u

e

ν e

V ij

(10)

0.97377 0.00027 0.9746 0.0019

0.2233 0.0024 0.2165 0.0031 0.2232 0.0020

Nuclear decay

decays

/ , L

0.97378 0.00027

0.222

0

0 0.0015 0.230 0.

attice

.95

011

0.97

7 0.09 .

5 4 0 01

ud

us

c

l d

cs

e

e

n p e v

K e v

K

v d c X D

V K l v

V

V

V

β

π π τ μν

±

±

±

± ±

±

±

±

±

±

*

,

0.0386 0.0013 0.0416 0.0006 0.0

3

0.0412 0.0011

0.0039 0.0004 0.89

0.68 ;

035 0.0006 0.0041 0.000

1

had ,

/ 4

,

cb

u

l l

l l b

tb

u j cd cb

W V V

B D l v b c l v

B l v

V

V

V

b u l v

t bW qW

p p tb X π

+

±

±

>

> <

±

±

±

+

±

76 2

2 2 2

us

ud ub

V + V + V = 0.99 ± 0.001

j

( V

uj 2

+ V

cj 2

) = 1.999 ± 0.025

(LEP)

CKM entry Value Source

V i j

2 q t q

tb V

V

(11)

QUARK MIXING MATRIX

z Unitary Matrix: N G × N G N G 2 parameters

z 2 N G − 1 arbitrary phases:

i j

i e i i ; j e i j

uφ u dθ d V ij → e i ( θ

j

φ

i

) V i j

V ij

( )

G G

1 1

2 N N

Physical Parameters:

Moduli ; 1 (

G

1) (

G

2) phases

2 NN

† †

⋅ = ⋅ =

V V V V 1

(12)

● N f = 2 : 1 angle, 0 phases (Cabibbo)

No CP

C C

C C

cos sin

sin cos

θ θ

θ θ

⎡ ⎤

= ⎢ ⎣ − ⎥ ⎦

V

2 2

sin

C

0.223 ; A 0.83 ; 0.48

λ ≈ θ ≈ ≈ ρ + η ≈ δ

13

≠ 0 ( η ≠ 0) CP

ij

cos

ij

;

ij

sin

ij

c ≡ θ s ≡ θ

● N f = 3 : 3 angles, 1 phase (CKM)

( )

13

13 13

13 13

12 13 12 13 13

12 23 12 23 13 12 23 12 23 13 23 13

12 23 12 23 13 1

2 3

2 2

3 2

2 23 12 23 13 23 13

4

1 /2 ( )

1 /2

(1 ) 1

i

i i

i i

c c s c s

s c c s s c c s s s s c

s s c c s c s s c s

e e

c c e

e e

i

i

A A

A A

δ

δ δ

δ δ

λ λ λ ρ

λ λ λ

λ ρ λ

η η

λ

⎡ − − ⎤

⎢ − − ⎥

⎢ ⎥

⎢ − − − ⎥

⎢ − − − ⎥ ⎥

⎢ ⎥

− − −

⎢ ⎥

⎣ ⎦

⎣ ⎦

≈ +

V =

O

(13)

Standard Model Parameters

QCD: α

S

( M

Z

) 1

EW Gauge / Scalar Sector: 4

2

, , ,

, , , ,

W

,

W

,

H F Z H

g g ′ μ h ⇔ α θ M M ⇔ α G M M

13 Yukawa Sector:

1 2 3

, ,

, ,

, ,

, , ,

e

d s b

u c t

m m m

m m m

m m m

μ τ

θ θ θ δ

18 Free Parameters (+ Neutrino Masses / Mixings ?)

TOO MANY !

(14)

ƒ Complex Phases

ƒ Interferences

Thus, CP requires:

CPT Theorem: T CP

z C , P : Violated maximally in weak interactions z CP : Symmetry of nearly all observed phenomena z Slight (~ 0.2 %) CP in decays (1964)

z Sizeable CP in decays (2001)

z Huge Matter Antimatter Asymmetry

in our Universe Baryogenesis K 0

B 0

(15)

Meson – Antimeson Mixing

B

0

B

0

B

0

B

0

f

2 Interfering Amplitudes

CP

0 0

0 0

( / ) ( / )

