• Non ci sono risultati.

exponential Rosenbrock-type methods

N/A
N/A
Protected

Academic year: 2021

Condividi "exponential Rosenbrock-type methods"

Copied!
101
0
0

Testo completo

(1)

Exp. Rosenbrock methods ReLPM Numerical experiments

Implementation of

exponential Rosenbrock-type methods

M. Caliari

A. Ostermann

3rd Austrian Numerical Analysis Day, TU Wien April 26–27, 2007

Universit¨at Innsbruck, Institut f¨ur Mathematik

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(2)

Exp. Rosenbrock methods ReLPM Numerical experiments

Exponential Rosenbrock-type methods: the idea

Let us consider

u

0

(t) = f (u(t)) = Au(t) + g (u(t)), u(t

0

) = u

0

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(3)

Exp. Rosenbrock methods ReLPM Numerical experiments

Exponential Rosenbrock-type methods: the idea

Let us consider

u

0

(t) = f (u(t)) = Au(t) + g (u(t)), u(t

0

) = u

0

For the numerical approximation u

n

of u(t

n

) at time t

n

, first we linearise at each step

u

0

(t) = J

n

u(t) + g

n

(u(t)), t

n

≤ t ≤ t

n+1

where

J

n

= D

u

f (u

n

), g

n

(u(t)) = f (u(t)) − J

n

u(t)

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(4)

Exp. Rosenbrock methods ReLPM Numerical experiments

Exponential Rosenbrock-type methods: the idea

Let us consider

u

0

(t) = f (u(t)) = Au(t) + g (u(t)), u(t

0

) = u

0

For the numerical approximation u

n

of u(t

n

) at time t

n

, first we linearise at each step

u

0

(t) = J

n

u(t) + g

n

(u(t)), t

n

≤ t ≤ t

n+1

where

J

n

= D

u

f (u

n

), g

n

(u(t)) = f (u(t)) − J

n

u(t) and then we consider the variation-of-constants formula.

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(5)

Exp. Rosenbrock methods ReLPM Numerical experiments

Exponential Rosenbrock–Euler method

u(t

n+1

) = exp(h

n

J

n

)u

n

+ Z

hn

0

exp ((h

n

− τ )J

n

) g

n

(u(t

n

+ τ ))dτ

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(6)

Exp. Rosenbrock methods ReLPM Numerical experiments

Exponential Rosenbrock–Euler method

u(t

n+1

) = exp(h

n

J

n

)u

n

+ Z

hn

0

exp ((h

n

− τ )J

n

) g

n

(u(t

n

+ τ ))dτ and with g

n

(u(t

n

+ τ )) ≈ g

n

(u

n

) we get the exponential

Rosenbrock–Euler method

u

n+1

= exp(h

n

J

n

)u

n

+ h

n

ϕ

1

(h

n

J

n

)g

n

(u

n

) where

ϕ

1

(h

n

J

n

) = 1 h

n

Z

hn

0

exp ((h

n

− τ )J

n

) dτ, ϕ

1

(z) = e

z

− 1 z

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(7)

Exp. Rosenbrock methods ReLPM Numerical experiments

s -stage exponential Rosenbrock methods

More generally, we consider the s-stage exponential method

U

ni

= exp(c

i

h

n

J

n

)u

n

+ h

n

i −1

X

j=1

a

ij

(h

n

J

n

)g

n

(U

nj

),

u

n+1

= exp(h

n

J

n

)u

n

+ h

n

s

X

i=1

b

i

(h

n

J

n

)g

n

(U

ni

).

where b

i

and a

ij

are linear combinations of ϕ

k

(h

n

J

n

), ϕ

k

(h

n

J

n

) = 1

h

nk

Z

hn

0

exp ((h

n

− τ )J

n

) τ

k−1

(k − 1)! d τ

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(8)

Exp. Rosenbrock methods ReLPM Numerical experiments

Methods of order 2, 3 and 4

It is easy to construct a 2-stage third order method (with a second order error estimator embedded) and a 3-stage fourth order

method (with a third order error estimator embedded).

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(9)

Exp. Rosenbrock methods ReLPM Numerical experiments

Methods of order 2, 3 and 4

It is easy to construct a 2-stage third order method (with a second order error estimator embedded) and a 3-stage fourth order

method (with a third order error estimator embedded).

The exponential Rosenbrock–Euler method

u

n+1

= exp(h

n

J

n

)u

n

+ h

n

ϕ

1

(h

n

J

n

)g

n

(u

n

)

is computationally attractive since it achieves second order with one stage only. With the additional ϕ

1

(h

n

J

n

)g

n

(u

n+1

) evaluation, it is possible to have a third order error estimator.

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(10)

Exp. Rosenbrock methods ReLPM Numerical experiments

Matrix functions evaluation

In the applications, these methods need the efficient evaluation of the underlying matrix functions ϕ

k

(hJ)v (J ∈ R

N×N

, v ∈ R

N

).

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(11)

Exp. Rosenbrock methods ReLPM Numerical experiments

Matrix functions evaluation

In the applications, these methods need the efficient evaluation of the underlying matrix functions ϕ

k

(hJ)v (J ∈ R

N×N

, v ∈ R

N

).

Most authors regard Krylov-like as the methods of choice.

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(12)

Exp. Rosenbrock methods ReLPM Numerical experiments

Matrix functions evaluation

In the applications, these methods need the efficient evaluation of the underlying matrix functions ϕ

k

(hJ)v (J ∈ R

N×N

, v ∈ R

N

).

Most authors regard Krylov-like as the methods of choice.

An alternative class of polynomial methods is based on direct interpolation or approximation of the ϕ

k

functions on the spectrum (or the field of values) of the relevant matrix.

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(13)

Exp. Rosenbrock methods ReLPM Numerical experiments

ReLPM: Real Leja Points Method

Among others, the ReLPM has shown very attractive computational features:

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(14)

Exp. Rosenbrock methods ReLPM Numerical experiments

ReLPM: Real Leja Points Method

Among others, the ReLPM has shown very attractive computational features:

I

it rests on Newton interpolation of the exponential functions at a sequence of real Leja points;

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(15)

Exp. Rosenbrock methods ReLPM Numerical experiments

ReLPM: Real Leja Points Method

Among others, the ReLPM has shown very attractive computational features:

I

it rests on Newton interpolation of the exponential functions at a sequence of real Leja points;

I

they guarantee maximal convergence of the interpolant and thus superlinear convergence of the corresponding matrix polynomials;

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(16)

Exp. Rosenbrock methods ReLPM Numerical experiments

ReLPM: Real Leja Points Method

Among others, the ReLPM has shown very attractive computational features:

I

it rests on Newton interpolation of the exponential functions at a sequence of real Leja points;

I

they guarantee maximal convergence of the interpolant and thus superlinear convergence of the corresponding matrix polynomials;

I

with respect to other sets of interpolation points, (Chebyshev, e.g.), the Leja points allow to increase the degree of

interpolation just by adding new nodes of the same sequence.

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(17)

Exp. Rosenbrock methods ReLPM Numerical experiments

The first 13 Leja points on [−2 , 2]

-3 -2 -1 0 1 2 3

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(18)

Exp. Rosenbrock methods ReLPM Numerical experiments

The first 13 Leja points on [−2 , 2]

-3 -2 -1 0 1 2 3

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(19)

Exp. Rosenbrock methods ReLPM Numerical experiments

The first 13 Leja points on [−2 , 2]

-3 -2 -1 0 1 2 3

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(20)

Exp. Rosenbrock methods ReLPM Numerical experiments

The first 13 Leja points on [−2 , 2]

-3 -2 -1 0 1 2 3

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(21)

Exp. Rosenbrock methods ReLPM Numerical experiments

The first 13 Leja points on [−2 , 2]

-3 -2 -1 0 1 2 3

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(22)

Exp. Rosenbrock methods ReLPM Numerical experiments

The first 13 Leja points on [−2 , 2]

-3 -2 -1 0 1 2 3

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(23)

Exp. Rosenbrock methods ReLPM Numerical experiments

The first 13 Leja points on [−2 , 2]

-3 -2 -1 0 1 2 3

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(24)