( / ) ( / ) 0

S S

S S

B J K B J K

B J K B J K

ψ ψ

ψ ψ

Γ → − Γ →

Γ → + Γ → ≠

Signal

BABAR

(16)

* * * ud ub cd cb td tb 0

V V + V V + V V =

* *

ud ub cd cb

V V V V

* *

td tb cd cb

V V V V

2

2

0.342 0.012

0 1 1

2 1 1

2 .147 0.029 η

ρ

η λ

ρ λ

= ±

=

⎛ ⎞

≡ ⎜ −

±

⎝ ⎟ ⎠

⎛ ⎞

≡ ⎜ ⎝ − ⎟ ⎠

91.2 6.1 ; 21.9 1.0 ; 66.7 6.4

α = ± ° β = ± ° γ = ± °

UT fit

(17)

Complex phases in Yukawa couplings only:

The CKM matrix V is the only source of CP

( ) ( )

jk j

( ) (0) †

j j L (0) k R k ( ) k R

j k

( , )

d u

h. c .

Y

u d c d u

L φ c φ

φ φ

+

+

⎡ ⎛ ⎞ ⎛ ⎞ ⎤

′ ′ ′ ′

= − ∑ ⎢ ⎣ ⎜ ⎝ ⎟ ⎠ + ⎜ ⎝ − ⎟ ⎠ ⎥ ⎦ +

(0)

v / 2

⎡ φ = ⎤

⎣ ⎦

SSB

{

jL ( )jk k R jL (jk) k R

}

1 v h.c

v .

2

u Y

c

d

L = − ⎛ ⎜ + H ⎞ ⎟ dd ′ + uc u ′ +

⎝ ⎠

( ) jk

c q diagonalization

{

jL j jR j L j jR

}

CC i 5 j

i j

ij

1 h.c.

(1 ) h.c.

2 2

Y

v

d u

L d d u u

L g

m

W H

u d

m

μ

γ

μ

γ

⎛ ⎞

= − ⎜ ⎝ + ⎟ ⎠ + +

= − ∑ − V +

(18)
(19)
(20)

http://hitoshi.berkeley.edu/neutrino

Neutrino Oscillations

CP

ν R , ?

NEW PHYSICS

Lepton Mixing

(21)

Neutrino Oscillations

2 5 2

21

2 3 2

32 2

12 2

23 2

(7.59 0.21) 10 eV (2.43 0.13) 10 eV sin (2 ) 0.87 0.04

sin (2 ) 0.92 sin (2 ) 0.19 m

m

θ θ θ

Δ = ± ⋅

Δ = ± ⋅

= ±

>

<

(22)

THE STANDARD THEORY OF

FUNDAMENTAL INTERACTIONS SU 3 ( ) C SU 2 ( ) L U 1 ( ) Y

Electroweak + Strong Forces

z Gauge Symmetry Dynamics z 3 Gauge Parameters:

z All Known Experimental Facts Explained z Problem with Mass Scales / Mixings:

( )

Z2

, ,

W

s M

α α θ

- 15 Additional Parameters - Why 3 Families ?

- Why Left ≠ Right ? - Why ? - Does the Higgs Exist ? - Flavour Mixing

- CP Violation

- Neutrino Masses / Oscillations t Z

m > M

(23)

e

μ

τ

Riferimenti

Documenti correlati

Oncologia Medica (Dir.: Prof. Corazza); dall’ottobre 2008, in seguito alla scissione dell’Oncologia Medica dalla Medicina Interna, ha prestato attività asistenziale presso

1999-2001 Snail genes superfamily during vertebrate EMT Cajal Institute (CSIC),

Developmental Phases of Individual Mouse Preimplantation Embryos Characterized by Lipid Signatures using Desorption Electrospray Ionization Mass Spectrometry..

&lt; attesa rispos ta

Altrimenti, se i thread non vengonoesplicitamente bloccati o se non fanno operazioni che implicanoattesa:•scheduling nonpreemptive se il controllo del microprocessorenon viene

Center of Astrobiology (INTA-CSIC) barrado@cab.inta-csic.es - Derek

Instituto de Astrof´ısica de Andaluc´ıa - CSIC.. antxon@iaa.es -

24, 25 e 111: in relazione al primo, si lamentava la lesione del diritto di dife- sa derivante dal fatto che ci si troverebbe di fronte a un caso “in cui un orga- no totalmente