Exp. Rosenbrock methods ReLPM Numerical experiments

The first 13 Leja points on [−2 , 2]

-3 -2 -1 0 1 2 3

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(25)

Exp. Rosenbrock methods ReLPM Numerical experiments

The first 13 Leja points on [−2 , 2]

-3 -2 -1 0 1 2 3

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(26)

Exp. Rosenbrock methods ReLPM Numerical experiments

The first 13 Leja points on [−2 , 2]

-3 -2 -1 0 1 2 3

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(27)

Exp. Rosenbrock methods ReLPM Numerical experiments

The first 13 Leja points on [−2 , 2]

-3 -2 -1 0 1 2 3

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(28)

Exp. Rosenbrock methods ReLPM Numerical experiments

The first 13 Leja points on [−2 , 2]

-3 -2 -1 0 1 2 3

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(29)

Exp. Rosenbrock methods ReLPM Numerical experiments

The first 13 Leja points on [−2 , 2]

-3 -2 -1 0 1 2 3

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(30)

Exp. Rosenbrock methods ReLPM Numerical experiments

The first 13 Leja points on [−2 , 2]

-3 -2 -1 0 1 2 3

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(31)

Exp. Rosenbrock methods ReLPM Numerical experiments

The first 13 Leja points on [−2 , 2]

-3 -2 -1 0 1 2 3

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(32)

Exp. Rosenbrock methods ReLPM Numerical experiments

Estimating the spectrum: Gershgorin’s circles

A key step is a cheap estimate of a real focal interval [a, b] such that the minimal ellipse of the confocal family which contains the spectrum has a small capacity (half sum of the semi-axes).

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(33)

Exp. Rosenbrock methods ReLPM Numerical experiments

Estimating the spectrum: Gershgorin’s circles

A key step is a cheap estimate of a real focal interval [a, b] such that the minimal ellipse of the confocal family which contains the spectrum has a small capacity (half sum of the semi-axes).

The numerical experience with matrices arising from stable spatial discretizations of parabolic equations has shown that good results can be obtained simply by intersecting the Gershgorin’s circles of the matrix with the real axis.

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(34)

Exp. Rosenbrock methods ReLPM Numerical experiments

Kernel of ReLPM

The kernel of the ReLPM code is given by the interpolation of ϕ

k

(hz) at Leja points of the real focal interval

[a, b] = [c − 2γ, c + 2γ].

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(35)

Exp. Rosenbrock methods ReLPM Numerical experiments

Kernel of ReLPM

The kernel of the ReLPM code is given by the interpolation of ϕ

k

(hz) at Leja points of the real focal interval

[a, b] = [c − 2γ, c + 2γ].

In practice, it is numerically convenient to interpolate the function ϕ

k

(h(c + γξ)) at Leja points {ξ

s

} of the reference interval [−2, 2].

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(36)

Exp. Rosenbrock methods ReLPM Numerical experiments

Kernel of ReLPM

The kernel of the ReLPM code is given by the interpolation of ϕ

k

(hz) at Leja points of the real focal interval

[a, b] = [c − 2γ, c + 2γ].

In practice, it is numerically convenient to interpolate the function ϕ

k

(h(c + γξ)) at Leja points {ξ

s

} of the reference interval [−2, 2].

Then, given the corresponding divided differences {d

i

} for such a function, the matrix Newton polynomial of degree m is

ϕ

k

(hJ)v ≈ p

m

(J)v =

m

X

i=0

d

i

i

, Ω

i

= ((J − cI )/γ − ξ

i −1

I ) Ω

i −1

0

= v

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(37)

Exp. Rosenbrock methods ReLPM Numerical experiments

ReLPM: key features

I

real arithmetic;

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(38)

Exp. Rosenbrock methods ReLPM Numerical experiments

ReLPM: key features

I

real arithmetic;

I

no Krylov subspace to store;

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(39)

Exp. Rosenbrock methods ReLPM Numerical experiments

ReLPM: key features

I

real arithmetic;

I

no Krylov subspace to store;

I

linear complexity due to the 2-term recurrence;

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(40)

Exp. Rosenbrock methods ReLPM Numerical experiments

ReLPM: key features

I

real arithmetic;

I

no Krylov subspace to store;

I

linear complexity due to the 2-term recurrence;

I

no linear system to solve;

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(41)

Exp. Rosenbrock methods ReLPM Numerical experiments

ReLPM: key features

I

real arithmetic;

I

no Krylov subspace to store;

I

linear complexity due to the 2-term recurrence;

I

no linear system to solve;

I

well structured for a parallel implementation.

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(42)

Exp. Rosenbrock methods ReLPM Numerical experiments

Time sub-steps

In general, it is not feasible to interpolate with the original time step h, which has to be split. This happens, e.g., when the expected degree for convergence is too large.

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(43)

Exp. Rosenbrock methods ReLPM Numerical experiments

Time sub-steps

In general, it is not feasible to interpolate with the original time step h, which has to be split. This happens, e.g., when the expected degree for convergence is too large.

Setting K = hJ, ϕ

k

(K )v (k > 0) is the solution at t = 1 of y

0

(t) = Ky (t) + t

k−1

(k − 1)! v, y(0) = y

0

= 0

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(44)

Exp. Rosenbrock methods ReLPM Numerical experiments

Time sub-steps

In general, it is not feasible to interpolate with the original time step h, which has to be split. This happens, e.g., when the expected degree for convergence is too large.

Setting K = hJ, ϕ

k

(K )v (k > 0) is the solution at t = 1 of y

0

(t) = Ky (t) + t

k−1

(k − 1)! v, y(0) = y

0

= 0 Given δ = 1/L, then y

L

= ϕ

k

(K )v , where

y

`+1

= exp(δK )y

`

k

k−1

X

i=0

`

k−1−i

(k − 1 − i)! ϕ

i+1

(δK )v , ` = 0, . . . , L−1.

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(45)

Exp. Rosenbrock methods ReLPM Numerical experiments

Time sub-steps

In general, it is not feasible to interpolate with the original time step h, which has to be split. This happens, e.g., when the expected degree for convergence is too large.

Setting K = hJ, ϕ

k

(K )v (k > 0) is the solution at t = 1 of y

0

(t) = Ky (t) + t

k−1

(k − 1)! v, y(0) = y

0

= 0 Given δ = 1/L, then y

L

= ϕ

k

(K )v , where

y

`+1

= exp(δK )y

`

k

k−1

X

i=0

`

k−1−i

(k − 1 − i)! ϕ

i+1

(δK )v , ` = 0, . . . , L−1.

It requires k evaluations of a matrix function for ` = 0. When increasing ` by one, only one additional evaluation, exp(δK )y

`

, is required. The other terms are scalar multiples of the previous evaluations, which have to be stored.

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(46)

Exp. Rosenbrock methods ReLPM Numerical experiments

Diffusion-advection-reaction equations

We consider

t

u = ε(∂

xx

u + ∂

yy

u ) − α(∂

x

u + ∂

y

u) + γ u

 u − 1

2



(1 − u) on the unit square subject to homogeneous Neumann b. c.

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(47)

Exp. Rosenbrock methods ReLPM Numerical experiments

Diffusion-advection-reaction equations

We consider

t

u = ε(∂

xx

u + ∂

yy

u ) − α(∂

x

u + ∂

y

u) + γ u

 u − 1

2



(1 − u) on the unit square subject to homogeneous Neumann b. c.

Standard finite differences in space with ∆x = ∆y = 0.005 (d.o.f.

40401), final time T = 0.3.

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(48)

Exp. Rosenbrock methods ReLPM Numerical experiments

Time integrators

We consider 5 second order time integrators:

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(49)

Exp. Rosenbrock methods ReLPM Numerical experiments

Time integrators

We consider 5 second order time integrators:

erow2l

exponential Rosenbrock–Euler method with ϕ

k

evaluations by ReLPM;

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(50)

Exp. Rosenbrock methods ReLPM Numerical experiments

Time integrators

We consider 5 second order time integrators:

erow2l

exponential Rosenbrock–Euler method with ϕ

k

evaluations by ReLPM;

erow2k

exponential Rosenbrock–Euler method with ϕ

k

evaluations by Krylov method (phipro routine by Y. Saad);

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(51)

Exp. Rosenbrock methods ReLPM Numerical experiments

Time integrators

We consider 5 second order time integrators:

erow2l

exponential Rosenbrock–Euler method with ϕ

k

evaluations by ReLPM;

erow2k

exponential Rosenbrock–Euler method with ϕ

k

evaluations by Krylov method (phipro routine by Y. Saad);

rkc

explicit Runge–Kutta–Chebyshev method (code by Sommeijer, Shampine and Verwer);

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(52)

Exp. Rosenbrock methods ReLPM Numerical experiments

Time integrators

We consider 5 second order time integrators:

erow2l

exponential Rosenbrock–Euler method with ϕ

k

evaluations by ReLPM;

erow2k

exponential Rosenbrock–Euler method with ϕ

k

evaluations by Krylov method (phipro routine by Y. Saad);

rkc

explicit Runge–Kutta–Chebyshev method (code by Sommeijer, Shampine and Verwer);

rock2

explicit Orthogonal Runge–Kutta–Chebyshev (code by Abdulle and Medovikov);

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(53)

Exp. Rosenbrock methods ReLPM Numerical experiments

Time integrators

We consider 5 second order time integrators:

erow2l

exponential Rosenbrock–Euler method with ϕ

k

evaluations by ReLPM;

erow2k

exponential Rosenbrock–Euler method with ϕ

k

evaluations by Krylov method (phipro routine by Y. Saad);

rkc

explicit Runge–Kutta–Chebyshev method (code by Sommeijer, Shampine and Verwer);

rock2

explicit Orthogonal Runge–Kutta–Chebyshev (code by Abdulle and Medovikov);

cn

classical Crank–Nicolson scheme (inexact Newton nonlinear solver, BiCGStab linear solver, ILU with no fill-in perconditioner).

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(54)

Exp. Rosenbrock methods ReLPM Numerical experiments

Results: small advection, small reaction

ε = 0.1, α = −1, γ = 1 (tolerances: 10

3

–10

6

)

1 2 4 8 16 32

CPU seconds 10-6

10-5 10-4 10-3 10-2

relative error in 2-norm

rkcrock2 erow2k erow2l

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(55)

Exp. Rosenbrock methods ReLPM Numerical experiments

Results: large reaction

ε = 0.1, α = −1, γ = 100 (tolerances: 10

3

–10

6

)

2 4 8 16 32 64

CPU seconds 10-6

10-5 10-4 10-3 10-2

relative error in 2-norm

rkcrock2 erow2k erow2l

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(56)

Exp. Rosenbrock methods ReLPM Numerical experiments

Results: large advection

ε = 0.1, α = −10, γ = 1 (tolerances: 10

3

–10

6

)

2 4 8 16 32 64

CPU seconds 10-7

10-6 10-5 10-4 10-3 10-2

relative error in 2-norm

rkcrock2 erow2k erow2l

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(57)

Exp. meshless Numerical experiment

Collocation with cardinal functions

Given the PDE

t

u(t, x) = Lu(t, x)

(with L a second order, linear operator), we consider the interpolation

u(t, x) ≈

N

X

j=1

φ

j

(x)u(t; x

j

) = φ(x) ◦ u(t)

where φ

j

(x

i

) = δ

ij

and u(t; x

j

) = u(t, x

j

).

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(58)

Exp. meshless Numerical experiment

Collocation with cardinal functions

Given the PDE

t

u(t, x) = Lu(t, x)

(with L a second order, linear operator), we consider the interpolation

u(t, x) ≈

N

X

j=1

φ

j

(x)u(t; x

j

) = φ(x) ◦ u(t)

where φ

j

(x

i

) = δ

ij

and u(t; x

j

) = u(t, x

j

). Then, φ(x) ◦ u

0

(t) = L (φ(x) ◦ u(t))

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(59)

Exp. meshless Numerical experiment

Collocation with cardinal functions

Given the PDE

t

u(t, x) = Lu(t, x)

(with L a second order, linear operator), we consider the interpolation

u(t, x) ≈

N

X

j=1

φ

j

(x)u(t; x

j

) = φ(x) ◦ u(t)

where φ

j

(x

i

) = δ

ij

and u(t; x

j

) = u(t, x

j

). Then, φ(x) ◦ u

0

(t) = L (φ(x) ◦ u(t)) Now, we can collocate at the same {x

i

}.

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(60)

Exp. meshless Numerical experiment

Exponential meshless method

We get

u

0

(t) = L (φ(x) ◦ u(t)) |

(x1,...,xN)T

= (L(φ)(x) ◦ u(t)) |

(x1,...,xN)T

= Au(t) where A = a

ij

= L(φ

j

)(x

i

).

In collaboration with M. Vianello, University of Padua

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(61)

Exp. meshless Numerical experiment

Exponential meshless method

We get

u

0

(t) = L (φ(x) ◦ u(t)) |

(x1,...,xN)T

= (L(φ)(x) ◦ u(t)) |

(x1,...,xN)T

= Au(t) where A = a

ij

= L(φ

j

)(x

i

).

An iterative method (such as ReLPM or Krylov method) for the approximation of exp(h

n

A)u

n

is based on successive products

Au

(m)n

, m = 0, 1, . . . , u

(0)n

= u

n

In collaboration with M. Vianello, University of Padua

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(62)

Exp. meshless Numerical experiment

Exponential meshless method

We get

u

0

(t) = L (φ(x) ◦ u(t)) |

(x1,...,xN)T

= (L(φ)(x) ◦ u(t)) |

(x1,...,xN)T

= Au(t) where A = a

ij

= L(φ

j

)(x

i

).

An iterative method (such as ReLPM or Krylov method) for the approximation of exp(h

n

A)u

n

is based on successive products

Au

(m)n

, m = 0, 1, . . . , u

(0)n

= u

n

If the nodes {x

i

} are arbitrary and we have a tool to compute Au

n(m)

directly as L 

φ(x) ◦ u

(m)n



|

(x1,...,xN)T

, we get an exponential meshless method.

In collaboration with M. Vianello, University of Padua

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(63)

Exp. meshless Numerical experiment

2D examples: CShep2D and QShep2D

CShep2D, by R. J. Renka, is among the most accurate and

efficient scattered data interpolation algorithms. It constructs a C

2

interpolant in a moving least-square fashion. The costs range between O(N) and O(N

2

) (preprocessing) and O(1) and O(N) (evaluation), depending on the distribution of the nodes. It can compute also the first and the second derivative. The required storage is 9N.

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(64)

Exp. meshless Numerical experiment

2D examples: CShep2D and QShep2D

CShep2D, by R. J. Renka, is among the most accurate and

efficient scattered data interpolation algorithms. It constructs a C

2

interpolant in a moving least-square fashion. The costs range between O(N) and O(N

2

) (preprocessing) and O(1) and O(N) (evaluation), depending on the distribution of the nodes. It can compute also the first and the second derivative. The required storage is 9N.

QShep2D constructs a C

1

interpolant. It can compute also the first and the second derivative (although not continuous). The required storage is 5N.

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(65)

Exp. meshless Numerical experiment

A monitor for the check points

Since the collocation, or center, points are arbitrary, we can add or remove points at each time step, depending on the behaviour of the solution on a set of check points.

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(66)

Exp. meshless Numerical experiment

A monitor for the check points

Since the collocation, or center, points are arbitrary, we can add or remove points at each time step, depending on the behaviour of the solution on a set of check points.

For example, we can consider a curvature monitor

|∆x

2

u

xx

(t; (ˇ x

i

, ˇ y

i

))| + |∆y

2

u

yy

(t; (ˇ x

i

, ˇ y

i

))|

which has to be evaluated at each check point (ˇ x

i

, ˇ y

i

).

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(67)

Exp. meshless Numerical experiment

Center and check points

check point center point

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(68)

Exp. meshless Numerical experiment

Center and check points

center point check point

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(69)

Exp. meshless Numerical experiment

Unstable derivatives

Derivatives computed directly by {C,Q}Shep2D give raise to instabilities during time integration (under investigation).

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(70)

Exp. meshless Numerical experiment

Unstable derivatives

Derivatives computed directly by {C,Q}Shep2D give raise to instabilities during time integration (under investigation).

Idea: derivatives in a FD fashion. They are much more stable.

center point check point FD stencil

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(71)

Exp. meshless Numerical experiment

The Molenkamp–Crowley test

Let us consider

t

u + (au)

x

+ (bu)

y

= 0 with

a(x, y ) = −2π

 y − 1

2



, b(x, y ) = 2π

 x − 1

2



M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(72)

Exp. meshless Numerical experiment

The Molenkamp–Crowley test

Let us consider

t

u + (au)

x

+ (bu)

y

= 0 with

a(x, y ) = −2π

 y − 1

2



, b(x, y ) = 2π

 x − 1

2



The initial profile is rotated around the center of the domain. At time t = 1 one rotation will be completed. Homogeneous Dirichlet conditions are prescribed at the inflow boundaries.

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(73)

Exp. meshless Numerical experiment

The Molenkamp–Crowley test

0 0.2

0.4 0.6

0.8 1 0

0.2 0.4

0.6 0.8

1 0

0.2 0.4 0.6 0.8 1

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(74)

Exp. meshless Numerical experiment

The Molenkamp–Crowley test

0 0.2

0.4 0.6

0.8 1 0

0.2 0.4

0.6 0.8

1 0

0.2 0.4 0.6 0.8 1

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(75)

Exp. meshless Numerical experiment

The Molenkamp–Crowley test

0 0.2

0.4 0.6

0.8 1 0

0.2 0.4

0.6 0.8

1 0

0.2 0.4 0.6 0.8 1

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(76)

Exp. meshless Numerical experiment

The Molenkamp–Crowley test

0 0.2

0.4 0.6

0.8 1 0

0.2 0.4

0.6 0.8

1 0

0.2 0.4 0.6 0.8 1

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(77)

Exp. meshless Numerical experiment

The Molenkamp–Crowley test

0 0.2

0.4 0.6

0.8 1 0

0.2 0.4

0.6 0.8

1 0

0.2 0.4 0.6 0.8 1

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(78)

Exp. meshless Numerical experiment

The Molenkamp–Crowley test

0 0.2

0.4 0.6

0.8 1 0

0.2 0.4

0.6 0.8

1 0

0.2 0.4 0.6 0.8 1

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(79)

Exp. meshless Numerical experiment

The Molenkamp–Crowley test

0 0.2

0.4 0.6

0.8 1 0

0.2 0.4

0.6 0.8

1 0

0.2 0.4 0.6 0.8 1

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(80)

Exp. meshless Numerical experiment

The Molenkamp–Crowley test

0 0.2

0.4 0.6

0.8 1 0

0.2 0.4

0.6 0.8

1 0

0.2 0.4 0.6 0.8 1

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(81)

Exp. meshless Numerical experiment

The Molenkamp–Crowley test

0 0.2

0.4 0.6

0.8 1 0

0.2 0.4

0.6 0.8

1 0

0.2 0.4 0.6 0.8 1

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(82)

Exp. meshless Numerical experiment

The Molenkamp–Crowley test

0 0.2

0.4 0.6

0.8 1 0

0.2 0.4

0.6 0.8

1 0

0.2 0.4 0.6 0.8 1

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(83)

Exp. meshless Numerical experiment

The Molenkamp–Crowley test

0 0.2

0.4 0.6

0.8 1 0

0.2 0.4

0.6 0.8

1 0

0.2 0.4 0.6 0.8 1

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(84)

Exp. meshless Numerical experiment

The Molenkamp–Crowley test

0 0.2

0.4 0.6

0.8 1 0

0.2 0.4

0.6 0.8

1 0

0.2 0.4 0.6 0.8 1

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(85)

Exp. meshless Numerical experiment

The Molenkamp–Crowley test

0 0.2

0.4 0.6

0.8 1 0

0.2 0.4

0.6 0.8

1 0

0.2 0.4 0.6 0.8 1

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(86)

Exp. meshless Numerical experiment

The Molenkamp–Crowley test

0 0.2

0.4 0.6

0.8 1 0

0.2 0.4

0.6 0.8

1 0

0.2 0.4 0.6 0.8 1

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(87)

Exp. meshless Numerical experiment

The Molenkamp–Crowley test

0 0.2

0.4 0.6

0.8 1 0

0.2 0.4

0.6 0.8

1 0

0.2 0.4 0.6 0.8 1

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(88)

Exp. meshless Numerical experiment

The Molenkamp–Crowley test

0 0.2

0.4 0.6

0.8 1 0

0.2 0.4

0.6 0.8

1 0

0.2 0.4 0.6 0.8 1

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(89)

Exp. meshless Numerical experiment

The Molenkamp–Crowley test

0 0.2

0.4 0.6

0.8 1 0

0.2 0.4

0.6 0.8

1 0

0.2 0.4 0.6 0.8 1

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(90)

Exp. meshless Numerical experiment

The Molenkamp–Crowley test

0 0.2

0.4 0.6

0.8 1 0

0.2 0.4

0.6 0.8

1 0

0.2 0.4 0.6 0.8 1

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(91)

Exp. meshless Numerical experiment

The Molenkamp–Crowley test

0 0.2

0.4 0.6

0.8 1 0

0.2 0.4

0.6 0.8

1 0

0.2 0.4 0.6 0.8 1

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(92)

Exp. meshless Numerical experiment

The Molenkamp–Crowley test

0 0.2

0.4 0.6

0.8 1 0

0.2 0.4

0.6 0.8

1 0

0.2 0.4 0.6 0.8 1

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(93)

Exp. meshless Numerical experiment

The first symmetrized 13 Leja points on i [−2 , 2]

-3 -2 -1 0 1 2 3

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(94)

Exp. meshless Numerical experiment

The first symmetrized 13 Leja points on i [−2 , 2]

-3 -2 -1 0 1 2 3

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(95)

Exp. meshless Numerical experiment

The first symmetrized 13 Leja points on i [−2 , 2]

-3 -2 -1 0 1 2 3

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(96)

Exp. meshless Numerical experiment

The first symmetrized 13 Leja points on i [−2 , 2]

-3 -2 -1 0 1 2 3

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(97)

Exp. meshless Numerical experiment

The first symmetrized 13 Leja points on i [−2 , 2]

-3 -2 -1 0 1 2 3

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(98)

Exp. meshless Numerical experiment

The first symmetrized 13 Leja points on i [−2 , 2]

-3 -2 -1 0 1 2 3

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(99)

Exp. meshless Numerical experiment

The first symmetrized 13 Leja points on i [−2 , 2]

-3 -2 -1 0 1 2 3

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(100)

Exp. meshless Numerical experiment

The first symmetrized 13 Leja points on i [−2 , 2]

-3 -2 -1 0 1 2 3

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

(101)

Exp. meshless Numerical experiment

The first symmetrized 13 Leja points on i [−2 , 2]

-3 -2 -1 0 1 2 3

M. Caliari, A. Ostermann Implementation of exponential Rosenbrock-type methods

Riferimenti

Documenti correlati

However, while under moderate water stress (Experiment 1), no significant differences were observed among the lines, and significantly higher PLA values for the emitters were found

In case K is a finite set, what results is what is called the Leja re-ordering of the points of K and is useful (indeed necessary!) for a numerically stable evaluation of

Indeed, cytosolic Ca 2 ⫹ decreases and simultaneous mitochondrial Ca 2 ⫹ increases were sensitive to the nonspe- cific mitochondrial calcium uptake inhibitor carbamimido- thioic

Il progetto è stato condiviso tra i diversi attori istituzionali (Comunità Montana e Ambito del Basso Sebino, ATS, Università) e finanziato dall’Associazione dei Comuni. Il

The lack of attention on the interactional and resource integration practices and the related assessment of value, leads to the following research questions: “what are the

Così, Mario Ascheri ha promosso indagini volte a ricostruire gli ambiti territoriali di competenza delle magistrature centrali e locali; d’altro canto, a Riccardo Francovich si deve

La sensibilità al problema della diffusa povertà e della maternità determinò, in alcune città europee, dell’area cattolica quanto rifor- mata, lo sviluppo di interventi a favore

In this paper we show that the computational process that produces the Discrete Leja Points also naturally provides a multivariate version of Newton interpolation, and a good